矩阵论合成版 西电课件

合集下载

西安电子科技大学线性代数精品课课件

西安电子科技大学线性代数精品课课件

⎛ 2 ⎞ ⎛ 2 ×1 2 × 2 ⎞ ⎜ ⎟ ⎜ ⎟ 解 (1) ⎜ − 2 ⎟ (1 2 ) = ⎜− 2 × 1 − 2 × 2⎟ ⎜ 3 ⎟ ⎜ 3 ×1 3 × 2 ⎟ ⎝ ⎠ ⎝ ⎠
⎞ ⎛2 −2 BA = ⎜ ⎟ ⎝− 2 2⎠
⇒ AB = BA.
若AB=BA, 则称A与B可交换.
例4 计算下列乘积:
(1) ⎛ 2 ⎞ ⎜ ⎟ ⎜ − 2 ⎟(1 2) ⎜ 3 ⎟ ⎝ ⎠
⎛ 2 6 12⎞⎛ 1 ⎞ ⎟⎜ ⎟ ⎜ (2) (1 ,−1,0)⎜ 4 9 42⎟⎜ 0 ⎟ ⎜ − 8 10 33⎟⎜ − 1⎟ ⎝ ⎠⎝ ⎠
称为列矩阵(或列向量).
(4)同型矩阵与矩阵相等的概念: 1. 行数相等且列数相等的两个矩阵,称为同型矩阵.
例如
⎛1 ⎜ ⎜5 ⎜3 ⎝
6 −4
2 ⎞ ⎛ 14 ⎟ ⎜ 6 ⎟与⎜ 8 ⎟ 7⎠ ⎜ 3 ⎝
10 ⎞ ⎛ 2 ⎟与⎜ 5 ⎠ ⎝0
3⎞ ⎟ 4 ⎟ 为同型矩阵. 9⎟ ⎠
0 6 − 7⎞ ⎟是同型矩阵 . 3 ⎠
x 3⎞ ⎟, 1 z⎠
已知 A = B , 求 x , y , z .

Q A = B,
∴ x = 2, y = 3, z = 2.
(5)行数与列数都等于 n 的矩阵 A,称为 n 阶 方阵.也可记作 An .
⎛ a11 ⎜ 0 A=⎜ ⎜L ⎜ ⎝ 0
a12 L a1n ⎞ ⎟ a22 L a2 n ⎟ L L L⎟ ⎟ 0 L ann ⎠
( 6)若A是n阶方阵 , 则记 Ak = AAL A,
并称之为 A的k次幂 , k个A
m n m+n
易知 : ( A ) = A

矩阵论第一章第二节PPT课件

矩阵论第一章第二节PPT课件

分析: 设 dimV n, 1, 2, , n 是V的一组基,
线性变换 在这组基下的矩阵为A.
设 0是 的特征值,它的一个特征向量 在基
1,2,
, n 下的坐标记为
x01 ,
x0n
则 ( )在基 1, 2 ,
, n下的坐标为
x01 A ,
x0n
x01
而0
的坐标是
0
x0n
21 11
k 1 k
k k 1
.
例. 在线性空间 P3 中,线性变换 定义如下:
(1 ) (2 )
( 5, 0, (0, 1,
3) 6)
,
(3 ) (5, 1,9)
其中, 12((01,,10,,12)) 3 (3, 1,0)
(1)求 在标准基 1, 2 , 3 下的矩阵. (2)求 在 1,2 ,3 下的矩阵.
② 若 是 的属于特征值 0的特征向量,则 k (k P,k 0) 也是 的属于0 的特征向量.
(k ) k ( ) k(0 ) 0(k )
由此知,特征向量不是被特征值所唯一确定的, 但是特征值却是被特征向量所唯一确定的,即
若 ( ) 且 ( ) ,则 .
2、特征值与特征向量的求法
5 0 5
因而,
AX
0 3
1 6
1 9
,
5 0 5
5 0 5 1 0 3 1
A
0 3
1 6
1 9
X
1
0 3
1 6
1 9
0 2
1 1
1 0
1 7
5 4 27
20 5 18
20
2 24
(2)设 在1,2 ,3下的矩阵为B,则A与B相似,且

矩阵论课件 4.2

矩阵论课件  4.2

z R , 则存在有限个Givens矩阵的乘积T,使
得 Tx x z.
证 对于向量x ,存在
(1)
T
(1)
T T
(1) (1) 1n 1,n 1
T
(1) 12
使得 T x x e1; 对于向量z ,存在
T
所以
T T
( 2)
T T
( 2) ( 2) 1n 1,n 1
T
( 2) 12
例4.5 设 x (1,2,2)T , 用Householder变换化 x为与 e1 同方向的向量.
x 3, x x e1 2(1,1,1) . 解 计算 1 T 取 u (1,1,1) , 构造Householder 矩阵 3
T
1 1 1 2 2 2 1 H 1 1 1 1 1 2 1 2 3 3 1 1 2 2 1
为Givens矩阵(初等旋转矩阵),亦可记作
Tij Tij (c, s)
由Givens矩阵确定的变换称为
Givens变换(初等旋转变换).
性质1
1 ij
Givens矩阵是正交矩阵,且有
T ij
T (c, s) T (c, s)
性质2 设
T
Tij (c, s), det Tij (c, s) 1
T
x (1 , 2 ,, n ) , y Tij x 1 ,2 ,,n
则有
i ci s j , j si c j ,k k (k i, j )
当 0 时,选取
2 i 2 j
c
则有

2 i
i

矩阵论课件

矩阵论课件
矩阵论
第二章
第一节
矩阵与约当标准形
矩阵
第二节 不变因子及初等因子
第三节 约当标准形 第四节 凯莱—哈米尔顿定理 最小多项式
4 December 2014 河北科技大学
机动 目录 上页 下页 返回 结束
矩阵论
第一节
定义 设 P
矩阵
为数域, 为数字,P[ ] [ ]为关于 中的元素(数)为元素的矩
4 December 2014
河北科技大学
机动 目录 上页 下页 返回 结束
定理 设 矩阵 A( ) aij
阵,且 rank( A( )) r ,则


矩阵论
m n
为非零的多项式矩
A( )
d1 ( ) d 2 ( ) r ( ) 0 J ( ) 0 0 d ( ) r 0 0 0 diag d1 ( ), d 2 ( ), , d r ( ), 0, , 0 --称为 A( )的 Smith (史密斯)标准形.
矩阵论
Dn ( ) a ;
n
Dn1 ( )
4 December 2014
D1 ( ) 1.
河北科技大学
机动 目录 上页 下页 返回 结束
矩阵论
定义 把 矩阵 A( ) 的每个次数大于零的不变因子
在复数域 [ ]中分解成标准分解式,即分解成首项 系数为1的互不相同的一次因式方幂的乘积,所有 这些一次因式 的方幂 ( 相同的必须按出现次数 计 算) ,称为 A( )的初等因子.
[ ]中分解成标准分解式,所有出现的一次因式的
标准形)
方幂就是 A( )的全部初等因子.

课件 矩阵论

课件 矩阵论

6

对于数组
k 1
,L ,
km
,
因为
k 1
y 1
+L+
km
ym
=
(
x 1
,L,
x
n
)(
k1α
1
+L+
kmα m
)

等价于 k1α1 + L + kmα m = θ , 所以结论成立.
四、基变换与坐标变换
1.基变换:设线性空间V
n
的基(Ⅰ)为
x 1
,L,
xn
,
基(Ⅱ)为
y 1
,L,
yn
,

y 1
=
cx 11 1

S 2
∀b ∈
S 2

b∈
S 1
,
即S 2

S 1
交:
S 1
I
S 2
=
{a
a

S 1

a∈
S2 }
并:
S 1
U
S 2
=
{a
a

S 1

a

S 2
}
和: S 1
+
S 2
=
{a
=
a 1
+
a 2
a 1

S 1
,
a 2

S 2
}
例1
S 1
=
{A
=
a 11
a21
0
a
22
ai j ∈ R}
S 2
=
{A

《矩阵论》课件 共39页PPT资料

《矩阵论》课件 共39页PPT资料

n
x 1
xi ;
i1
1
x
2


n i1
xi
2 2
;
x


max
1 i n
xi
;
1
x
n p i 1
xi
p p ,
p1
x , x , x , x ( p 1)都是 C n上的向量范数。
1
2

p
引6理 .1.1 如 果p实 1,q数 1且111,则 对 pq
向 量 范,数1,,n为V的 一 组,V基中 任 一 向量
n
可唯一地表示为xii, x(x1,, xn)T Pn. i1
则 是x1,, xn的连续函. 数
定义6.1.2 设 , 是n维线性V空 上间 定义的 ab
种 向 量,范 如数 果 存 在 两 无个关与的 正 常
其中p 实 1,q 数 1且 111. pq
定理6.1.2(Minkowski不等式)
设 x ( x 1 , ,x n ) T ,y ( y 1 , ,y n ) T C n ,则
1
1
1
i n1xiyi p p i n1xi p p i n1yi p p
定理6.1.5 设V是 数 域 P上 的n维 线 性 空,间 1,,n 为V的 一 组,基 则V中 任 一 向可 量唯 一 地 表 示
n
xii , x (x1,, xn)T Pn.又 设 是Pn上 的
i1
向 量 范,数 令 v
x,
则 是V上的向量范. 数 v
定理6.1.6 设 是数域 P上n维线性空V上 间的任一

矩阵论简介及线性代数复习PPT课件


的矩阵叫做复矩阵, (1)式也简记为
A = (aij)m×n 或 A = (aij) ,
m×n 矩阵 A 也记作 Am×n .
-
16
2) 方阵 列矩阵 行矩阵
对 (1) 式, 当 m = n 时, A 称为 n 阶方阵. 当 m = 1 时, A 称为行矩阵. 当 n = 1 时, A 称为列矩阵.
n
cij aikbkj
k 1
( i = 1,2, … , s ; j = 1, 2, … , m),
AB 称为 A 与 B 的积. 设 k 为实数, 定义 kA = (kaij)
则称 kA 为 A 与数 k 的乘积.
-
22
矩阵乘法的定义源于二个线性变换的复合运算
yy21 aa1211xx11 aa1222xx22 aa1233xx33
是成立的, 即
|AB| = |A||B | = |B||A| = |BA| .
-
34
3. 若 AB = AC 能推出 B = C 吗? 答 不能. 因为矩阵的乘法不满足消去律.
例如
A 1 00 0 ,B 0 01 0 ,C 0 00 0 ,
则 AB = AC , 但 B C.
A11 A21
A*
A12
A22
A1n
A2n
An1
An2
,
Ann
叫做方阵 A 的伴随矩阵. 伴随矩阵具有重要性质: AA* = A*A =|A|E.
-
32
思考
1. 任何两个矩阵 A、B 都能进行加(减), 相乘 运算吗?
答 不是. (1) 只有当 A,B 为同型矩阵时, 才能 进行加(减)运算. (2) 只有当第一个矩阵 A 的列数与 第二个矩阵 B 的行数相同时, A 与 B 才能相乘, 这 时 AB 才存在.

矩阵论ppt


a
则称方阵范数 A 与向量范数 x a 是相容的.
4 February 2018 河北科技大学
机动 目录 上页 下页 返回 结束
矩阵论
性质:
(1 ) P n n 上的每一个方阵范数,在 P n 上都存在与它 相容的向量范数;
(2 ) P n n 上任意两种方阵范数 A a , A b 都是等价的, 即 存 在 两 个 与 A 无 关 的 正 的 常 数 C1 , C2 , 使 得 对

矩阵论
j H n n H n
1 H n


j 1
j 1 i 1
4 February 2018
河北科技大学
机动 目录 上页 下页 返回 结束
矩阵论
注 (1 ) F - 范数的优点之一是矩阵乘以酉矩阵U 之 后 F -范数不变,即: UA F A F AU F . 事实上:
H A ( A A); (3) 2
nn
n n Cc ,则
列模和最大者
行模和最大者
H
H
( A A) 是 A A 的最大特征值
2
(4) A
F

a
j 1 i 1
n
m
ij
tr A A ;
H


F -范数
4 February 2018
河北科技大学
机动 目录 上页 下页 返回 结束
河北科技大学
机动 目录 上页 下页 返回 结束
矩阵论
矩阵序列的极限计算具有以下性质:
设 Am 和 Bm 为两个 n阶矩阵序列
lim Am A ,则对 Cnn 中任何方阵范数 , Am 有界; (1 ) 如果 m

电子科技大学 矩阵理论!ppt课件

n
( , ) H aibi i 1
则上式定义了一个内积,C n是酉空间.
返回
定义: 设1,L , n是酉空间V一组基,令aij ( i , j ),
则称矩阵A=(aij )为基1,L
,
的度量矩阵
n
,或Gram矩阵
.
定理:
设矩阵A=(aij
)为酉空间V的一组基1,L
,

n
度量矩阵,则
(1) AH A;
xi H Bx j ij .
返回
定理 6 设n n矩阵 A AH , B BH,且B正定,与B共扼 向量系x1 , x2 ,L , xn具有以下性质, (1) xi 0 ( i 1, 2,L ,n ) ; (2) x1 , x2 ,L , xn 线性无关 ; (3)i与xi满足方程Axi i Bxi ; (4)若令X ( x1 , x2 ,L , xn ) , X H BX E , X H AX diag( 1 , 2 ,L ,n )
定义 4 ( x, y) 0
向量 x和y正交,记为 x y
勾股定理: x y
|| x y ||2 || x ||2 || y ||2
垂线最短定理:欧氏空间Vn ( R) 中的一个固定向量 和一个子空间中各向量的距离“垂线最短”.
返回
定义5
n维欧氏空间V中向量1 ,2 ,L ,k的Gram行列式 :
b
(f (x), g(x)) a f ( x )g( x )dx
证明: C[a,b]是欧氏空间.
b
f ( x ), g( x ), a f ( x )g( x )dx 是唯一确定实数
返回
1
f
,
g
b
a

矩阵理论复习总结 PPT课件


1.几种常用的矩阵范数
A (aij ) Cnn ,
n
A
1

max
1 jn
i1
|
aij
|;
nn
1
n
A


max
1in
| aij
j 1
|;
1
A ( F
| aij2 |)2 (tr( AH A))2 .
i1 j1
UA A AU .
F
F
F
三、向量与矩阵的极限
2.线性空间v中有限个向量的线性相关性.
3.线性空间的基与维数.
dim(V ) n.
4. 基变换公式.
(1,2, ,n ) (1,2, ,n )P.
X PY.
5.子空间:对加法封闭,对数乘封闭.
L(1,2, ,s ) span1,2, ,s;
A (aij ) Rmn,
1,2, ,n ,
(1)
A Pdiag(1,2 , ,n )P1
(1,2 ,
,n )diag(1,2,
,n )



1T

T 2





T n


111T

2
2

T 2

n
n

T n
1G 12G 2 nGn
k
(2) A i Ai i 1
3.正交补空间
V1 V2 , V1 V2 V
4.内积空间的同构.
(x y) (x) ( y); (x) (x); ( (x), ( y)) (x, y).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一讲线性空间一、线性空间的定义及性质[知识预备]★集合:笼统的说是指一些事物(或者对象)组成的整体集合的表示:枚举,表达式集合的运算:并( ),交( )另外,集合的“和”(+):并不是严格意义上集合的运算,因为它限定了集合中元素须有可加性。

★数域:一种数集,对四则运算封闭(除数不为零)。

比如有理数域、实数域(R)和复数域(C)。

实数域和复数域是工程上较常用的两个数域。

线性空间是线性代数最基本的概念之一,也是学习现代矩阵论的重要基础。

线性空间的概念是某类事物从量的方面的一个抽象。

1.线性空间的定义:设V是一个非空集合, 其元素用x,y,z等表示, 并称之为向量;K 是一个数域,其元素用k,l,m等表示。

如果V满足[如下8条性质,分两类](I)在V中定义一个“加法”运算,即当x,y V∈时,有唯一的和+∈(封闭性),且加法运算满足下列性质x y V(1)结合律()()++=++;x y z x y z(2)交换律x y y x+=+;(3)存在零元素0, 使x 0x +=;(4)存在负元素, 即对于任一向量x V ∈,存在向量y V ∈,使x y 0+=,且称y 为x 的负元素,记为x -。

则有()x x 0+-=。

(II )在V 中定义一个数乘 (数与向量的乘法) 运算,即当x V ∈,k K∈时,有唯一的kx V ∈(封闭性),且数乘运算满足下列性质(5)数因子分配律 ()k x y k x k y +=+; (6)分配律 ()k l x k x l x +=+; (7)结合律 ()()k l x k l x =;(8)恒等律 1x x =; [数域中一定有1] 则称V 为数域K 上的线性空间或向量空间。

注意:1)线性空间不能离开某一数域来定义,因为同一个集合,如果数域不同,该集合构成的线性空间也不同。

(2)两种运算、八条性质数域K 中的运算是具体的四则运算,而V 中所定义的加法运算和数乘运算则可以十分抽象。

(3)除了两种运算和八条性质外,还应注意唯一性、封闭性。

唯一性一般较显然,封闭性还需要证明. 出现不封闭的情况:集合小、运算本身就不满足。

当数域K 为实数域时,V 就称为实线性空间;K 为复数域,V 就称为复线性空间。

例1. 设R +={全体正实数},其“加法”及“数乘”运算定义为⊕=, k k x x =o证明:R +是实数域R 上的线性空间。

[证明] 首先需要证明两种运算的唯一性和封闭性 ①唯一性和封闭性唯一性显然设x 0,y 0,k R >>∈,则有k x y xy R ,k x x R ++⊕=∈=∈o 封闭性得证。

②八条性质(1) x (y z )x (yz )xyz (xy )z (x y )z ⊕⊕=⊕==⊕=⊕⊕ (2) x y xy yx y x ⊕===⊕(3) 1是零元素 x 1x 1x ⊕=⨯=[x 0x x0x 01]⊕=−−→=−−→=(4)1x是x 的负元素 11x x 1[x +y 0]xx⊕=⨯==(5) k k k k (x y )(xy )x y k x k y ⊕===⊕o o o [数因子分配律] (6) k l k l (k l)x x x x (k x)(l x)+⊕===⊕o o o [分配律] (7) ()l k kl k (l x)(x )x kl x ===o o o [结合律] (8) 11x x x ==o [恒等律] 由此可证,R +是实数域R 上的线性空间。

2.定理:线性空间具有如下性质(1) 零元素是唯一的,任一元素的负元素也是唯一的。

(2) 如下恒等式成立: 0x 0,(1)x (x )=-=-。

[证明](1)采用反证法:①零元素是唯一的。

设存在两个零元素10v 和20v,则由于10v 和20v均为零元素, 按零元律有1212120+0=0=0+0=0 [交换律]所以120=0即10和20相同,与假设相矛盾,故只有一个零元素。

②任一元素的负元素也是唯一的。

假设x V ∀∈,存在两个负元素y 和z ,则根据负元律有x y 0x z +==+y y 0y (x z )(y x )z 0z z =+=++=++=+= [零元律] [结合律] [零元律] 即y 和z 相同,故负元素唯一。

(2) ①:设w =0x ,则 x +w =1x +0x =(1+0,故w =0。

[恒等律]②:设w =(-1)x , 则 x w 1x (1)x [1(1+=+-=+-=0x 0=,故w =-x 。

3.线性相关性线性空间中相关性概念与线性代数中向量组线性相关性概念类似。

•线性组合:12m 12mx ,x ,,x V ,c ,cc K∀∈∈L Lm1122m m i ii 1c x c x c x c x =+++∑L @称为元素组12mx ,x ,,x L的一个线性组合。

•线性表示:V 中某个元素x 可表示为其中某个元素组的线性组合,则称x 可由该元素组线性表示。

•线性相关性:如果存在一组不全为零的数12m c ,c c K∈L ,使得对于元素12m x ,x ,,x V∈L有miii 1c x==∑则称元素组12mx ,x ,,x L线性相关,否则称其线性无关。

线性相关性概念是个非常重要的概念,有了线性相关性才有下面的线性空间的维数、基和坐标。

4.线性空间的维数定义:线性空间V 中最大线性无关元素组所含元素个数称为V 的维数,记为dim V 。

本课程只考虑有限维情况,对于无限维情况不涉及 。

例2. 全体m ×n 阶实矩阵的集合构成一个实线性空间(对于矩阵加法和数对矩阵的数乘运算),求其维数。

[解] 一个直接的方法就是找一个最大线性无关组,其元素尽可能简单。

令ij E u v为这样的一个m ×n 阶矩阵,其(i, j )元素为1,其余元素为零。

显然,这样的矩阵共有mn 个,构成一个具有mn 个元素的线性无关元素组{}11121n 21222n m1m 2mn E ,E ,,E ;E ,E ,,E ;;E ,E ,,E L L L L 。

另一方面,还需说明元素个数最大。

对于任意的()ij m nA a ⨯=,都可由以上元素组线性表示,ijij ij ij i ,ji ,jA aE a E -A 0=−−→=∑∑即{}ij E |i 1~m ,j 1~n ==构成了最大线性无关元素组,所以该空间的维数为mn 。

二、 线性空间的基与坐标 1.基的定义:设V 是数域K 上的线性空间,()12r x ,x ,,x r 1≥L 是属于V 的r 个任意向量,如果它满足 (1)12r x ,x ,,x L线性无关;(2)V 中任一向量x 均可由12r x ,x ,,x L 线性表示。

则称12r x ,x ,,x L 为V 的一个基或基底,并称i x (i=1,2,,r)L为该基的基向量。

•基正是V 中最大线性无关元素组;V 的维数正是基中所含元素的个数。

•基是不唯一的,但不同的基所含元素个数相等。

例3 考虑全体复数所形成的集合C 。

如果K =C (复数域),则该集合对复数加法和复数对复数的数乘构成线性空间,其基可取为1,空间维数为1;如果取K =R (实数域),则该集合对复数加法及实数对复数的数乘构成实线性空间,其基可取为{1,i},空间维数为2。

2.坐标的定义:称线性空间n V 的一个基12nx ,x ,,x L为n V 的一个坐标系,n x V ∀∈,它在该基下的线性表示为:()niii i i 1x xK ,x V ,i 1,2,,n ==ξξ∈∈=∑L则称12n ,,,ξξξL为x 在该坐标系中的坐标或分量,记为()T12n ,,,ξξξL讨论:(1)一般来说,线性空间及其元素是抽象的对象,不同空间的元素完全可以具有千差万别的类别及性质。

但坐标表示却把它们统一了起来,坐标表示把这种差别留给了基和基元素,由坐标所组成的新向量仅由数域中的数表示出来。

(2)更进一步,原本抽象的“加法”及 “数乘”经过坐标表示就演化为向量加法及数对向量的数乘。

11122n n 1122111222nnn x y (x x x )(x x x )()x ()x ()x +=ξ+ξ++ξ+η+η++η=ξ+η+ξ+η++ξ+ηL L L正对应()12n 1122n n 12n x (,,,)x y ,,,y (,,,)=ξξξ⎧→+=ξ+ηξ+ηξ+η⎨=ηηη⎩L L L2()()()()1122n n 1122n n kx k x x x k x k x k x =ξ+ξ++ξ=ξ+ξ++ξL L()12n k ,k ,,k →ξξξL正对应 ()12n 12n x (,,,)kx k ,k ,,k =ξξξ→=ξξξL L(3)显然,同一元素在不同坐标系中的坐标是不同的。

后面我们还要研究这一变换关系。

三、 基变换与坐标变换基是不唯一的,因此,需要研究基改变时坐标变换的规律。

设12nx ,x ,,x L是n V 的旧基,12n y ,y ,,y L 是nV的新基,由于两者都是基,所以可以相互线性表示nj ijii 1y cx (i 1,2,,n )===∑L即11121n 21222n12n 12n 12n n 1n 2nn c c c c c c y ,y ,,y x ,x ,,x x ,x ,,x C c c c ⎡⎤⎢⎥⎢⎥==⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦L L L L L M M O M L其中C 称为过渡矩阵,上式就给出了基变换关系,可以证明,C 是可逆的。

设n x V ∈,它在旧基下的线性表示为1n2i i 12n i 1n x x x ,x ,,x =ξ⎡⎤⎢⎥ξ⎢⎥=ξ=⎡⎤⎣⎦⎢⎥⎢⎥ξ⎣⎦∑L M它在新基下的线性表示为12in ''n'i 12n i 1'x y y ,y ,,y =⎡⎤ξ⎢⎥ξ⎢⎥=ξ=⎡⎤⎣⎦⎢⎥⎢⎥⎢⎥ξ⎣⎦∑L M则12n '1'212n 12n 'n y ,y ,,y x ,x ,,x ⎡⎤ξξ⎡⎤⎢⎥⎢⎥ξξ⎢⎥⎢⎥=⎡⎤⎡⎤⎣⎦⎣⎦⎢⎥⎢⎥⎢⎥⎢⎥ξ⎢⎥ξ⎣⎦⎣⎦L L M M 由于基元素的线性无关性,得到坐标变换关系1122n n ''11''221''n n C C-⎡⎤⎡⎤ξξξξ⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥ξξξξ⎢⎥⎢⎥⎢⎥⎢⎥=→=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥ξξ⎢⎥⎢⎥ξξ⎣⎦⎣⎦⎣⎦⎣⎦M M M M作业:P25-26 3,5,7,9补充:证明对于线性空间的零元素0,k K ∀∈,均有k 00=。

相关文档
最新文档