2022-2022学年8年级数学人教版上册同步练习141整式的乘法(含答案解析)

合集下载

人教版八年级数学上册《14.1整式的乘法》练习-带参考答案

人教版八年级数学上册《14.1整式的乘法》练习-带参考答案

人教版八年级数学上册《14.1整式的乘法》练习-带参考答案一、单选题1.下列计算中,正确的是()A.B.C.D.2.计算的结果为()A.1 B.-1 C.2 D.-23.计算:□,□内应填写()A.-10xy B.C.+40 D.+40xy4.长方形一边长为另一边比它小则长方形面积为()A.B.C.D.5.若,则的值是()A.-11 B.-7 C.-6 D.-56.已知,和,那么x,y,z满足的等量关系是()A.B.C.D.7.下列多项式中,与相乘的结果是的多项式是()A.B.C.D.8.若的展开式中常数项为-2,且不含项,则展开式中一次项的系数为()A.-2 B.2 C.3 D.-3二、填空题9..10.比较大小:11.若,则的值是.12.若与的乘积中不含x的一次项,则实数n的值为.13.如图,将两张边长分别为和的正方形纸片分别按图①和图②两种方式放置在长方形内(图①和图②中两张正方形纸片均有部分重叠),未被这两张正方形纸片覆盖的部分用阴影表示.若长方形中边,的长度分别为,n.设图①中阴影部分面积为,图②中阴影部分面积为,当时,的值为.三、解答题14.计算:(1)(2)15.已知,求:(1)的值;(2)的值.16.芳芳计算一道整式乘法的题:(2x+m)(5x﹣4),由于芳芳抄错了第一个多项式中m前面的符号,把“+”写成“﹣”,得到的结果为10x2﹣33x+20.(1)求m的值;(2)计算这道整式乘法的正确结果.17.若关于的多项式与的积为,其中,b,,d,e,f是常数,显然也是一个多项式.(1)中,最高次项为,常数项为;(2)中的三次项由,的和构成,二次项时由,和的和构成.若关于的多项式与的积中,三次项为,二次项为,试确定,的值.参考答案:1.C2.D3.D4.D5.A6.C7.B8.D9.10.<11.1812.313.14.(1)解:原式=(2)解:原式=15.(1)解:∵和.∴(2)解:∵∴.16.(1)解:由题意得所以解得(2)解:17.(1);(2)解:多项式与的积中,三次项为,二次项为由题意得:解得:故。

八年级数学上册《第十四章 整式的乘法》同步练习题含答案(人教版)

八年级数学上册《第十四章 整式的乘法》同步练习题含答案(人教版)

八年级数学上册《第十四章整式的乘法》同步练习题含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列运算结果为2x3的是()A.x3•x3B.x3+x3C.2x•2x•2x D.2x6÷x22.下列运算正确的是()A.3a2+a=3a3B.2a3·(−a2)=2a5C.4a6÷2a2=2a3D.(−3a)2−a2=8a23.计算(−2a3b)2−3a6b2的结果是()A.﹣7a6b2B.﹣5a6b2C.a6b2D.7a6b24.已知x a⋅x−3=x2,则a的值为()A.−2B.2 C.5 D.–55.一个长方体的长、宽、高分别是3x-4,2x和x,则它的体积是()A.3x3-4x2B.22x2-24x C.6x2-8x D.6x3-8x26.如果(2a m b m+n)3=8a9b15成立,则m,n的值为( )A.m=3,n=2 B.m=3,n=9 C.m=6,n=2 D.m=2,n=57.设有边长分别为a和b(a>b)的A类和B类正方形纸片、长为a宽为b的C类矩形纸片若干张.如图所示要拼一个边长为a+b的正方形,需要1张A类纸片、1张B类纸片和2张C类纸片.若要拼一个长为3a+b、宽为2a+2b的矩形,则需要C类纸片的张数为( )A.6 B.7 C.8 D.98.有若干个形状大小完全相同的小长方形,现将其中3个如图1摆放,构造一个正方形;其中5个如图2摆放,构造一个新的长方形(各小长方形之间不重叠且不留空隙).若图1和图2中阴影部分的面积分别为39和106,则每个小长方形的面积为( )A.12B.14C.16D.18二、填空题9.若a m=9,a n=3则a m−2n=.10.计算:6x2y3÷(−2x2y)=11.关于x的多项式(mx+4)(2−3x)展开后不含x的一次项,则m=.12.已知a、b、m均为整数,若x2+mx−17=(x+a)(x+b),则整数m的值有.13.一罐涂料能刷完一块长为a,宽为3的长方形墙面,如果这罐涂料刷另一块长方形墙面也刚好用完,且该长方形墙面长为a+2,则宽为(用字母a表示).三、解答题14.已知代数式(x2+px+8)(x2−3x+q)的乘积中不含三次项和二次项,求(p−q)(p2+pq+q2)的值.15.计算:(1)﹣x2•x3+4x3•(﹣x)2﹣2x•x4(2)﹣2m2•m3﹣(﹣3m)3•(﹣2m)2﹣m•(﹣3m)416.已知:5a=4,5b=6,5c=9(1)52a+b的值;(2)5b﹣2c的值;(3)试说明:2b=a+c.17.某天数学课上,小明学习了整式的除法运算,放学后,小明回到家拿出课堂笔记,认真地复习课上学习的内容.他突然发现一道三项式除法运算题:(21x4y3-+7x2y2)÷(-7x2y)=+5xy-y,被除式的第二项被墨水弄污了,商的第一项也被墨水弄污了,你能算出两处被污染的内容是什么吗?18.先阅读后作答:我们已经知道,根据几何图形的面积关系可以说明完全平方公式,实际上还有一些等式也可以用这种方式加以说明,例如(2a+b)(a+b)=2a2+3ab+b2,就可以用图(1)的面积关系来说明.(1)根据图(2)写出一个等式.(2)已知等式(2x+m)(2x+n)=4x2+2(m+n)x+mn.请你画出一个相应的几何图形加以说明.19.阅读下列材料:若a3=2,b5=3,则a,b的大小关系是a b(填“<”或“>”).解:因为a15=(a3)5=25=32,b15=(b5)3=33=27,32>27,所以a15>b15所以a>b.解答下列问题:①上述求解过程中,逆用了哪一条幂的运算性质A.同底数幂的乘法 B.同底数幂的除法 C.幂的乘方 D.积的乘方②已知x7=2,y9=3,试比较x与y的大小.参考答案1.B2.D3.C4.C5.D6.A7.C8.B9.110.−3y211.612.±1613.3aa+214.解:(x2+px+8)(x2-3x+q)=x4-3x3+qx2+px3-3px2+pqx+8x2-24x+8q=x4+(-3+p)x3+(q-3p+8)x2+(pq-24)x+8q∵(x2+px+8)(x2-3x+q)的乘积中不含x2与x3的项∴-3+p=0,q-3p+8=0解得:p=3,q=1.(p−q)(p2+pq+q2)=(3-1)(9+3+1)=2615.(1)解:原式=﹣x5+4x5﹣2x5=x5(2)解:原式=﹣2m5+27m3•4m2﹣81m5=(﹣2+108﹣81)m5=25m5 16.解:(1)5 2a+b=52a×5b=(5a)2×5b=42×6=96(2)5b﹣2c=5b÷(5c)2=6÷92=6÷81=2/27(3)5a+c=5a×5c=4×9=3652b=62=36因此5a+c=52b所以a+c=2b.17.解:商的第一项=21x4y3÷(-7x2y)=-3x2y2;被除式的第二项=-(-7x2y)×5xy=35x3y218.解:(1)根据题意得:(a+2b)(2a+b)=2a2+5ab+2b2;(2)如图所示故答案为:(1)(a+2b)(2a+b)=2a2+5ab+2b219.>;C;解:∵x63=(x7)9=29=512,y63=(y9)7=37=2187,2187>512,∴x63<y63,∴x<y。

人教版数学八年级上册:14.1.4 整式的乘法 同步练习(附答案)

人教版数学八年级上册:14.1.4 整式的乘法  同步练习(附答案)

14.1.4 整式的乘法 第1课时 单项式与单项式相乘基础题 1.计算:(1)2x 4·x 3= ; (2)(-2a)·(14a 3)= .2.计算:2a·ab =( )A .2abB .2a 2bC .3abD .3a 2b3.计算:(1)2x 2y·(-4xy 3z); (2)5a 2·(3a 3)2.4.一个直角三角形的两直角边的长分别是2a 和3a ,则此三角形的面积是 ;当a =2时,这个三角形的面积等于 .5.某市环保局欲将一个长为2×103 dm ,宽为4×102 dm ,高为8×10 dm 的长方体废水池中的满池废水注入正方体储水池净化,求长方体废水池的容积.6.计算:(x 2y)2·3xy 2z = . 7.计算:-12x 5y 2·(-4x 2y)2= .中档题 8.计算:(1)(-3x 2y)2·(-23xyz)·34xz 2; (2)(-4ab 3)(-18ab)-(12ab 2)2.9.先化简,再求值:2x 2y·(-2xy 2)3+(2xy)3·(-xy 2)2,其中x =4,y =14.10.已知(-2ax b y 2c )(3x b -1y)=12x 11y 7,求a +b +c 的值.第2课时单项式与多项式相乘基础题1.计算2x(3x2+1)的结果是( )A.5x3+2x B.6x3+1 C.6x3+2x D.6x2+2x 2.下列计算正确的是( )A.(-2a)·(3ab-2a2b)=-6a2b-4a3b B.(2ab2)·(-a2+2b2-1)=-4a3b4C.(abc)·(3a2b-2ab2)=3a3b2-2a2b2 D.(ab)2·(3ab2-c)=3a3b4-a2b2c3.要使x(x+a)+3x-2b=x2+5x+4成立,则a,b的值分别为( ) A.a=-2,b=-2 B.a=2,b=2 C.a=2,b=-2 D.a=-2,b=2 4.计算:(1)(2xy2-3xy)·2xy;(2)(-23a2b2)(-32ab-2a);(3)-2ab(ab-3ab2-1);(4)(34a n+1-b2)·ab.5.化简求值:3a(a2-2a+1)-2a2(a-3),其中a=2.6.若一个长方体的长、宽、高分别为2x,x,3x-4,则长方体的体积为( ) A.3x3-4x2B.6x2-8x C.6x3-8x2D.6x3-8x 7.今天数学课上,老师讲了单项式乘多项式,放学回到家,小明拿出课堂笔记复习,发现一道题:-3xy(4y-2x-1)=-12xy2+6x2y+□,□的地方被钢笔水弄污了,你认为□内应填写( )A.3xy B.-3xy C.-1 D.18.一个拦水坝的横断面是梯形,其上底是3a2-2b,下底是3a+4b,高为2a2b,要建造长为3ab的水坝需要多少土方?9.计算:2xy2(x2-2y2+1)=.10.计算:-2x(3x2y-2xy)=.中档题11.要使(x2+ax+5)(-6x3)的展开式中不含x4项,则a应等于( )A .1B .-1C.16D .012.定义三角表示3abc ,方框表示xz +wy ,则×的结果为(B)A .72m 2n -45mn 2B .72m 2n +45mn 2C .24m 2n -15mn 2D .24m 2n +15mn 213.计算:(1)x 2(3-x)+x(x 2-2x); (2)(-12ab)(23ab 2-2ab +43b +1);(3)-a(a 2-2ab -b 2)-b(ab +2a 2-b 2).14.已知ab 2=-1,求(-ab)(a 2b 5-ab 3-b)的值.15.某学生在计算一个整式乘3ac 时,错误地算成了加上3ac ,得到的答案是3bc -3ac -2ab ,那么正确的计算结果应是多少?16.一条防洪堤坝,其横断面是梯形,上底长a 米,下底长(a +2b)米,坝高12a 米.(1)求防洪堤坝的横断面积;(2)如果防洪堤坝长100米,那么这段防洪堤坝的体积是多少立方米? 综合题17.已知|2m -5|+(2m -5n +20)2=0,求-2m 2-2m(5n -2m)+3n(6m -5n)-3n(4m -5n)的值.第3课时 多项式与多项式相乘基础题1.计算(2x -1)(5x +2)的结果是( )A .10x 2-2B .10x 2-5x -2C .10x 2+4x -2D .10x 2-x -22.填空:(2x -5y)(3x -y)=2x·3x +2x· +(-5y)·3x +(-5y)· = . 3.计算:(1)(2a +b)(a -b)= ;(2)(x -2y)(x 2+2xy +4y 2)= . 4.计算:(1)(3m -2)(2m -1); (2)(3a +2b)(2a -b);(3)(2x -3y)(4x 2+6xy +9y 2); (4)a(a -3)+(2-a)(2+a).5.先化简,再求值:(x -5)(x +2)-(x +1)(x -2),其中x =-4.6.若一个长方体的长、宽、高分别是3x -4,2x -1和x ,则它的体积是( )A .6x 3-5x 2+4xB .6x 3-11x 2+4xC .6x 3-4x 2D .6x 3-4x 2+x +4 7.如图,为参加市里的“灵智星”摄影大赛,小阳同学将同学们参加“义务献爱心”活动的照片放大为长为a 厘米,宽为34a 厘米的长方形形状,又精心在四周加上了宽2厘米的装饰彩框,那么小阳同学的这幅摄影作品照片占的面积是 平方厘米.8.我校操场原来的长是2x 米,宽比长少10米,现在把操场的长与宽都增加了5米,则整个操场面积增加了 平方米. 9.计算(a -2)(a +3)的结果是( )A .a 2-6B .a 2+a -6C .a 2+6D .a 2-a +610.下列多项式相乘的结果为x2+3x-18的是( )A.(x-2)(x+9) B.(x+2)(x-9) C.(x+3)(x-6) D.(x-3)(x+6) 11.计算:(1)(x-3)(x-5)=;(2)(x+4)(x-6)=.12.若(x+3)(x+a)=x2-2x-15,则a=.13.计算:(1)(x+1)(x+4);(2)(m+2)(m-3);(3)(y-4)(y-5);(4)(t-3)(t+4).14.计算:(x-8y)(x-y)=.中档题15.已知(x+1)(x-3)=x2+ax+b,则a,b的值分别是( )A.a=2,b=3 B.a=-2,b=-3C.a=-2,b=3D.a=2,b=-3 16.已知(4x-7y)(5x-2y)=M-43xy+14y2,则M=.17.已知ab=a+b+1,则(a-1)(b-1)=2.18.计算:(1)(a+3)(a-2)-a(a-1);(2)(-7x2-8y2)·(-x2+3y2);(3)(3x-2y)(y-3x)-(2x-y)(3x+y).19.先化简,再求值:(a+3)(4a-1)-2(3+a)(2a+0.5),其中a=1.20.求出使(3x+2)(3x-4)>9(x-2)(x+3)成立的非负整数解.综合题21.小思同学用如图所示的A ,B ,C 三类卡片若干张,拼出了一个长为2a +b 、宽为a +b 的长方形图形.请你通过计算求出小思同学拼这个长方形所用A ,B ,C 三类卡片各几张(要求:所拼图形中,卡片之间不能重叠,不能有空隙),并画出他的拼图示意图.第4课时 整式的除法基础题1.计算x 6÷x 2的结果是( )A .x 2B .x 3C .x 4D .x 82.下列计算结果为a 6的是( )A .a 7-aB .a 2·a 3C .a 8÷a 2D .(a 4)23.计算:(-2)6÷25= . 4.计算:(1)(-a)6÷(-a)2; (2)(-ab)5÷(-ab)3.5.若3x =10,3y =5,则3x -y = . 6.已知:5x =36,5y =3,求5x -2y 的值.7.计算:23×(π-1)0=23.8.(钦州中考)计算:50+|-4|-2×(-3). 9.计算8x 8÷(-2x 2)的结果是(C)A .-4x 2B .-4x 4C .-4x 6D .4x 610.(黔南中考)下列运算正确的是(D)A .a 3·a =a 3B .(-2a 2)3=-6a 5C .a 3+a 5=a 10D .8a 5b 2÷2a 3b =4a 2b11.计算:(1)2x 2y 3÷(-3xy); (2)10x 2y 3÷2x 2y ; (3)3x 4y 5÷(-23xy 2).12.计算(6x 3y -3xy 2)÷3xy 的结果是( )A .6x 2-yB .2x 2-yC .2x 2+yD .2x 2-xy13.计算:(1)(x 5y 3-2x 4y 2+3x 3y 5)÷(-23xy); (2)(6x 3y 4z -4x 2y 3z +2xy 3)÷2xy 3.14.计算:310÷34÷34= . 中档题15.下列说法正确的是( )A .(π-3.14)0没有意义B .任何数的0次幂都等于1C .(8×106)÷(2×109)=4×103D .若(x +4)0=1,则x ≠-416.已知8a 3b m ÷8a n b 2=b 2,那么m ,n 的取值为( )A .m =4,n =3B .m =4,n =1C .m =1,n =3D .m =2,n =317.如果x m =4,x n =8(m ,n 为自然数),那么x 3m -n = . 18.已知(x -5)x =1,则整数x 的值可能为 . 19.计算:(1)(-25a 2b 4)÷(-14ab 2)÷(-10ab); (2)-32a 4b 5c÷(-2ab)3·(-34ac);(3)(23n 3-7mn 2+23n 5)÷23n 2; (4)(12x 4y 6-8x 2y 4-16x 3y 5)÷4x 2y 3.20.一颗人造地球卫星的速度为2.88×109 m/h,一架喷气式飞机的速度为1.8×106 m/h,这颗人造地球卫星的速度是这架喷气式飞机的速度的多少倍?21.先化简,再求值:(x+y)(x-y)-(4x3y-8xy3)÷2xy,其中x=1,y=-3.综合题22.如图1的瓶子中盛满水,如果将这个瓶子中的水全部倒入图2的杯子中,那么你知道一共需要多少个这样的杯子吗?(单位:cm)参考答案:14.1.4 整式的乘法 第1课时 单项式与单项式相乘1.(1)2x 7;(2)-12a 4.2.B3.(1)解:原式=[2×(-4)](x 2·x)·(y·y 3)·z=-8x 3y 4z. (2)5a 2·(3a 3)2. 解:原式=5a 2·9a 6 =45a 8. 4.12.5.解:(2×103)×(4×102)×(8×10)=6.4×107(dm 3).答:长方体废水池的容积为6.4×107 dm 3. 6.3x 5y 4z . 7.-8x 9y 4.8.(1)(-3x 2y)2·(-23xyz)·34xz 2;解:原式=9x 4y 2·(-23xyz)·34xz 2=-92x 6y 3z 3.(2)(-4ab 3)(-18ab)-(12ab 2)2.解:原式=12a 2b 4-14a 2b 4=14a 2b 4.9.解:原式=-2x 2y·8x 3y 6+8x 3y 3·x 2y 4=-16x 5y 7+8x 5y 7 =-8x 5y 7.当x =4,y =14时,原式=-12.10.解:∵(-2ax b y 2c )(3x b -1y)=12x 11y 7,∴-6ax 2b -1y 2c +1=12x 11y 7.∴-6a =12,2b -1=11,2c +1=7. ∴a =-2,b =6,c =3.∴a +b +c =-2+6+3=7.第2课时 单项式与多项式相乘1.C 2.D 3.C 4.计算:(1)(2xy 2-3xy)·2xy ; 解:原式=2xy 2·2xy -3xy·2xy =4x 2y 3-6x 2y 2.(2)(-23a 2b 2)(-32ab -2a);解:原式=(-23a 2b 2)·(-32ab)+(-23a 2b 2)·(-2a)=a 3b 3+43a 3b 2.(3)-2ab(ab -3ab 2-1);解:原式=-2ab·ab +(-2ab)·(-3ab 2)+(-2ab)×(-1) =-2a 2b 2+6a 2b 3+2ab. (4)(34a n +1-b2)·ab. 解:原式=34a n +1·ab -b 2·ab=34a n +2b -12ab 2. 5.解:原式=3a 3-6a 2+3a -2a 3+6a 2=a 3+3a.当a =2时,原式=23+3×2=14. 6.C 7.A8.解:12(3a 2-2b +3a +4b)·2a 2b·3ab =9a 5b 2+9a 4b 2+6a 3b 3.答:需要(9a 5b 2+9a 4b 2+6a 3b 3)土方. 9.2x 3y 2-4xy 4+2xy 2. 10.-6x 3y +4x 2y .12.B13.(1)x 2(3-x)+x(x 2-2x);解:原式=3x 2-x 3+x 3-2x 2=x 2.(2)(-12ab)(23ab 2-2ab +43b +1); 解:原式=(-12ab)·23ab 2+(-12ab)·(-2ab)+(-12ab)·43b +(-12ab)×1 =-13a 2b 3+a 2b 2-23ab 2-12ab. (3)-a(a 2-2ab -b 2)-b(ab +2a 2-b 2).解:原式=-a 3+2a 2b +ab 2-ab 2-2a 2b +b 3=-a 3+b 3.14.解:原式=-a 3b 6+a 2b 4+ab 2=-(ab 2)3+(ab 2)2+ab 2.当ab 2=-1时,原式=-(-1)3+(-1)2+(-1)=1.15.解:依题意可知,原来正确的那个整式是(3bc -3ac -2ab)-3ac =3bc -6ac -2ab.所以正确的计算结果为:(3bc -6ac -2ab)·3ac =9abc 2-18a 2c 2-6a 2bc.16.解:(1)防洪堤坝的横断面积为:12[a +(a +2b)]×12a =14a(2a +2b) =(12a 2+12ab)(平方米). (2)堤坝的体积为:(12a 2+12ab)×100 =(50a 2+50ab)(立方米).17.解:由题意知2m -5=0,①2m -5n +20=0,②由①,得m =52. 将m =52代入②,得n =5. 原式=-2m 2-10mn +4m 2+18mn -15n 2-12mn +15n 2=2m 2-4mn.当m =52,n =5时, 原式=2×(52)2-4×52×5=-752.第3课时 多项式与多项式相乘1.D2.(-y);(-y);6x 2-17xy +5y 2.3.(1)2a 2-ab -b 2;(2)x 3-8y 3.4.(1)(3m -2)(2m -1);解:原式=6m 2-3m -4m +2=6m 2-7m +2.(2)(3a +2b)(2a -b);原式=6a 2-3ab +4ab -2b 2=4a 2+ab -2b 2.(3)(2x -3y)(4x 2+6xy +9y 2);解:原式=8x 3+12x 2y +18xy 2-12x 2y -18xy 2-27y 3=8x 3-27y 3.(4)a(a -3)+(2-a)(2+a).解:原式=a 2-3a +4+2a -2a -a 2=-3a +4.5.解:原式=x 2-3x -10-(x 2-x -2)=x 2-3x -10-x 2+x +2=-2x -8.当x =-4时,原式=-2×(-4)-8=0.6.B7.(34a 2+7a +16). 8.(20x -25).9.B10.D11.(1)x 2-8x +15;(2)x 2-2x -24.12.-5.13.(1)(x +1)(x +4);解:原式=x 2+5x +4.(2)(m +2)(m -3);解:原式=m 2-m -6.(3)(y -4)(y -5);解:原式=y 2-9y +20.(4)(t -3)(t +4).解:原式=t 2+t -12.14.x 2-9xy +8y 2.15.B16.20x 2.17.2.18.(1)(a +3)(a -2)-a(a -1);解:原式=a 2-2a +3a -6-a 2+a=2a -6.(2)(-7x 2-8y 2)·(-x 2+3y 2);解:原式=7x 4-21x 2y 2+8x 2y 2-24y 4=7x 4-13x 2y 2-24y 4.(3)(3x -2y)(y -3x)-(2x -y)(3x +y).解:原式=3xy -9x 2-2y 2+6xy -6x 2-2xy +3xy +y 2=-15x 2+10xy -y 2.19.解:原式=4a 2-a +12a -3-2(6a +1.5+2a 2+0.5a)=4a 2+11a -3-(12a +3+4a 2+a)=-2a -6.当a =1时,原式=-8.20.解:原不等式可化为9x 2-12x +6x -8>9x 2+27x -18x -54,即15x <46.解得x <4615. ∴非负整数解为0,1,2,3.21.解:因为(2a +b)(a +b)=2a 2+3ab +b 2,所以所用A ,B ,C 三类卡片分别为3张,1张,2张,图略(图不唯一).第4课时 整式的除法1.C2.C3.2.4.(1)(-a)6÷(-a)2;解:原式=(-a)4=a 4.(2)(-ab)5÷(-ab)3.解:原式=(-ab)2=a 2b 2.5.2.6.解:∵5x =36,5y =3,∴5x-2y =5x ÷52y =5x ÷(5y )2=36÷9=4.7.23. 8.解:原式=1+4+6=11.9.C10.D11.(1)2x 2y 3÷(-3xy);解:原式=-23xy 2. (2)10x 2y 3÷2x 2y ;解:原式=5y 2.(3)3x 4y 5÷(-23xy 2). 解:原式=-92x 3y 3. 12.B13.(1)(x 5y 3-2x 4y 2+3x 3y 5)÷(-23xy); 解:原式=x 5y 3÷(-23xy)-2x 4y 2÷(-23xy)+3x 3y 5÷(-23xy) =-32x 4y 2+3x 3y -92x 2y 4. (2)(6x 3y 4z -4x 2y 3z +2xy 3)÷2xy 3.解:原式=6x 3y 4z÷2xy 3-4x 2y 3z÷2xy 3+2xy 3÷2xy 3=3x 2yz -2xz +1.14.9.15.D16.A17.8.18.0,6,4.19.(1)(-25a 2b 4)÷(-14ab 2)÷(-10ab); 解:原式=-425b. (2)-32a 4b 5c÷(-2ab)3·(-34ac); 解:原式=-3a 2b 2c 2.(3)(23n 3-7mn 2+23n 5)÷23n 2; 解:原式=n -212m +n 3.(4)(12x 4y 6-8x 2y 4-16x 3y 5)÷4x 2y 3.解:原式=3x 2y 3-2y -4xy 2.20.解:(2.88×109)÷(1.8×106)=(2.88÷1.8)×(109÷106)=1.6×103=1 600.答:这颗人造地球卫星的速度是这架喷气式飞机的速度的1 600倍.21.解:原式=x 2-y 2-2x 2+4y 2=-x 2+3y 2.当x =1,y =-3时,原式=-12+3×(-3)2=-1+27=26.22.解:[π(12a)2h +π(12×2a)2H]÷[π(12×12a)2×8] =(14πa 2h +πa 2H)÷ 12πa 2 =12h +2H. 答:需要(12h +2H)个这样的杯子.。

人教版八年级上册数学14.1 整式的乘法 课后训练及答案解析

人教版八年级上册数学14.1 整式的乘法 课后训练及答案解析

课后训练基础巩固1.下列计算:①a 2n ·a n =a 3n ;②22·33=65;③32÷32=1;④a 3÷a 2=5a ;⑤(-a )2·(-a )3=a 5.其中正确的式子有( ).A .4个B .3个C .2个D .1个2.若(2x -1)0=1,则( ).A .x ≥12-B .x ≠12-C .x ≤12-D .x ≠123.下列计算错误的是( ).A .(-2x )3=-2x 3B .-a 2·a =-a 3C .(-x )9+(-x )9=-2x 9D .(-2a 3)2=4a 64.化简(-a 2)5+(-a 5)2的结果是( ).A .0B .-2a 7C .a 10D .-2a 105.下列各式的积结果是-3x 4y 6的是( ).A .213x -·(-3xy 2)3 B .21()3x -·(-3xy 2)3 C .213x -·(-3x 2y 3)2 D .21()3x -·(-3xy 3)2 6.下列运算正确的是( ).A .a 2·a 3=a 6B .(-3x )3=-3x 3C .2x 3·5x 2=7x 5D .(-2a 2)(3ab 2-5ab 3)=-6a 3b 2+10a 3b 37.计算(-a 4)3÷[(-a )3]4的结果是( ).A .-1B .1C .0D .-a8.下列计算正确的是( ).A .2x 3b 2÷3xb =223x bB .m 6n 6÷m 3n 4·2m 2n 2=12mC .12xy ·a 3b ÷(0.5a 2y )=214xaD .(ax 2+x )÷x =ax9.计算(14a 2b 2-21ab 2)÷7ab 2等于( ).A .2a 2-3B .2a -3C .2a 2-3bD .2a 2b -3 10.计算(-8m 4n +12m 3n 2-4m 2n 3)÷(-4m 2n )的结果等于( ). A .2m 2n -3mn +n 2B .2m 2-3mn 2+n 2C .2m 2-3mn +n 2D .2m 2-3mn +n 11.(a 2)5=__________;(-2a )2=__________;(xy 2)2=__________.12.与单项式-3a 2b 的积是6a 3b 2-2a 2b 2+9a 2b 的多项式是__________.13.计算:(1)(-5a 2b 3)(-3a );(2)(2x )3·(-5x 2y );(3)2ab (5ab 2+3a 2b );(4)(3x +1)(x +2).14.计算:(1)412÷43;(2)4211()()22-÷-;(3)32m +1÷3m -1.能力提升15.如果a 2m -1·a m +2=a 7,则m 的值是( ).A .2B .3C .4D .516.210+(-2)10所得的结果是( ).A .211B .-211C .-2D .217.(x -4)(x +8)=x 2+mx +n 则m ,n 的值分别是( ).A .4,32B .4,-32C .-4,32D .-4,-3218.已知(a n b m +1)3=a 9b 15,则m n =__________.19.若a m +2÷a 3=a 5,则m =__________;若a x =5,a y =3则a y -x =__________.20.计算:-a 11÷(-a )6·(-a )5.21.计算: (1)-a 2b (ab 2)+3a (-2b 3)(223a )+(-2ab )2ab ; (2)1122(1)3()233y y y y --+; (3)221()3xy -·[xy (2x -y )+xy 2]; (4)(a +2b )(a -2b )(a 2+4b 2).221220|3|2x y --=0,请你计算3(x -7)12÷(y +3)5的值.23.将4个数a ,b ,c ,d 排成2行、2列,两边各加一条竖直线记成 a b c d ,定义 a bc d =ad -bc ,上述记号就叫做2阶行列式.若6 5 616 1 65x x x x +---=-20,求x 的值.参考答案1.C 2.D 3.A 4.A 5.D 6.D7.A 点拨:原式=-a 12÷a 12=-1.8.A 点拨:本题易错选D ,D 的正确结果为ax +1,在实际运算中,“1”这一项经常被看作0而忽视,应引起特别的重视.9.B 点拨:原式=14a 2b 2÷7ab 2-21ab 2÷7ab 2=2a -3.10.C 点拨:原式=8m 4n ÷4m 2n -12m 3n 2÷4m 2n +4m 2n 3÷4m 2n =2m 2-3mn +n 2.11.a 10 4a 2 x 2y 412.-2ab +23b -3 点拨:由题意列式(6a 3b 2-2a 2b 2+9a 2b )÷(-3a 2b )计算即得.13.解:(1)原式=[(-5)×(-3)](a 2·a )·b 3=15a 3b 3.(2)原式=8x 3·(-5x 2y )=[8×(-5)](x 3·x 2)·y =-40x 5y .(3)原式=10a 2b 3+6a 3b 2.(4)原式=3x 2+6x +x +2=3x 2+7x +2.14.解:(1)412÷43=412-3=49; (2)42421111()()()2224--÷-=-=; (3)32m +1÷3m -1=3(2m +1)-(m -1)=3m +2.15.A 点拨:a 2m -1·a m +2=a 2m -1+m +2=a 7,所以2m -1+m +2=7,解得m =2. 16.A 17.B 18.64 19.6 3520.解:原式=-a 11÷a 6·(-a )5=-a 5·(-a )5=a 10,或者原式=(-a )11÷(-a )6·(-a )5=(-a )5·(-a )5=(-a )10=a 10.21.解:(1)原式=-a 3b 3-4a 3b 3+4a 3b 3=-a 3b 3.(2)原式=y (y -2)-y (y +2)=y 2-2y -y 2-2y =-4y .(3)原式=241()9x y ·[2x 2y -xy 2+xy 2]=4529x y . (4)原式=(a 2-2ab +2ab -4b 2)(a 2+4b 2)=(a 2-4b 2)(a 2+4b 2)=a 4+4a 2b 2-4a 2b 2-16b 4=a 4-16b 4.22.解:由题意得2200,130,2x y -=⎧⎪⎨-=⎪⎩得10,6,x y =⎧⎨=⎩ 所以原式=3×(10-7)12÷(6+3)5=3×312÷95=313÷(32)5=313÷310=33=27.23.解:先根据定义,将6 5 616 1 65x x x x +---转化为(6x +5)(6x -5)-(6x -1)2=-20,再进行化简.去括号,得36x2-25-(36x2-12x+1)=-20,整理,得36x2-25-36x2+12x-1=-20.移项,合并同类项,得12x=6.系数化为1,得x=1 2 .。

人教版 八年级数学上册 14.1 整式的乘法(含答案)

人教版 八年级数学上册 14.1 整式的乘法(含答案)

人教版 八年级数学上册 14.1 整式的乘法一、选择题(本大题共10道小题)1. (72)3表示的是()A .3个72相加B .2个73相加C .3个72相乘D .5个7相乘2. 下列运算正确的是()A. a 2·a 3=a 6B. (-a )4=a 4C. a 2+a 3=a 5D. (a 2)3=a 53. 化简(x 3)2,结果正确的是() A .-x 6 B .x 6C .x 5D .-x 54. 下列计算正确的是()A .3515a a a ⋅=B .623a a a ÷=C .358a a a +=D .()43a a a -÷=5. 计算(2x )3÷x 的结果正确的是()A. 8x 2B. 6x 2C. 8x 3D. 6x 36. 已知a m =4,则a 2m 的值为() A .2 B .4C .8D .167. 已知x a =2,x b =3,则x 3a +2b 的值() A .48 B .54C .72D .178. 下列计算错误的是()A .()333327ab a b -=- B .2326411416a b a b ⎛⎫-= ⎪⎝⎭C .()326xy xy -=- D .()24386a b a b -=9. 已知0a b +=,n 为正数,则下列等式中一定成立的是()A .0n n a b +=B .220n n a b +=C .21210n n a b +++=D .110n n a b +++=10. 若n 是自然数,并且有理数,a b 满足10a b+=,则必有( ) A .21()0n n a b += B .2211()0n n a b++=C .221()0n n a b+=D .21211()0n n a b+++=二、填空题(本大题共5道小题) 11. 填空:54x x x ÷⨯= ;12. 填空:()()3223x x x --⋅=13. 计算:a 3·(a 3)2=________.14. 若(a m )3=a 15,则m =________.15. 填空:()()2322a b b ⋅-=;三、解答题(本大题共5道小题) 16. 计算:()1243x x x ⋅÷17. 计算:()323n n n x x x -÷⋅18. 计算:43()()()m n n m n m ---19. 已知x 满足22x +2-4x =48,求x 的值.20. 已知有理数x ,y ,z 满足2|2|(367)|334|0x z x y y z --+--++-=,求3314n n n x y z x--的值.人教版 八年级数学上册 14.1 整式的乘法-答案一、选择题(本大题共10道小题)1. 【答案】C[解析] (72)3表示的是3个72相乘.2. 【答案】B【解析】互为相反数的两个数的偶次幂相等.3. 【答案】B4. 【答案】D【解析】根据同底数幂相乘除的法则,应选D5. 【答案】A【解析】(2x )3是积的乘方,把2和x 分别乘方得8x 3再除以x ,得8x 2.6. 【答案】D[解析] 由于a m =4,因此a 2m =(a m )2=42=16.7. 【答案】C[解析] 因为x a =2,x b =3,所以x 3a +2b =(x a )3·(x b )2=23×32=72.8. 【答案】C【解析】根据积的乘方运算法则,应选C9. 【答案】C【解析】因为a b ,互为相反数,它们的偶次幂相等,而奇次幂互为相反数,指数中只有21n +一定是奇数,故选C10. 【答案】D【解析】由10a b +=知1,a b两数为相反数,且不为0,易得答案二、填空题(本大题共5道小题) 11. 【答案】8x【解析】原式448x x x =⋅=12. 【答案】65x x -【解析】原式65x x =-13. 【答案】a 9[解析] a 3·(a 3)2=a 3·a 6=a 9.14. 【答案】5[解析] 因为(a m )3=a 3m =a 15,所以3m =15.所以m =5.15. 【答案】458a b -【解析】原式()4234588a b b a b =⋅-=-三、解答题(本大题共5道小题)16. 【答案】13x【解析】原式1213x x x =⋅=17. 【答案】3x【解析】原式()3233n n n x x -+-==18. 【答案】()8n m -【解析】43438()()()()()()()m n n m n m n m n m n m n m ---=---=-19. 【答案】解:因为22x +2-4x =48, 所以(22)x +1-4x =48. 所以4x +1-4x =48. 所以4x (4-1)=48.所以4x =16. 所以4x =42. 所以x =2.20. 【答案】【解析】由题意得2036703340x z x y y z --=⎧⎪--=⎨⎪+-=⎩,解方程组得3131x y z =⎧⎪⎪=⎨⎪⎪=⎩,代入所求代数式得313133143411313331333033n n nn nnnx yz x ---⎛⎫⎛⎫-=⋅⋅-=⋅⨯⋅-=-= ⎪⎪⎝⎭⎝⎭.。

人教版八年级上册数学《14.1整式的乘法》同步练习(含答案)

人教版八年级上册数学《14.1整式的乘法》同步练习(含答案)

14.1整式的乘法一、填空题1.计算(2ab)2÷ab 2=_________.2.计算:(﹣251)2016×(115)2017=______. 3.若2018m =6,2018n =4,则21082m-n =_______________.4.若x+4y=-1,则2x •16y 的值为_____.5.计算:[-(b-a)2]3_____________.6.按一定规律排列的一列数:21,22,23,25,28,213,…,若x ,y ,z 表示这列数中的连续三个数,猜想x ,y ,z 满足的关系式是______________.二、单选题7.计算(-x)2·x 3所得的结果是( )A . -x 5B .x 5C .-x 6D .x 68.下列等式正确的是( )A . x 3﹣x 2=xB . a 3÷a 3=aC . (-2)2÷(-2)3=-21 D . (﹣7)4÷(﹣7)2=﹣72 9.下面运算结果为a 6的是( )A . a 3+a 3B . a 8÷a 2C . a 2•a 3D . (﹣a 2)310.已知a m =3,a n =2,则a 3m +2n =( )A . 24B . 36C . 41D . 10811.计算:(4x 3﹣2x )÷(﹣2x )的结果是( )A . 2x 2﹣1B . ﹣2x 2﹣1C . ﹣2x 2+1D . ﹣2x 212.若(a m b n )3=a 9b 15,则m 、n 的值分别为( )A . 9;5B . 3;5C . 5;3D . 6;1213.x 3m+1可写成( )A . (x 3)m+1B .(x m )3+1C .x ·x 3mD .(x m )2m+114.一个长方体的长、宽、高分别是3x-4、2x-1和x ,则它的体积是( ).A . 6x 3-11x 2+4xB . 6x 3-5x 2+4xC . 6x 3-4x 2D . 6x 3-4x 2+x+415.下面是一位同学做的四道题:①(a+b)2=a 2+b 2,②(-2a 2)2=-4a 4,③a 5÷a 3=a 2,④a 3•a 4=a 12.其中做对的一道题的序号是( )A . ①B . ②C . ③D . ④16.通过计算比较图1、图2中阴影部分的面积,可以验证的计算式子是( )A . a(a -2b)=a 2-2abB . (a -b)2=a 2-2ab +b 2C . (a +b)(a -b)=a 2-b 2D . (a +b)(a -2b)=a 2-ab -2b 217.关于(21)2018·22018计算正确的是( ) A . 1 B . -1 C . 0 D . 2401三、解答题18.计算:(1)(﹣a 3)4•(﹣a )3(2)(﹣x 6)﹣(﹣3x 3)2+8[﹣(﹣x )3]2(3)(m 2n )3•(﹣m 4n )+(﹣mn )219.化简:(1); (2)a n -1·a n ·a ;(3) ( -x 2)·(x 3)·(-x)2 ; (4)x 2·x 5+x ·x 2·x 4;(4).20.(1)已知a=21,mn=2,求a 2·(a m )n 的值; (2)若,求的值.21.(1)若,,则比较A 、B 的大小关系; (2)若的展开式中不含有x 的二次项,求m 的值参考答案1.4a2.115 3.94.21 5.-(a-b)66.xy=z7.B 8.C 9.B 10.D 11.C 12.B 13.C 14.A 15.C 16.D 17.A18.(1)﹣a 15;(2)﹣2x 6;(3)﹣m 10n 4+m 2n 2 .(1)原式=a 12•(﹣a 3)=﹣a 15;(2)原式=﹣x 6﹣9x 6+8x 6=﹣2x 6;(3)原式=m 6n 3•(-m 4n)+m 2n 2=﹣m 10n 4+m 2n 2 .19.(1);(2)a 2n ;(3)-x 7;(4)2x 7;(5). (1)原式===; (2)原式=a n -1+n +1=a 2n ;(3)原式=-x 7;(4)原式=x 7+x 7=2x 7;(4)原式===.20.(1)161;(2)56. (1)a 2·(a m )n =a 2·a mn =a 2·a 2=a 4,当a =21时,原式=(21)4=161. (2)(-3x 3n )2-4(-x 2)2n =9x 6n -4x 4n =9(x 2n )3-4(x 2n )2,当x 2n =2时,原式=9×23-4×22=72-16=56.21.(1);(2)-2. 解:∵,, ∴, ∵, ∴,∴、的大小关系为:;,由展开式中不含项,得到,则.。

2022-2023学年人教版八年级数学上册《14-1整式的乘法》同步练习题(附答案)

2022-2023学年人教版八年级数学上册《14-1整式的乘法》同步练习题(附答案)

2022-2023学年人教版八年级数学上册《14.1整式的乘法》同步练习题(附答案)一.选择题1.若整数n满足2n•2n•2n=8,则n的值为()A.1B.2C.3D.62.已知x+y﹣3=0,则2x•2y的值是()A.6B.﹣6C.D.83.下列运算正确的是()A.m2+2m3=3m5B.(m2)3=m6C.m2•m3=m6D.(mn)3=mn3 4.下列计算正确的是()A.2a﹣3a=﹣1B.(a2b3)3=a5b6C.a2•a3=a6D.a2+3a2=4a25.计算:等于()A.﹣2B.2C.D.6.下列算式中,计算结果为a3b3的是()A.ab+ab+ab B.3ab C.ab•ab•ab D.a•b37.计算(8×104)×(5×103)的结果是()A.4×107B.13×107C.4×108D.1.3×108 8.把2a(ab﹣b+c)化简后得()A.2a2b﹣ab+ac B.2a2﹣2ab+2acC.2a2b+2ab+2ac D.2a2b﹣2ab+2ac9.若(2x﹣a)(x+5)的积中不含x的一次项,则a的值为()A.10B.0C.5D.﹣510.关于字母x的整式(x+1)(x2+mx﹣2)化简后的结果中二次项系数为0,则()A.m=2B.m=﹣2C.m=1D.m=﹣111.要使(x2+ax+2)(2x﹣1)的结果中不含x2项,则常数a的值为()A.0B.C.1D.﹣212.若(x+1)(﹣3x+k)的展开式中不含x的一次项,则()A.k=3B.k=﹣3C.k=﹣2D.k=2二.填空题13.若a m=3,a m+n=9,则a n=.14.若x+y=2,则3x•3y的值为.15.若(a2)3•a10=a m,则m=.16.若3m•9n=27(m,n为正整数),则m+2n的值是.17.计算6x3•(﹣2x2y)=.18.计算:(﹣m)5•(﹣m)•m3=;(﹣xy)•(﹣2x2y)2=.19.计算(﹣2x)(x3﹣x+1)=.20.若(x+4)(x﹣2)=x2﹣mx﹣n,则n m=.三.解答题21.计算:(1)(﹣3x3y)(4x﹣3x2﹣1);(2)(x+3)(x﹣7)﹣x(x﹣1).22.计算:a•a2+(﹣2a2b)2+2a2(a﹣a2b2)23.计算:(4a+1)(a+2)﹣(2a+1)(a﹣1).24.已知多项式x﹣1与x2+ax﹣b的乘积中不含有一次项和二次项,求常数a,b的值.25.若(2x2﹣mx+6)(x2﹣3x+3n)的展开式中x2项的系数为9,x3项的系数为1,求m﹣n 的值.参考答案一.选择题1.解:2n•2n•2n=2n+n+n=23n=8,∴3n=3,∴n=1;故选:A.2.解:∵x+y﹣3=0,∴x+y=3,∴2x•2y=2x+y=23=8.故选:D.3.解:A、m2+2m3,无法合并,故此选项错误;B、(m2)3=m6,故此选项正确;C、m2m3=m5,故此选项错误;D、(mn)3=m3n3,故此选项错误;故选:B.4.解:A、2a﹣3a=﹣a,本选项错误;B、(a2b3)3=a6b9,本选项错误;C、a2•a3=a5,本选项错误;D、a2+3a2=4a2,本选项正确;故选:D.5.解:原式=(﹣2)2019•()2019•=(﹣2×)2019•=﹣故选:C.6.解:A、ab+ab+ab=3ab,故此选项错误;B、3ab=3ab,故此选项错误;C、ab•ab•ab=a3b3,故此选项正确;D、a•b3=a•b3,故此选项错误;故选:C.7.解:(8×104)×(5×103)=40×107=4×108.故选:C.8.解:原式=2a2b﹣2ab+2ac.故选:D.9.解:(2x﹣a)(x+5)=2x2+(10﹣a)x﹣5a,∵积中不含x的一次项,∴10﹣a=0,∴a=10,故选:A.10.解:∵于字母x的整式(x+1)(x2+mx﹣2)化简后的结果中二次项系数为0,∴(x+1)(x2+mx﹣2)=x3+mx2﹣2x+x2+mx﹣2=x3+(m+1)x2+(m﹣2)x﹣2,故m+1=0,解得:m=﹣1.故选:D.11.解:原式=(x2+ax+2)(2x﹣1)=2x3﹣x2+2ax2﹣ax+4x﹣2=2x3+(2a﹣1)x2+(4﹣a)x﹣2,∵(x2+ax+2)(2x﹣1)的结果中不含x2项,∴常数a的值为:a=.故选:B.12.解(x+1)(﹣3x+k)=﹣3x2+(k﹣3)x+k,∵(x+1)(﹣3x+k)的展开式中不含x的一次项,∴k﹣3=0,解得k=3.故选:A.二.填空题13.解:a n=a m+n÷a m=9÷3=3.故答案为:3.14.解:∵x+y=2,∴3x•3y=3x+y=32=9.故答案为:9.15.解:∵(a2)3•a10=a m,∴a6•a10=a m,∴a16=a m,∴m=16,故答案为:16.16.解:∵3m•9n=27(m,n为正整数),∴3m•32n=33,∴m+2n=3.故答案为:3.17.解:6x3•(﹣2x2y)=﹣(6×2)x3+2y=﹣12x5y.故答案为:﹣12x5y.18.解:原式=m5•m•m3=m9,原式=(﹣xy)•(4x4y2)=﹣4x5y3,故答案为:m9,﹣4x5y319.解:(﹣2x)(x3﹣x+1)=﹣2x4+2x2﹣2x,故答案为:﹣2x4+2x2﹣2x.20.解:∵(x+4)(x﹣2)=x2+2x﹣8,∴x2+2x﹣8=x2﹣mx﹣n,∴m=﹣2,n=8.则n m=8﹣2=.故答案为:.三.解答题21.解:(1)原式=﹣12x4y+9x5y+3x3y;(2)原式=x3﹣7x+3x﹣21﹣x2+x=﹣3x﹣21.22.解:原式=a3+4a4b2+2a3﹣2a4b2=3a3+2a4b223.解:原式=4a2+8a+a+2﹣(2a2﹣2a+a﹣1)=2a2+10a+3.24.解:(x﹣1)(x2+ax﹣b)=x3+ax2﹣bx﹣x2﹣ax+b=x3+(a﹣1)x2+(a+b)x+b,∵结果中不含有x的一次项及二次项,∴a﹣1=0,a+b=0,解得:a=1,b=﹣1.25.解:(2x2﹣mx+6)(x2﹣3x+3n)=2x4﹣(m+6)x3+(6n+3m+6)x2﹣3(6+mn)x+18n,∵展开式中x2项的系数为9,x3项的系数为1,∴6n+3m+6=9,m+6=﹣1.解得m=﹣7,n=4.∴m﹣n=﹣7﹣4=﹣11.。

2021-2022学年人教版八年级数学上册《14-1整式的乘法》同步达标测评(附答案)

2021-2022学年人教版八年级数学上册《14-1整式的乘法》同步达标测评(附答案)

2021-2022学年人教版八年级数学上册《14.1整式的乘法》同步达标测评(附答案)一.选择题(共10小题,满分40分)1.下列计算中,正确的是()A.(xy)3=xy3B.a+a=a2C.b2•b3=b5D.(y3)3=y6 2.下列计算结果等于a12的是()A.﹣(a3)4B.(﹣a3)4C.(﹣a4)3D.﹣(a4)33.计算﹣(﹣2x3y2)4的结果是()A.16x7y6B.﹣16x7y6C.16x12y8D.﹣16x12y84.计算(﹣)2021×()2021的结果是()A.﹣1B.1C.D.5.计算(﹣ab)3•a2的结果是()A.a5b3B.a6b3C.﹣a5b3D.﹣a6b36.已知a=817,b=279,c=913,则a,b,c的大小关系是()A.a>b>c B.a>c>b C.a<b<c D.b>c>a7.若3•9m•27m=321,则m的值为()A.2B.3C.4D.58.计算(7.2×103)×(2.5×104)结果用科学记数法表示正确的是()A.180000000B.18×107C.1.8×107D.1.8×1089.下列运算中,错误的个数是()(1)a2+a2=a4;(2)a2•a3=a6;(3)a n•a n=2a n;(4)﹣a4•(﹣a)4=a8.A.1个B.2个C.3个D.4个10.为了求1+2+22+23+…+22021+22022的值,可令S=1+2+22+23+…+22021+22022,则2S=2+22+23+24+…+22022+22023,因此2S﹣S=22023﹣1,所以1+22+23+…+22022=22023﹣1.仿照以上方法计算1+5+52+53+…+52022的值是()A.52023﹣1B.52023+1C.4152023+D.4152023-二.填空题(共6小题,满分30分)11.计算:a(a﹣2b)的结果为.12.如果2n+2n+2n+2n=28,那么n的值是.13.若a m=2,a n=5,则a2m+2n=.14.计算:(﹣a)4•(﹣a)3=.15.计算:若a3n=3,b2n=2,则a6n b4n=.16.22023×(0.125)674=.三.解答题(共8小题,满分50分)17.计算:(1)3a2•2a4+(3a3)2﹣14a6;(2)3x(2x+y)﹣2x(x﹣y).18.计算:3a2b2•(﹣2ab4)﹣(﹣ab2)3.19.我们规定一种运算,如果a c=b,则(a,b)=c,例如若23=8,则(2,8)=3.(1)根据上述规定填空(3,27)=,(﹣2,)=5.(2)小明在研究这种运算时发现一种现象:(3n,4n)=(3,4),小明给出了如下证明过程:解:设(3n,4n)=x,则(3n)x=4n,即(3x)n=4n,所以3x=4,所以(3,4)=x,所以(3n,4n)=(3,4),请你用这种方法证明(3,4)+(3,5)=(3,20).20.规定a*b=3a×3b,求:(1)求1*2;(2)若2*(x+1)=81,求x的值.21.试说明:代数式(2x+3)(6x+2)﹣6x(2x+13)+8(7x+2)的值与x的取值无关.22.(1)计算:2(x3)2•x3﹣(3x3)3+(5x)2•x7.(2)已知2x+5y﹣3=0,求4x•32y的值.23.定义:如果2m=n(m,n为正数),那么我们把m叫做n的D数,记作m=D(n).(1)根据D数的定义,填空:D(2)=,D(16)=.(2)D数有如下运算性质:D(s•t)=D(s)+D(t),D()=D(q)﹣D(p),其中q>p.根据运算性质,计算:①若D(a)=1,求D(a3);②若已知D(3)=2a﹣b,D(5)=a+c,试求D(15),D(),D(108),D()的值(用a、b、c表示).24.若x=2m+2,y=3+4m.(1)请用含x的代数式表示y;(2)如果x=3,求此时y的值.参考答案一.选择题(共10小题,满分40分)1.解:A.(xy)3=x3y3,故本选项不符合题意;B.a+a=2a,故本选项不符合题意;C.b2•b3=b5,故本选项符合题意;D.(y3)3=y9,故本选项不符合题意;故选:C.2.解:A、﹣(a3)4=﹣a12,故A不符合题意;B、(﹣a3)4=a12,故B符合题意;C、(﹣a4)3=﹣a12,故C不符合题意;D、﹣(a4)3=﹣a12,故D不符合题意;故选:B.3.解:﹣(﹣2x3y2)4=﹣16x12y8,故选:D.4.解:(﹣)2021×()2021=[(﹣)×]2021=(﹣1)2021=﹣1,故选:A.5.解:(﹣ab)3•a2=﹣a3b3•a2=﹣a5b3.故选:C.6.解:∵a=817,b=279,c=913,∴a=(34)7=328,b=(33)9=327,c=(32)13=326.又∵328>327>326,∴a>b>c.故选:A.7.解:3•9m•27m=3×32m×33m=31+2m+3m=31+5m,∵3•9m•27m=321,∴1+5m=21,解得:m=4.故选:C.8.解:(7.2×103)×(2.5×104)=7.2×2.5×107=18×107=1.8×108.故选:D.9.解:(1)a2+a2=2a2,故(1)错误;(2)a2•a3=a5,故(2)错误;(3)a n•a n=a2n,故(3)错误;(4)﹣a4•(﹣a)4=﹣a8,故(4)错误.则错误的个数为4个.故选:D.10.解:令S=1+5+52+53+ (52022)则5S=5+52+53+…+52022+52023,5S﹣S=﹣1+52023,4S=52023﹣1,则S=4152023.故选:D.二.填空题(共6小题,满分30分)11.解:a(a﹣2b)=a2﹣2ab.故答案为:a2﹣2ab.12.解:∵2n+2n+2n+2n=28,∴4×2n=28,∴22×2n=28,∴22+n=28,∴2+n=8,解得n=6.故答案为:6.13.解:∵a m=2,a n=5,∴a2m+2n=a2m•a2n=(a m)2•(a n)2=22×52=4×25=100,故答案为:100.14.解:(﹣a)4•(﹣a)3=(﹣a)7=﹣a7.故答案为:﹣a7.15.解:∵a3n=3,b2n=2,∴a6n b4n=(a3n)2×(b2n)2=32×22=9×4=36.故答案为:36.16.解:22023×(0.125)674,=22023×()2022,=2×22022×()2022,=2×(2×)2022,=2×1,=2.三.解答题(共8小题,满分50分)17.解:(1)原式=6a6+9a6﹣14a6=a6;(2)原式=6x2+3xy﹣2x2+2xy=4x2+5xy.18.解:3a2b2•(﹣2ab4)﹣(﹣ab2)3=﹣6a3b6﹣(﹣a3b6)=﹣6a3b6+a3b6=﹣5a3b6.19.(1)解:∵33=27,∴(3,27)=3,∵(﹣2)5=﹣32,∴(﹣2,﹣32)=5,故答案为:3,﹣32;(2)证明:设(3,4)=a,(3,5)=b,则3a=4,3b=5,∴3a×3b=20,∴3a+b=20,∴(3,20)=a+b,∴(3,4)+(3,5)=(3,20).20.解:(1)∵a*b=3a×3b,∴1*2=31×32=3×9=27;(2)∵2*(x+1)=81,∴32×3x+1=34,则2+x+1=4,解得:x=1.21.解:∵(2x+3)•(6x+2)﹣6x(2x+13)+8(7x+2)=12x2+4x+18x+6﹣12x2﹣78x+56x+16=22,∴代数式的值与x的取值无关.22.解:(1)原式=2x6•x3﹣27x9+25x2•x7=2x9﹣27x9+25x9=0;(2)∵2x+5y﹣3=0,∴2x+5y=3,∴原式=(22)x•(25)y=22x•25y=22x+5y=23=8.23.解:(1)∵21=2,∴D(2)=1,∵24=16,∴D(16)=4,故答案为:1;4.(2)①∵21=a,∴a=2.∴23=23.∴D(a3)=3.②D(15)=D(3×5),=D(3)+D(5)=(2a﹣b)+(a+c)=3a﹣b+c,=(a+c)﹣(2a﹣b)=﹣a+b+c.D(108)=D(3×3×3×2×2),=D(3)+D(3)+D(3)+D(2)+D(2)=3×D(3)+2×D(2)=3×(2a﹣b)+2×1=6a﹣3b+2.,=D(3×3×3)﹣D(5×2×2)=D(3)+D(3)+D(3)﹣[D(5)+D(2)+D(2)]=3×D(3)﹣[D(5)+2D(2)]=3×(2a﹣b)﹣[a+c+2×1]=6a﹣3b﹣a﹣c﹣2=5a﹣3b﹣c﹣2,24.解:(1)∵4m=22m=(2m)2,x=2m+2,∴2m=x﹣2,∵y=4m+3,∴y=(x﹣2)2+3,即y=x2﹣4x+7;(2)把x=3代入y=x2﹣4x+7=4。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十四章 整式的乘法与因式分解
14.1整式的乘法
专题一幂的性质
1.以下运算中,正确的选项是〔 〕
A .3a 2-a 2=2
B .(a 2)3=a 9
C .a 3•a 6=a 9
D .(2a 2)2=2a 4
2.以下计算正确的选项是〔 〕
A .3x ·
622x x =B .4x ·8
2x x = C .632)(x x -=- D .523)(x x = 3.以下计算正确的选项是〔 〕
A .2a 2+a 2=3a 4
B .a 6÷a 2=a 3
C .a 6·a 2=a 12
D .(-a 6)2=a 12
专题二幂的性质的逆用
4.假设2a =3,2b =4,那么23a+2b 等于〔〕
A .7
B .12
C .432
D .108
5.假设2m=5,2n=3,求23m+2n的值.
7.以下运算中正确的选项是〔 〕
A .2325a a a +=
B .22(2)()2a b a b a ab b +-=--
C .23622a a a ⋅=
D .222(2)4a b a b +=+
8.假设〔3x 2-2x +1〕〔x +b 〕中不含x 2项,求b 的值,并求〔3x 2-2x +1〕〔x +b 〕的值.
9.先阅读,再填空解题:
〔x +5〕〔x +6〕=x 2+11x +30;
〔x -5〕〔x -6〕=x 2-11x +30;
〔x -5〕〔x +6〕=x 2+x -30;
〔x +5〕〔x -6〕=x 2-x -30.
〔1〕观察积中的一次项系数、常数项与两因式中的常数项有何关系答:________. 〔2〕根据以上的规律,用公式表示出来:________.
〔3〕根据规律,直接写出以下各式的结果:〔a +99〕〔a -100〕=________;〔y -80〕〔y -81〕=________.
专题四整式的除法
10.计算:〔3x 3y -18x 2y 2+x 2y 〕÷〔-6x 2y 〕=________.
11.计算:2362743
19132
)()(ab b a b a -÷-. 12.计算:〔a -b 〕3÷〔b -a 〕2+〔-a -b 〕5÷〔a +b 〕4.
状元笔记
【知识要点】
1.幂的性质
(1)同底数幂的乘法:n m n m a
a a +=⋅(m ,n 都是正整数),即同底数幂相乘,底数不变,
指数相加.
(2)幂的乘方:()m n mn a a
=(m ,n 都是正整数),即幂的乘方,底数不变,指数相乘. (3)积的乘方:()n n n ab a b =(n 都是正整数),即积的乘方,等于把积中的每一个因式分别
乘方,再把所得的幂相乘.
2.整式的乘法
(1)单项式与单项式相乘:把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,那么连同它的指数作为积的一个因式.
(2)单项式与多项式相乘:就是用单项式去乘单项式的每一项,再把所得的积相加.
(3)多项式与多项式相乘:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.
3.整式的除法
(1)同底数幂相除:m n m n a a a
-÷=(m ,n 都是正整数,并且m >n ),即同底数幂相除,底
数不变,指数相减.
(2)0a =1(a ≠0),即任何不等于0的数的0次幂都等于1.
(3)单项式除以单项式:单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,那么连同它的指数作为商的一个因式.
(4)多项式除以单项式:先把这个多项式的每一项除以这个单项式,再把所得的商相加.
【温馨提示】
1.同底数幂乘法法那么与合并同类项法那么相混淆.同底数幂相乘,应是“底数不变,指数相加〞;而合并同类项法那么是“系数相加,字母及字母的指数不变〞.
2.同底数幂相乘与幂的乘方相混淆.同底数幂相乘,应是“底数不变,指数相加〞;幂的乘方,应是“底数不变,指数相乘〞.
3.运用同底数幂的乘法(除法)法那么时,必须化成同底数的幂后才能运用上述法那么进行计算.
4.在单项式(多项式)除以单项式中,系数都包括前面的符号,多项式各项之间的“加、减〞符号也可以看成系数的符号来参与运算.
【方法技巧】
1.在幂的性质中,公式中的字母可以表示任意有理数,也可以表示单项式或多项式.
2.单项式与多项式相乘,多项式与多项式相乘时,要按照一定的顺序进行,否那么容易造成漏项或增项的错误.
3.单项式与多项式相乘,多项式除以单项式中,结果的项数与多项式的项数相同,不要漏项. 参考答案:
1.C 解析:A 中,3a 2与-a 2是同类项,可以合并,3a 2―a 2=2a 2,故A 错误;B 中,(a 2)3=a 2×3=a 6,故B 错误;C 中,a 3•a 6=a 3+6=a 9,故C 正确;D 中,(2a 2)2=22〔a 2〕2=4a 4,故D 错误.应选C .
2.C 解析:3x ·2235x x x +==,选项A 错误;4x ·2246x x x +==,选项B 错误;23236()x x x ⨯-=-=-,选项C 正确;32236()x x x ⨯==,选项D 错误. 应选C .
3.D 解析:A 中,22223a a a +=,故A 错误;B 中,624
a a a ÷=,故B 错误;C 中,
628a a a ⋅=,故C 错误. 应选D .
4.C 解析:23a+2b =23a ×22b =〔2a 〕3×〔2b 〕2=33×42=432.应选C .
5.解:23m+2n=23m·22n=〔2m〕3·〔2n〕2 =53·32=1125.
7.B 解析:A 中,由合并同类项的法那么可得3a+2a=5a ,故A 错误;B 中,由多项式与多项式相乘的法那么可得22(2)()22a b a b a ab ab b +-=-+-=222a ab b --,故B 正确;C 中,由单项式与单项式相乘的法那么可得232322a a a +⋅==52a ,故C 错误;D 中,由多项式与多项式相乘的法那么可得222(2)44a b a ab b +=++,故D 错误. 综上所述,选B .
8.解:原式=3x 3+〔3b -2〕x 2+〔-2b+1〕x+b ,
∵不含x 2项,
∴3b -2=0,得. ∴〔3x 2-2x+1〕〔x+23
〕 =3x 3-2x 2+x+2x 2-43x+23
=3x 3-13x+23. 9.解:〔1〕观察积中的一次项系数、常数项与两因式中的常数项的关系是:
一次项系数是两因式中的常数项的和,常数项是两因式中的常数项的积;
〔2〕根据以上的规律,用公式表示出来:〔a+b 〕〔a+c 〕=a 2+〔b+c 〕a+bc ;
〔3〕根据〔2〕中得出的公式得:〔a+99〕〔a -100〕=a 2-a -9900;〔y -80〕〔y -81〕=y 2-161y+6480.
10.-
12x+3y -16
解析:〔3x 3y -18x 2y 2+x 2y 〕÷〔-6x 2y 〕=〔3x 3y 〕÷〔-6x 2y 〕-18x 2y 2÷〔-6x 2y 〕+x 2y÷〔-6x 2y 〕=-12x+3y -16. 11.解:原式
12.解:〔a -b 〕3÷〔b -a 〕2+〔-a -b 〕5÷〔a+b 〕4,
=〔a -b 〕3÷〔a -b 〕2-〔a+b 〕5÷〔a+b 〕4,
=〔a -b 〕-〔a+b 〕,
=a -b -a -b ,
=-2b .。

相关文档
最新文档