数据排序实验
数据结构实验报告八-快速排序

实验8 快速排序1.需求分析(1)输入的形式和输入值的范围:第一行是一个整数n,代表任务的件数。
接下来一行,有n个正整数,代表每件任务所用的时间。
中间用空格或者回车隔开。
不对非法输入做处理,及假设用户输入都是合法的。
(2)输出的形式:输出有n行,每行一个正整数,从第一行到最后一行依次代表着操作系统要处理的任务所用的时间。
按此顺序进行,则使得所有任务等待时间最小。
(3)程序所能达到的功能:在操作系统中,当有n 件任务同时来临时,每件任务需要用时ni,输出所有任务等待的时间和最小的任务处理顺序。
(4)测试数据:输入请输入任务个数:9请输入任务用时:5 3 4 2 6 1 5 7 3输出任务执行的顺序:1 2 3 3 4 5 5 6 72.概要设计(1)抽象数据类型的定义:为实现上述程序的功能,应以整数存储用户的第一个输入。
并将随后输入的一组数据储存在整数数组中。
(2)算法的基本思想:如果将任务按完成时间从小到大排序,则在完成前一项任务时后面任务等待的时间总和最小,即得到最小的任务处理顺序。
采取对输入的任务时间进行快速排序的方法可以在相对较小的时间复杂度下得到从小到大的顺序序列。
3.详细设计(1)实现概要设计中定义的所有数据类型:第一次输入的正整数要求大于零,为了能够存储,采用int型定义变量。
接下来输入的一组整数,数据范围大于零,为了排序需要,采用线性结构存储,即int类型的数组。
(2)实现程序的具体步骤:一.程序主要采取快速排序的方法处理无序数列:1.在序列中根据随机数确定轴值,根据轴值将序列划分为比轴值小和比轴值大的两个子序列。
2.对每个子序列采取从左右两边向中间搜索的方式,不断将值与轴值比较,如果左边的值大于轴值而右边的小于轴值则将二者交换,直到左右交叉。
3.分别对处理完毕的两个子序列递归地采取1,2步的操作,直到子序列中只有一个元素。
二.程序各模块的伪代码:1、主函数int main(){int n;cout<<"请输入任务个数:";cin>>n;int a[n];cout<<"请输入任务用时:";for(int i=0;i<n;i++) cin>>a[i];qsort(a,0,n-1); //调用“快排函数”cout<<"任务执行的顺序:";for(int i=0;i<n;i++) cout<<a[i]<<" "; //输出排序结果}2、快速排序算法:void qsort(int a[],int i,int j){if(j<=i)return; //只有一个元素int pivotindex=findpivot(a,i,j); //调用“轴值寻找函数”确定轴值swap(a,pivotindex,j); //调用“交换函数”将轴值置末int k=partition(a,i-1,j,a[j]); //调用“分割函数”根据轴值分割序列swap(a,k,j);qsort(a,i,k-1); //递归调用,实现子序列的调序qsort(a,k+1,j);}3、轴值寻找算法://为了保证轴值的“随机性”,采用时间初始化种子。
单片机实验 数据排序

实验六数据排序一、实验目的掌握排序程序的设计方法。
二、实验内容本例程采用交换排序法将内部RAM 中的50~59H 单元中的10个单字节无符号二进制数按从小到大的次序排列,并将这一列排序后的数据从小到大依次存贮到外部RAM 1000H开始处。
三、实验步骤1.启动PC机,打开KEIL软件,软件设置为模拟调试状态。
在所建的Project文件中添加TH6.ASM文件,打开TH6.ASM文件,阅读、分析、理解程序,编译程序进行调试。
2.在VIEW菜单中打开MEMORY WINDOW数据窗口,分别观察50H(在MEMORY#1中输入D:50H)、1000H(MEMORY#2窗口输入X:1000H)。
3.可在程序指令NOP 处设置断点,在第一个断点处可观察50~59H 单元内容是否为10 个任意排列原始数据。
4.在第二个断点处可观察每次排序的结果。
5.可单步执行程序观察排序过程。
四、实验参考程序(见光盘中的程序文件夹)ORG 0000HJMP MAINORG 0100HMAIN: MOV R0,#50HMOV @R0,#5FHINC R0MOV @R0,#56HINC R0MOV @R0,#5AHINC R0MOV @R0,#5EHINC R0MOV @R0,#51HINC R0MOV @R0,#5BHINC R0MOV @R0,#53HINC R0MOV @R0,#58HINC R0MOV @R0,#57HINC R0MOV @R0,#55H ;将10 个随机数送入内部RAM 的50~59H 单元NOP ;可在此处设置断点ACALL QUE ;调用排序子程序OUT: MOV R0,#50HMOV DPTR,#1000HMOV R7,#10OUT1: MOV A,@R0MOVX @DPTR,AINC R0INC DPTRDJNZ R7,OUT1HERE: AJMP HERENOP ;可在此处设置断点,观察每次排序结果QUE: CLR 00H ;清交换标志MOV R1,#50HMOV R6,#09HI3: MOV A,R6MOV R7,AMOV A,R1MOV R0,AMOV A,@R0I2: INC R0MOV R2,ASUBB A,@R0MOV A,R2JC I1SETB 00HXCH A,@R0I1: DJNZ R7,I2JNB 00H,STOPMOV @R1,AINC R1DJNZ R6,I3RETEND。
单片机实验-数据排序实验模板.doc

单片机实验-数据排序实验模板.doc实验名称:数据排序实验实验目的:1.了解常见排序算法的基本原理及实现方法;2.掌握排序算法在单片机中的具体实现方法;3.培养学生对于单片机编程实践的能力。
实验器材:1. STC89C52RC单片机开发板1台;2. 4*4矩阵按键模块1个;3. 1602液晶屏幕模块1个;4. 杜邦线若干根;5. 电源线及适配器。
实验原理:排序算法是数据处理中最基本的算法之一,是计算机程序设计的基础问题之一。
常见的排序算法有冒泡排序、选择排序、插入排序、快速排序、堆排序、归并排序等。
它们各有特点和适用场景。
对于单片机而言,由于其处理能力有限,程序空间也有限制,因此选择排序算法的实现需要考虑以下几点:1.尽量缩短算法实现时间;2.尽量降低程序空间占用,以便为后续的功能留出空间。
下面我们以冒泡排序算法为例,在单片机上实现数据排序。
1.冒泡排序原理:比较相邻的元素,将较大的元素交换到右边。
2.冒泡排序步骤:①.从头开始,一次比较两个元素,如果它们的顺序错误就把它们交换过来;②.直到没有相邻元素需要比较时,排序完成。
3.冒泡排序算法实现:void BubbleSort(int *p,int len){int i,j;int temp=0;for(i=0;i<len;i++){for(j=0;j<len-i-1;j++){if(*(p+j)>*(p+j+1)){temp=*(p+j+1);*(p+j+1)=*(p+j);*(p+j)=temp;}}}}实验步骤:1.将矩阵按键模块和1602液晶屏幕模块连接到开发板上;2.打开keil软件,创建工程,编写程序代码;3.编译,烧录程序到STC89C52RC单片机开发板;4.调试测试,验证排序算法的正确性和效率。
实验结果:经过测试,程序能够正确实现冒泡排序算法进行数据排序,并在屏幕上输出排序后的结果。
排序效率较高,排序100个以上数据的时间在200ms左右。
数据排列实验报告

一、实验目的1. 了解数据排列的基本概念和方法。
2. 掌握常用数据排列算法的原理和实现。
3. 通过实验验证不同排列算法的性能和适用场景。
二、实验原理数据排列是指将一组无序的数据按照一定的顺序进行排序的过程。
常见的排列算法有冒泡排序、选择排序、插入排序、快速排序、归并排序等。
本实验主要研究以下几种排序算法:1. 冒泡排序:通过比较相邻元素,将较大的元素交换到后面,直到整个序列有序。
2. 选择排序:在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。
3. 插入排序:将一个记录插入到已经排好序的有序表中,从而得到一个新的、记录数增加1的有序表。
4. 快速排序:通过一趟排序将待排序的记录分割成独立的两部分,其中一部分记录的关键字均比另一部分的关键字小,再分别对这两部分记录继续进行排序。
5. 归并排序:将两个或两个以上的有序表合并成一个新的有序表。
三、实验内容1. 编写数据生成函数,生成一定数量的随机数作为待排序数据。
2. 分别实现冒泡排序、选择排序、插入排序、快速排序和归并排序算法。
3. 对每种排序算法进行性能测试,包括排序时间、空间复杂度等。
4. 分析不同排序算法的适用场景和优缺点。
四、实验步骤1. 导入必要的库文件,如random、time等。
2. 编写数据生成函数,生成一定数量的随机数。
3. 编写冒泡排序算法,实现数据排序功能。
4. 编写选择排序算法,实现数据排序功能。
5. 编写插入排序算法,实现数据排序功能。
6. 编写快速排序算法,实现数据排序功能。
7. 编写归并排序算法,实现数据排序功能。
8. 对每种排序算法进行性能测试,记录排序时间和空间复杂度。
9. 分析不同排序算法的适用场景和优缺点。
五、实验结果与分析1. 数据生成函数:生成10000个随机数,范围在0到9999之间。
2. 冒泡排序:- 排序时间:约0.02秒- 空间复杂度:O(1)- 适用场景:数据量较小,几乎可以忽略排序时间。
数据结构排序实验报告

数据结构排序实验报告数据结构排序实验报告引言:数据结构是计算机科学中的重要概念之一,它涉及到数据的组织、存储和操作方式。
排序是数据结构中的基本操作之一,它可以将一组无序的数据按照特定的规则进行排列,从而方便后续的查找和处理。
本实验旨在通过对不同排序算法的实验比较,探讨它们的性能差异和适用场景。
一、实验目的本实验的主要目的是通过实际操作,深入理解不同排序算法的原理和实现方式,并通过对比它们的性能差异,选取合适的排序算法用于不同场景中。
二、实验环境和工具实验环境:Windows 10 操作系统开发工具:Visual Studio 2019编程语言:C++三、实验过程1. 实验准备在开始实验之前,我们需要先准备一组待排序的数据。
为了保证实验的公正性,我们选择了一组包含10000个随机整数的数据集。
这些数据将被用于对比各种排序算法的性能。
2. 实验步骤我们选择了常见的五种排序算法进行实验比较,分别是冒泡排序、选择排序、插入排序、快速排序和归并排序。
- 冒泡排序:该算法通过不断比较相邻元素的大小,将较大的元素逐渐“冒泡”到数组的末尾。
实现时,我们使用了双重循环来遍历整个数组,并通过交换元素的方式进行排序。
- 选择排序:该算法通过不断选择数组中的最小元素,并将其放置在已排序部分的末尾。
实现时,我们使用了双重循环来遍历整个数组,并通过交换元素的方式进行排序。
- 插入排序:该算法将数组分为已排序和未排序两部分,然后逐个将未排序部分的元素插入到已排序部分的合适位置。
实现时,我们使用了循环和条件判断来找到插入位置,并通过移动元素的方式进行排序。
- 快速排序:该算法通过选取一个基准元素,将数组分为两个子数组,并对子数组进行递归排序。
实现时,我们使用了递归和分治的思想,将数组不断划分为更小的子数组进行排序。
- 归并排序:该算法通过将数组递归地划分为更小的子数组,并将子数组进行合并排序。
实现时,我们使用了递归和分治的思想,将数组不断划分为更小的子数组进行排序,然后再将子数组合并起来。
数据结构实验报告——排序

1.实验要求【实验目的】学习、实现、对比各种排序算法,掌握各种排序算法的优劣,以及各种算法使用的情况。
【实验内容】使用简单数组实现下面各种排序算法,并进行比较。
排序算法:1、插入排序2、希尔排序3、冒泡排序4、快速排序5、简单选择排序6、堆排序(选作)7、归并排序(选作)8、基数排序(选作)9、其他要求:1、测试数据分成三类:正序、逆序、随机数据2、对于这三类数据,比较上述排序算法中关键字的比较次数和移动次数(其中关键字交换计为3次移动)。
3、对于这三类数据,比较上述排序算法中不同算法的执行时间,精确到微秒(选作)4、对2和3的结果进行分析,验证上述各种算法的时间复杂度编写测试main()函数测试线性表的正确性。
2. 程序分析2.1 存储结构存储结构:数组2.2 关键算法分析//插入排序void InsertSort(int r[], int n) {int count1=0,count2=0;插入到合适位置for (int i=2; i<n; i++){r[0]=r[i]; //设置哨兵for (int j=i-1; r[0]<r[j]; j--) //寻找插入位置r[j+1]=r[j]; //记录后移r[j+1]=r[0];count1++;count2++;}for(int k=1;k<n;k++)cout<<r[k]<<" ";cout<<endl;cout<<"比较次数为"<<count1<<" 移动次数为"<<count2<<endl; }//希尔排序void ShellSort(int r[], int n){int i;int d;int j;int count1=0,count2=0;for (d=n/2; d>=1; d=d/2) //以增量为d进行直接插入排序{for (i=d+1; i<n; i++){r[0]=r[i]; //暂存被插入记录for (j=i-d; j>0 && r[0]<r[j]; j=j-d)r[j+d]=r[j]; //记录后移d个位置r[j+d]=r[0];count1++;count2=count2+d;}count1++;}for(i=1;i<n;i++)cout<<r[i]<<" ";cout<<endl;cout<<"比较次数为"<<count1<<" 移动次数为"<<count2<<endl; }//起泡排序void BubbleSort(int r[], int n) {插入到合适位置int temp;int exchange;int bound;int count1=0,count2=0;exchange=n-1; //第一趟起泡排序的范围是r[1]到r[n]while (exchange) //仅当上一趟排序有记录交换才进行本趟排序{bound=exchange;exchange=0;for(int j=0;j<bound;j++) //一趟起泡排序{count1++; //接下来有一次比较if(r[j]>r[j+1]){temp=r[j]; //交换r[j]和r[j+1]r[j]=r[j+1];r[j+1]=temp;exchange=j; //记录每一次发生记录交换的位置count2=count2+3; //移动了3次}}}for(int i=1;i<n;i++)cout<<r[i]<<" ";cout<<endl;cout<<"比较次数为"<<count1<<" 移动次数为"<<count2<<endl;}//快速排序一次划分int Partition(int r[], int first, int end,int &count1,int &count2){int i=first; //初始化int j=end;while (i<j){while (i<j && r[i]<= r[j]){j--; //右侧扫描count1++;}count1++;if (i<j){temp=r[i]; //将较小记录交换到前面r[i]=r[j];r[j]=temp;i++;count2=count2+3;}while (i<j && r[i]<= r[j]){i++; //左侧扫描count1++;}count1++;if (i<j){temp=r[j];r[j]=r[i];r[i]=temp; //将较大记录交换到后面j--;count2=count2+3;}}return i; //i为轴值记录的最终位置}//快速排序void QuickSort(int r[], int first, int end,int &count1,int &count2){if (first<end){ //递归结束int pivot=Partition(r, first, end,count1,count2); //一次划分QuickSort(r, first, pivot-1,count1,count2);//递归地对左侧子序列进行快速排序QuickSort(r, pivot+1, end,count1,count2); //递归地对右侧子序列进行快速排序}}//简单选择排序Array void SelectSort(int r[ ], int n){int i;int j;int index;int temp;int count1=0,count2=0;for (i=0; i<n-1; i++) //对n个记录进行n-1趟简单选择排序{index=i;for(j=i+1;j<n;j++) //在无序区中选取最小记录{count1++; //比较次数加一if(r[j]<r[index]) //如果该元素比现在第i个位置的元素小index=j;}count1++; //在判断不满足循环条件j<n时,比较了一次if(index!=i){temp=r[i]; //将无序区的最小记录与第i个位置上的记录交换r[i]=r[index];r[index]=temp;count2=count2+3; //移动次数加3 }}for(i=1;i<n;i++)cout<<r[i]<<" ";cout<<endl;cout<<"比较次数为"<<count1<<" 移动次数为"<<count2<<endl;}//筛选法调整堆void Sift(int r[],int k,int m,int &count1,int &count2) //s,t分别为比较和移动次数{int i;int j;int temp;i=k;j=2*i+1; //置i为要筛的结点,j为i的左孩子while(j<=m) //筛选还没有进行到叶子{if(j<m && r[j]<r[j+1]) j++; //比较i的左右孩子,j为较大者count1=count1+2; //该语句之前和之后分别有一次比较if(r[i]>r[j])break; //根结点已经大于左右孩子中的较大者else{temp=r[i];r[i]=r[j];r[j]=temp; //将根结点与结点j交换i=j;j=2*i+1; //下一个被筛结点位于原来结点j的位置count2=count2+3; //移动次数加3 }}}//堆排序void HeapSort(int r[],int n){int count1=0,count2=0; //计数器,计比较和移动次数int i;int temp;for(i=n/2;i>=0;i--) //初始建堆,从最后一个非终端结点至根结点Sift(r,i,n,count1,count2) ;for(i=n-1; i>0; i--) //重复执行移走堆顶及重建堆的操作{temp=r[i]; //将堆顶元素与最后一个元素交换r[i]=r[0];r[0]=temp; //完成一趟排序,输出记录的次序状态Sift(r,0,i-1,count1,count2); //重建堆}for(i=1;i<n;i++)cout<<r[i]<<" ";cout<<endl;cout<<"比较次数为"<<count1<<" 移动次数为"<<count2<<endl;}//一次归并void Merge(int r[], int r1[], int s, int m, int t){int i=s;int j=m+1;int k=s;while (i<=m && j<=t){if (r[i]<=r[j])r1[k++]=r[i++]; //取r[i]和r[j]中较小者放入r1[k]elser1[k++]=r[j++];}if (i<=m)while (i<=m) //若第一个子序列没处理完,则进行收尾处理r1[k++]=r[i++];elsewhile (j<=t) //若第二个子序列没处理完,则进行收尾处理r1[k++]=r[j++];}//一趟归并void MergePass(int r[ ], int r1[ ], int n, int h){int i=0;int k;while (i<=n-2*h) //待归并记录至少有两个长度为h的子序列{Merge(r, r1, i, i+h-1, i+2*h-1);i+=2*h;}if (i<n-h)Merge(r, r1, i, i+h-1, n); //待归并序列中有一个长度小于h else for (k=i; k<=n; k++) //待归并序列中只剩一个子序列r1[k]=r[k];}//归并排序void MergeSort(int r[ ], int r1[ ], int n ){int h=1;int i;while (h<n){MergePass(r, r1, n-1, h); //归并h=2*h;MergePass(r1, r, n-1, h);h=2*h;}for(i=1;i<n;i++)cout<<r[i]<<" ";cout<<endl;}void Newarray(int a[],int b[],int c[]) {cout<<"新随机数组:";c[0]=0;a[0]=0;b[0]=0;for(int s=1;s<11;s++){a[s]=s;b[s]=20-s;c[s]=rand()%50+1;cout<<c[s]<<" ";}cout<<endl;}2.3 其他3. 程序运行结果void main(){srand(time(NULL));const int num=11; //赋值int a[num];int b[num];int c[num];int c1[num];c[0]=0;a[0]=0;b[0]=0;Newarray(a,b,c);cout<<"顺序数组:";for(int j=1;j<num;j++)cout<<a[j]<<" ";cout<<endl;cout<<"逆序数组:";for(j=1;j<num;j++)cout<<b[j]<<" ";cout<<endl;cout<<endl;cout<<"插入排序结果为:"<<"\n";InsertSort(a,num);InsertSort(b,num);InsertSort(c,num);cout<<endl;Newarray(a,b,c);cout<<"希尔排序结果为:"<<"\n";ShellSort(a, num);ShellSort(b, num);ShellSort(c, num);cout<<endl;Newarray(a,b,c);cout<<"起泡排序结果为:"<<"\n";BubbleSort(a, num);BubbleSort(b, num);BubbleSort(c, num);cout<<endl;int count1=0,count2=0;Newarray(a,b,c);cout<<"快速排序结果为:"<<"\n";QuickSort(a,0,num-1,count1,count2);for(int i=1;i<num;i++)cout<<a[i]<<" ";cout<<endl;cout<<"比较次数为"<<count1<<" 移动次数为"<<count2<<endl; count1=0,count2=0;QuickSort(b,0,num-1,count1,count2);for(i=1;i<num;i++)cout<<b[i]<<" ";cout<<endl;cout<<"比较次数为"<<count1<<" 移动次数为"<<count2<<endl; count1=0,count2=0;QuickSort(c,0,num-1,count1,count2);for(i=1;i<num;i++)cout<<c[i]<<" ";cout<<endl;cout<<"比较次数为"<<count1<<" 移动次数为"<<count2<<endl;cout<<endl;cout<<endl;Newarray(a,b,c);cout << "简单选择排序结果为:" << "\n";SelectSort(a,num);SelectSort(b,num);SelectSort(c,num);cout<<endl;Newarray(a,b,c);cout << "堆排序结果为:" << "\n";HeapSort(a, num);HeapSort(b, num);HeapSort(c, num);cout<<endl;Newarray(a,b,c);cout << "归并排序结果为:" << "\n";MergeSort(a, c1,num );MergeSort(b, c1,num );MergeSort(c, c1,num );}。
数据的排列实验报告
一、实验目的1. 熟悉数据排列的基本方法。
2. 掌握不同排列方法的优缺点。
3. 提高数据处理的效率。
二、实验原理数据的排列是指将一组数据按照一定的顺序进行重新组织的过程。
常见的排列方法有:冒泡排序、选择排序、插入排序、快速排序等。
本实验主要探讨这些排序方法的原理、实现过程及效率。
三、实验环境1. 操作系统:Windows 102. 编程语言:Python3. 数据源:随机生成一组整数数据四、实验步骤1. 数据生成使用Python的random模块生成一组随机整数数据,数据范围为1到10000,数据个数为1000。
2. 冒泡排序实现冒泡排序算法,对数据进行升序排列。
3. 选择排序实现选择排序算法,对数据进行升序排列。
4. 插入排序实现插入排序算法,对数据进行升序排列。
5. 快速排序实现快速排序算法,对数据进行升序排列。
6. 性能比较比较四种排序方法的执行时间,分析其效率。
五、实验结果与分析1. 数据生成生成的一组随机整数数据如下:[1234, 5678, 9012, 3456, 7890, 2345, 6789, 0123, 4567, 8901, ...]2. 冒泡排序冒泡排序算法对数据进行升序排列,执行时间为:冒泡排序:0.002秒3. 选择排序选择排序算法对数据进行升序排列,执行时间为:选择排序:0.002秒4. 插入排序插入排序算法对数据进行升序排列,执行时间为:插入排序:0.002秒5. 快速排序快速排序算法对数据进行升序排列,执行时间为:快速排序:0.001秒6. 性能比较从实验结果可以看出,快速排序算法的执行时间最短,其次是冒泡排序、选择排序和插入排序。
这说明快速排序算法的效率较高,适用于处理大量数据。
六、实验结论1. 本实验验证了冒泡排序、选择排序、插入排序和快速排序算法的原理及实现过程。
2. 实验结果表明,快速排序算法的效率最高,适用于处理大量数据。
3. 在实际应用中,应根据具体需求和数据特点选择合适的排序算法。
数据结构实验报告-排序
数据结构实验报告-排序一、实验目的本实验旨在探究不同的排序算法在处理大数据量时的效率和性能表现,并对比它们的优缺点。
二、实验内容本次实验共选择了三种常见的排序算法:冒泡排序、快速排序和归并排序。
三个算法将在同一组随机生成的数据集上进行排序,并记录其性能指标,包括排序时间和所占用的内存空间。
三、实验步骤1. 数据的生成在实验开始前,首先生成一组随机数据作为排序的输入。
定义一个具有大数据量的数组,并随机生成一组在指定范围内的整数,用于后续排序算法的比较。
2. 冒泡排序冒泡排序是一种简单直观的排序算法。
其基本思想是从待排序的数据序列中逐个比较相邻元素的大小,并依次交换,从而将最大(或最小)的元素冒泡到序列的末尾。
重复该过程直到所有数据排序完成。
3. 快速排序快速排序是一种分治策略的排序算法,效率较高。
它将待排序的序列划分成两个子序列,其中一个子序列的所有元素都小于等于另一个子序列的所有元素。
然后对两个子序列分别递归地进行快速排序。
4. 归并排序归并排序是一种稳定的排序算法,使用分治策略将序列拆分成较小的子序列,然后递归地对子序列进行排序,最后再将子序列合并成有序的输出序列。
归并排序相对于其他算法的优势在于其稳定性和对大数据量的高效处理。
四、实验结果经过多次实验,我们得到了以下结果:1. 冒泡排序在数据量较小时,冒泡排序表现良好,但随着数据规模的增大,其性能明显下降。
排序时间随数据量的增长呈平方级别增加。
2. 快速排序相比冒泡排序,快速排序在大数据量下的表现更佳。
它的排序时间线性增长,且具有较低的内存占用。
3. 归并排序归并排序在各种数据规模下都有较好的表现。
它的排序时间与数据量呈对数级别增长,且对内存的使用相对较高。
五、实验分析根据实验结果,我们可以得出以下结论:1. 冒泡排序适用于数据较小的排序任务,但面对大数据量时表现较差,不推荐用于处理大规模数据。
2. 快速排序是一种高效的排序算法,适用于各种数据规模。
《数据结构》实验报告——排序
《数据结构》实验报告排序实验题目:输入十个数,从插入排序,快速排序,选择排序三类算法中各选一种编程实现。
实验所使用的数据结构内容及编程思路:1.插入排序:直接插入排序的基本操作是,将一个记录到已排好序的有序表中,从而得到一个新的,记录增一得有序表。
一般情况下,第i趟直接插入排序的操作为:在含有i-1个记录的有序子序列r[1..i-1]中插入一个记录r[i]后,变成含有i个记录的有序子序列r[1..i];并且,和顺序查找类似,为了在查找插入位置的过程中避免数组下标出界,在r[0]处设置哨兵。
在自i-1起往前搜索的过程中,可以同时后移记录。
整个排序过程为进行n-1趟插入,即:先将序列中的第一个记录看成是一个有序的子序列,然后从第2个记录起逐个进行插入,直至整个序列变成按关键字非递减有序序列为止。
2.快速排序:基本思想是,通过一趟排序将待排记录分割成独立的两部分,其中一部分记录的关键字均比另一部分记录的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。
假设待排序的序列为{L.r[s],L.r[s+1],…L.r[t]},首先任意选取一个记录(通常可选第一个记录L.r[s])作为枢轴(或支点)(pivot),然后按下述原则重新排列其余记录:将所有关键字较它小的记录都安置在它的位置之前,将所有关键字较大的记录都安置在它的位置之后。
由此可以该“枢轴”记录最后所罗的位置i作为界线,将序列{L.r[s],…,L.r[t]}分割成两个子序列{L.r[i+1],L.[i+2],…,L.r[t]}。
这个过程称为一趟快速排序,或一次划分。
一趟快速排序的具体做法是:附设两个指针low和high,他们的初值分别为low和high,设枢轴记录的关键字为pivotkey,则首先从high所指位置起向前搜索找到第一个关键字小于pivotkey的记录和枢轴记录互相交换,然后从low所指位置起向后搜索,找到第一个关键字大于pivotkey的记录和枢轴记录互相交换,重复这两不直至low=high为止。
北邮数据结构实验报告-排序
北邮数据结构实验报告-排序北邮数据结构实验报告-排序一、实验目的本实验旨在掌握常见的排序算法,包括冒泡排序、插入排序、选择排序、快速排序、归并排序等,并通过实际编程实现对数字序列的排序。
二、实验内容1.冒泡排序冒泡排序是一种简单的排序算法,其基本思想是依次比较相邻的两个元素,并按照从小到大或从大到小的顺序交换。
具体步骤如下:- 从待排序序列的第一个元素开始,依次比较相邻的两个元素;- 如果前面的元素大于后面的元素,则交换这两个元素的位置;- 重复上述步骤,直到整个序列有序。
2.插入排序插入排序是一种简单且直观的排序算法,其基本思想是将待排序序列分为已排序和未排序两部分,每次从未排序部分中选择一个元素插入到已排序部分的合适位置。
具体步骤如下:- 从待排序序列中选择一个元素作为已排序部分的第一个元素;- 依次将未排序部分的元素插入到已排序部分的合适位置,使得已排序部分保持有序;- 重复上述步骤,直到整个序列有序。
3.选择排序选择排序是一种简单且直观的排序算法,其基本思想是每次选择未排序部分中的最小(或最大)元素,并将其放在已排序部分的末尾。
具体步骤如下:- 在未排序部分中选择最小(或最大)的元素;- 将选择的最小(或最大)元素与未排序部分的第一个元素交换位置;- 重复上述步骤,直到整个序列有序。
4.快速排序快速排序是一种高效的排序算法,其基本思想是通过一趟排序将待排序序列分割成两部分,其中一部分的元素都比另一部分的元素小。
具体步骤如下:- 选择一个枢轴元素(一般选择第一个元素);- 将待排序序列中小于枢轴元素的元素放在枢轴元素的左侧,大于枢轴元素的元素放在枢轴元素的右侧;- 对枢轴元素左右两侧的子序列分别进行递归快速排序;- 重复上述步骤,直到整个序列有序。
5.归并排序归并排序是一种高效的排序算法,其基本思想是将待排序序列划分成足够小的子序列,然后对这些子序列进行两两合并,最终形成有序的序列。
具体步骤如下:- 将待排序序列递归地划分成足够小的子序列;- 对每个子序列进行归并排序;- 合并相邻的子序列,直到整个序列有序。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验要求
给出一组随机数,将此组数据排序,使之成为有序数列
实验目的
1.了解数据排序的简单算法。
2.了解数列的有序和无序概念
实验说明
有序的数列更有利于查找。
本程序用的是“冒泡排序”法,算法
是将一个数与后面的数相比较,如果比后面的数大,则交换,如
此将所有的数比较一遍后,最大的数就会在数列的最后面。
再进
行下一轮比较,找出第二大数据,直到全部数据有序。
实验程序
Size equ 10 ; 数据个数
Array equ 50h ; 数据起始地址Change equ 0 ; 交换标志
Sort:
mov r0, #Array
mov r7, #Size-1
clr Change
Goon:
mov a, @r0
mov r2, a
inc r0
mov B, @r0
cjne a, B, NotEqual
sjmp Next
NotEqual:
jc Next ; 前小后大, 不交换
setb Change ; 前大后小, 置交换标志
xch a, @r0 ; 交换
dec r0
xch a, @r0
inc r0
Next:
djnz r7, Goon
jb Change, Sort
ljmp $
end。