某水电站引水系统设计

合集下载

固滴水电站引水系统设计

固滴水电站引水系统设计

固滴水电站引水系统设计引言:水电站是一种将水能转化为电能的设施,而引水系统是水电站的重要组成部分之一。

固滴水电站作为一个典型的水电站,其引水系统的设计对于电站的正常运行和发电效率至关重要。

本文将从引水系统的设计原理、结构以及必要的技术要求等方面进行详细介绍。

一、设计原理固滴水电站引水系统的设计原理是利用水的自然流动和重力作用,将水从水源地引入到水电站发电机组,以便发电。

具体来说,设计原理包括以下几个关键环节:1. 水源地选择:水源地的选择是引水系统设计的第一步。

通常情况下,水源地应具备水量充足、水质良好、地形适宜等特点,以确保引水系统的正常运行。

2. 水库建设:为了储存足够的水量,以应对用电高峰时期的需求,固滴水电站引水系统需要建设一个水库。

水库的规模和容量应根据实际需要进行设计,以确保供水的持续性和稳定性。

3. 引水渠道设计:引水渠道是将水从水库引入到水电站的关键通道。

在设计引水渠道时,需要考虑渠道的长度、宽度、深度等参数,以及地形条件和水流速度等因素,以确保水能顺利地流入水电站。

4. 引水管道设计:引水管道是将水从引水渠道输送到水电站的管道系统。

在设计引水管道时,需要考虑管道的材质、直径、长度、坡度等参数,以及水流压力和输送能力等因素,以确保水能顺利地输送到发电机组。

二、设计结构固滴水电站引水系统的设计结构包括水库、引水渠道和引水管道三个主要组成部分:1. 水库:水库是储存水量的重要设施,通常由大坝和堰塞体组成。

大坝用于囤积水源,而堰塞体用于控制水位和水流量,以应对不同时期的用水需求。

2. 引水渠道:引水渠道是将水从水库引入到水电站的通道。

通常情况下,引水渠道采用开挖或者人工建设的方式,通过合理的设计和施工,确保水能顺利地流入水电站。

3. 引水管道:引水管道是将水从引水渠道输送到水电站的管道系统。

通常情况下,引水管道采用钢管或者混凝土管道,通过合理的设计和铺设,确保水能顺利地输送到发电机组。

水电站课程设计任务书及指导书--引水系统

水电站课程设计任务书及指导书--引水系统

水电站课程设计任务书及指导书引水式水电站引水系统设计(供水工专业用)水利工程系2019.05.01设计任务书一目的和作用课程设计是工科院校学生在校期间一个较为全面性、总结性、实践性的教学环节。

它是学生运用所学知识和技能,解决某一工程问题的一项尝试。

通过本次课程设计使学生巩固、联系、充实、加深、扩大所学基本理论和专业知识,并使之系统化;培养学生综合运用所学知识解决实际问题的能力和创新精神;培养学生初步掌握工程设计工作的流程和方法,在设计、计算、绘图、编写设计文件等方面得到一定的锻炼和提高。

二基本资料梯级开发的红旗引水式水电站,电站的主要任务是发电,并结合水库特性、地区要求可发挥水产养殖等综合效益。

电站建成后投入东北主网,担任系统调峰、调相及少量的事故备用容量,同时兼向周边地区供电。

该电站水库库容较小,不担任下游防洪任务,工程按二等Ⅱ级标准设计。

经比较分析,该电站坝型采用混凝土重力坝,厂房型式为引水式,安装4台水轮发电机组。

引水系统的布置应考虑地形、地址、水力及施工条件,考虑到常规施工技术条件,引水隧洞洞泾不宜超过12m。

因此,引水系统采用两条引水隧洞,在隧洞末端各设置一个调压室,从每个调压室又各伸出两条压力管道,分别给4台机组供水。

供水方式为单元供水,管道轴线与厂房轴线相垂直,水流平顺,水头损失小。

经水能分析,该电站有关动能指标为:水库调节性能年调节装机容量 16万kw (4台×4万kw)水轮机型号HL240 额定转速107.1r/min校核洪水位(0.1%)194.7m 设计洪水位(1%)191.7m正常蓄水位191.5m 死水位190m最大工作水头38.1 m 加权平均水头36.2 m设计水头36.2 m 最小工作水头34.6 m平均尾水位152.0 m 设计尾水位150.0 m发电机效率 96%-98%单机最大引用流量 Q max=124.91m3/s引水系统长度约800m三试根据上述资料,对该电站进行引水系统的设计,具体包括进水口、引水隧洞、调压室及压力管道等建筑物的布置设计与水电站的调节保证计算等内容。

水电站建筑物-第二章-引水道-1

水电站建筑物-第二章-引水道-1

一、压力前池
压力前池设置在引水渠道或无压隧洞的末端,是 水电站引水建筑物与压力管道的连接建筑物。 1、作用: (1) 平稳水压、平衡水量。 (2) 均匀分配流量。 (3) 渲泄多余水量。 (4) 拦阻污物和泥沙。
一、压力前池
2、组成: (1) 前室(池身及扩散段):P131 (2) 进水室及其设备:与引水道的进水口
渠 道
一、渠道的要求和类型
水电站的引水渠道称为动力渠道(为适应负荷变 化,Q、H在不断变化——非恒定流)
1、要求: 有一定的输水能力。按水电站的Qmax设计。 水质要符合要求。渠道进口、沿线及渠道末端 都要采取拦污、防沙、排沙措施。
一、渠道的要求和类型
运行安全可靠 防冲、防淤:渠道内水流速度要小于不冲流速而大 于不淤流速,即:V淤<V设<V冲; 对渠道加设护面,减小糙率、防渗、防冲、防草、 维护边坡稳定,保证电站出力 ; 防草:维持渠道中的水深大于1.5m及流速大于 0.6m/s可抑制水草的生长; 防凌:尤其是北方地区
一、渠道的要求和类型
自动调节渠道
渠道首部和尾部堤顶的高程基本相同,并高出上游 最高水位,渠道断面向下游逐渐加大,渠末不设泄 水建筑物。
适用:渠道不长,底坡较缓,上游水位变化不大的 情况。
水电站引用流量Q = 0时,渠道水位是水平的,渠道 不会发生漫流和弃水现象;Q<Qmax雍水曲线。Q >Qmax为降水曲线。
类似,一般为墙式。P132 (3) 泄水建筑物:P132 (4) 排污、排冰、排冰设备:P132
压力前池组成建筑物
一、压力前池
3、布置
结合整个引水系统及厂房布置进行全面和综合考虑。
前池整体布置时,应使水流平顺,水头损失最少,以 提高水电站的出力和电能。

《水电站》综合练习答案

《水电站》综合练习答案

《小型水电站》综合练习题浙江水利水电专科学校2013年3月绪论一、思考题1.水力发电的特点是什么?p42.我国水能资源的分布及开发情况?p1-23.我国水电事业的成就、发展前景?p24.按照集中落差的方式不同,水电站的开发分为几种基本方式?各种水电站有何特点及适用条件?p5-85.水电站有哪些组成建筑物?其主要作用是什么?p126.抽水蓄能电站的作用和基本工作原理是什么?潮汐电站基本工作原理是什么?p8-10二、填空题1.水电站的基本布置形式有_坝式_、__引水式_ 、__混合式_三种,其中坝式水电站分_河床式_、__坝后式_、_闸墩式_等形式。

2.有压引水式水电站由_拦河坝_、_有压进水口_、_有压引水隧洞_、_调压室_、_厂房、引水渠_等组成;而无压引水式水电站由_低坝_、_无压进水口_、_沉沙池_、_引水渠道(无压隧洞)_、_日调节池、压力前池、溢流水道、压力管道、厂房、尾水渠_等组成。

3.抽水蓄能电站的作用是_以水体为贮存介质,起调节作用_,包括_抽水蓄能_和_防水发电_两个过程。

4.按其调节性能水电站可分为__无调节__和__有调节_两类第一部分水轮机一、判断1. 只要有通过,水轮机就会旋转作功。

( ×)2. 混流式水轮机利用的是水流的势能来作功的。

( ×)3. 冲击式水轮机主要利用水的动能。

( √)4. 水轮机的工作水头等于水电站的毛水头。

( ×)5. 水轮机的工作水头就是水轮机的设计水头。

( ×)6. 转桨式水轮机的高效区比定桨式宽广。

( √ )7. 高水头水电站一般采用轴流式水轮机。

( ×)8. 可逆式水轮机既是水泵,又是水轮机。

( √ )9. 水轮机的效率是水轮机的轴功率与输入水轮机的水流功率之比。

( √ )10. 折流板的作用是为了减小水击压力。

( √)11. 反击式固定导叶也就是座环的支承立柱。

( √ )12. 灯泡式引水是贯流式水轮机的一种引水方式( √ )。

固滴水电站引水系统设计的相关介绍

固滴水电站引水系统设计的相关介绍

固滴水电站引水系统设计的相关介绍引水系统是水电站的重要组成部分,它起到将水源引入水电站的作用。

固滴水电站引水系统设计是为了保证水源的稳定供应和最大限度地提高发电效率而进行的。

本文将从引水系统的设计原则、设计步骤和设计要点等方面进行介绍。

一、设计原则1.可靠性:引水系统应具备良好的可靠性,能够在各种工况下正常运行,保证水源的稳定供应。

2.经济性:引水系统设计应尽量降低建设和运行成本,同时保证其正常运行和维护。

3.高效性:引水系统设计应考虑最大限度地提高发电效率,减少能源损失和浪费。

二、设计步骤1.确定水源:首先需要确定水源的位置和水量,通过水文数据和现场勘测等方式获取相关信息。

2.确定引水方式:根据水源的位置和水量,选择合适的引水方式,包括重力引水、抽水引水、压力引水等。

3.设计引水渠道:根据引水方式和水源的地形条件,设计引水渠道的线路、断面和坡度等参数,确保水流稳定、流速适宜。

4.设计水闸和泵站:根据引水系统的需要,设计水闸和泵站的位置、规模和工艺参数等,以保证水流的控制和调节。

5.设计沉砂池和水库:为了防止水中的泥沙对引水系统造成堵塞和损害,需要设计沉砂池和水库等设施,对泥沙进行沉淀和处理。

6.进行水力计算:根据引水系统的参数和水力学原理,进行水力计算,包括水流速度、水头损失、水力坡降等参数的计算和分析。

7.进行结构设计:根据引水系统的参数和水力计算结果,进行引水渠道、水闸和泵站等结构的设计,包括选材、强度计算和施工方案等。

8.进行安全评估:对引水系统进行安全评估,包括水灾风险评估、设备可靠性评估和施工安全评估等,确保引水系统的安全运行。

三、设计要点1.合理选择引水方式:根据水源的条件和工程要求,选择合适的引水方式,以降低成本和提高效率。

2.合理布置引水渠道:引水渠道的线路应尽量避免过高或过低的地形,以减少水力损失和防止泄漏。

3.合理配置水闸和泵站:根据引水系统的需要,合理配置水闸和泵站,以满足对水流的控制和调节。

水电站课程设计计算书

水电站课程设计计算书

水电站厂房课程设计计算书1.蜗壳单线图的绘制 1.1 蜗壳的型式根据给定的基本资料和设计依据,电站设计水头Hp=46.2m ,水轮机型号 :HL220-LJ-225。

可知采用金属蜗壳。

又Hp=46.2m>40m ,满足《水电站》(第4版)P32页对于蜗壳型式选择的要求。

1.2 蜗壳主要参数的选择金属蜗壳的断面形状为圆形,根据《水电站》(第4版)P35页可知:为了获得良好的水力性能及考虑到其结构和加工工艺条件的限制,一般取蜗壳的包角为0345ϕ=。

通过计算得出最大引用流量max Q 值,计算如下: ○1水轮机额定出力:15000156250.96frfN N KW η=== 式中:60000150004f KWN KW ==,0.96f η=。

○2'31max 3322221156251.11 1.159.819.812.2546.20.904rp N Q m s D H η===<⨯⨯⨯(水轮机在该工况下单位流量''311 1.15M Q Q m s ==由表3-6查得)。

○3'23max1max 1 1.11 2.2538.2Q Q D m s ==⨯=。

由蜗壳进口断面流量max 0360c Q Q ϕ=,得334538.236.61/360c Q m s =⨯=。

蜗壳进口断面平均流速V c 由《水电站》(第4版)P36页图2-8(a )查得,5.6/c V m s =。

由《水力机械》第二版,水利水电出版社)附录二表5查得:3250,3850b a D mm D mm ==,则1625 1.625,1925 1.925b a r mm m r mm m ====。

其中:b D —座环内径;a D —座环外径;b r —座环内半径;a r —座环外半径。

座环示意图如下图所示:图1 座环示意图(单位:mm )1.3 蜗壳的水力计算(1)对于蜗壳进口断面(断面0): 断面面积 35375.66.561.36m V Q F c c c ===断面的半径 m F cc 443.1537.6===ππρ从轴中心到蜗壳外缘的半径:m r R c a c 811.4443.12925.12=⨯+=+=ρ 即断面0:m 443.10=ρ,m r r a 925.10==,m R R c 811.40==。

木加甲一级水电站引水系统设计

木加甲一级水电站引水系统设计

木加甲一级水电站引水系统设计摘要:木加甲河为怒江右岸一级支流,属高黎贡山片区,工程区域地质岩性以花岗斑岩,花岗片麻岩为主。

木加甲一级电站为引水式电站,主要建筑物为首部枢纽,引水隧洞,洞内前池,压力钢管道,厂房等组成。

引水隧洞总长为5960m,其中无压隧洞长4790m,有压隧洞长1170m。

电站设计水头482m,属高水头水电站。

主题词:木加甲水电站引水系统引水隧洞压力管道木加甲一级水电站位于云南省怒江傈僳族自治州福贡县木加甲乡境内,为径流引水式电站。

木加甲河位于怒江右岸,为怒江一级支流,发源于高黎贡山山脉脊部,流域位于东经98°41′~98°49′、北纬27°24′30″~27°29′之间。

木加甲河流域水系主要由干流木来戛洛河和主要支流开洼洛河、急苏洛河组成。

木加甲一级电站在分别在三条河道2000m高程处建坝引水发电,电站取水口以上集雨面积125.65km2,取水口多年平均流量7.37m3/s。

电站为无调节径流式电站,设计水头482m,设计引用流量15.2 m3/s,总装机容量60MW,多年平均发电量2.7亿kw.h。

木加甲一级水电站为径流引水式电站,共设3座首部枢纽,分别从开洼洛河、木来戛洛河、急苏洛河上取水。

1#首部枢纽位于开洼洛河,通过1#隧洞引水至木来戛洛河;2#首部枢纽位于木来戛洛河,通过2#隧洞引水至前池;3#首部枢纽位于急苏洛河,通过3#隧洞引水至前池。

前池位于4#有压隧洞前段,为洞内前池。

前池汇水后通过4#有压隧洞和压力钢管引水至厂房发电。

电站厂房位于木加甲河右岸,布置两台冲击式机组,装机容量2×30MW。

工程总体布置如下图:首部枢纽和进水口设计木加甲一级水电站共布置3个首部枢纽,分别位于木来戛洛河、开洼洛河、急苏洛河上。

首部枢纽均属于低坝挡水,最大坝高不超过15m,首部正常蓄水位与大坝溢流堰堰顶高程一致。

进水口为无压开敞式进水口,设计引水流量均较小。

探讨水电站发电引水系统的设计

探讨水电站发电引水系统的设计

探讨水电站发电引水系统的设计1引水隧洞洞径的确定根据该工程资料,设计水电站最大引水发电流量为31m3/s,故该引水隧洞需满足31m3/s的过流能力。

该工程采用深式进水口的有压引水隧洞,隧洞断面采用圆形断面,因为圆形断面的水流条件和受力条件都较为有利。

在装机流量一定的情况下,隧洞断面尺寸取决于洞内流速,流速越大所需要断面尺寸愈小,但水头损失愈大,而且流速越大,对工程地质要求也越高。

该工程为小(1)型工程,对于确定隧洞断面尺寸,采用经济流速法,目前我国水电站有压隧洞的经济流速一般为2.5~4.0m/s。

经计算得出,该工程有压隧洞的洞径为3.5m。

1.1进水口设计1.1.1进水口高程的确定该工程采用深式进水口,为避免河床淤沙进入隧洞,进水口底板高程须比河床的淤沙高程高出0.5~1m,该工程的淤沙高程为867.4m。

另外,为使引水隧洞形成稳定的有压流,避免出现漏斗状吸气漩涡,进水口需要一定的淹没深度,以闸门断面为计算断面(闸门采用矩形断面,宽、高均与隧洞洞经相等)。

经计算得出临界水深s为2.53m。

进水口除了要避免出现漩涡和吸气漏斗,尚应保证沿线不出现负压,对于后者,计算时可以简化取沿线洞顶处的水压力有不小于2.0m的水头。

经计算得,进水口闸门段顶部高程應在873.08m(875.61-2.53﹦873.08m)以下,进水口底部高程应在867.4m以上;而进水口位置越低,电站在正常运行时隧洞内水压力越大,但电站可利用库容也越大;综合考虑以上因素,取进水口底部高程为868.0m,则闸门顶部高程为871.5m。

则水库允许的最低水面高程h 为:h=871.5+2.53=874.03m。

1.1.2进水口进口段设计该隧洞进水口均匀断面为矩形断面,且采用宽高相等,均等于隧洞直径的尺寸。

那么,该进水口采用顶板及左右三面收缩的矩形断面,三面的收缩曲线为相同的1/4椭圆曲线,收缩断面方程式见公式(1)。

(1)为了使水流平顺地流入引水道,减少进口处水头损失,进口段的流速一般不宜太大,一般控制在1.50m/s左右。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

某水电站引水系统设计该水电站所在河流中下游地段侧向侵蚀作用十分强烈,形成迂回曲折的蛇形地貌,为修建引水式水电站提供了有利的地形条件。

某水电站的引水隧洞和厂房位于南天门岭,此处分水岭宽约800m ,而两端河水位差达13m ,本区地层主要是前震旦系的黑云母混合片麻岩通过,沿洞线未发现断层,且洞线顶上部新鲜岩体厚达80~160m ,深部裂隙已趋闭合因此工程地质条件较好,洞线前部通过两条较大岩脉均大致与洞线正交,一条为石英斑岩,宽30~40m ,另一条为正常闪岩,宽26~30m ,岩脉与围岩接触良好,厂房后山坡地形坡度约50º~60º,坡高40m 左右,后山坡边坡基本稳定。

7.1隧洞洞径及洞线选择布置考虑了地质条件、地形条件、施工条件与水力条件,由于施工技术条件的限制,引水洞径不宜大于12m ,因此,选择两条引水隧洞,四条压力管道分别给每台机组供水,供水方式为单元供水(即单管单机),钢管轴线与厂房轴线相垂直,这样可以使水流平顺,减小水头损失。

7.1.1有压引水隧洞洞径计算由于水轮机选型部分已知单机最大引用流量:3max 124.91/Q m s = 隧洞断面面积:max 2e Q A V = 24A D π= 式中: 4.2/e V m s = 由上式得:2max 22124.9159.484.2e Q A m V ⨯===则洞径8.7D m === 本设计中取9.0D m =。

7.1.2洞线选择原则1)地质条件:尽可能位于完整坚硬的岩石中,避开岩体软弱、山岩压力大、地下水充沛及岩石破碎带、地震区。

必须穿越软弱夹层或断层时尽可能正交布置。

隧洞通过层状岩体时洞线与岩层走向夹角尽可能大,以利于围岩稳定,提高承载力。

2)地形条件:出口处的地形宜陡,进口段洞口围岩厚度宜大于一倍开挖洞径,一般要求周围坚固厚度不小于三倍开挖洞径。

3)施工条件:便于施工。

4)水力条件:转弯半径大于五倍洞径,转弯面不宜大于60º7.2 进水口设计7.2.1进水口型式的选择在水利水电工程中,为发电供水等综合利用的目的,往往需要在水位便服的天然河道,湖泊或人工水库和调节池中取水,深式进水口及有压进水口为了适应这一需要而设置的一种水工建筑物,深式进水口应满足水工建筑物的一般要求,即结构安全,布置简单,施工方便,造价低廉,运行可靠并适应注意美观。

其组成为:①行进段②进口段③闸门段④闸门渐变段⑤操作平台和交通桥。

太平哨水电站为有压进水式,岸边地质条件较好,因此选择深式进水口中的隧洞式进水口为宜。

深式进水口主要的形式:隧洞式进水口,其进口段和闸门井均从山体中开凿而成适应于进口地质条件良好,扩大断面和开挖闸门竖井均不会引起塌方,坡度适中。

洞式进水口充分利用了岩石作用,钢筋混凝土工程量较小,这一种既经济又安全的结构形式。

①压力墙进水口:其进口段和闸门段均布置在山体之外适用于洞口附近地质条件较差或不宜采用洞式进水口时不宜扩大开挖坡度较缓时。

②坝式进水口:其基本特征是进水口附近在坝体上适用于坝后时厂房或河床式水电站厂房的上游坝体内,进水口与坝体成统一的整体。

③塔式进水口:适用于水电站厂房布置在河床坝后,拦河坝采用当地材料坝或水库地质条件较差,坡度较平缓不利于岸坡上修建进水口。

7.2.2进水口高程确定该水电站是有压式进水,岸边地质条件较好,选择深式进水口,洞室底板高程应在水库淤积高程以上 1.0~1.5m ,为避免进水口前出现漩涡和吸气漏斗,需有一定淹没水深。

所需要的淹没深度:12kp h cva式中:kp h ——无吸漩涡的临界淹没水深c ——经验系数,一般取0.55~0.73,对称进水时取小值,侧面进水时取大值,本设计取0.7c =v ——闸门断面的水流流速,由于闸门面积比引水隧洞断面面积稍大,则其流速比引水隧洞小,本设计取4/v m s =a ——闸门孔口高度,本设计取9.0a m = 由上式得:11220.749.08.4kp h cva m ==⨯⨯=综合分析并考虑到风浪影响,取10.0kp h m =则进水口底板高程:190.010.09.0171.0kp h a m ∇=∇--=--=死底7.2.3进水口尺寸的拟定1)进口段:其作用是连接拦污栅与闸门段。

根据国内外实践经验,进口段顶板曲线采用1/4椭圆曲线,曲线方程为:22221x y a b+= 式中:a ——椭圆曲线长半轴,一般取(1~1.5)D ,本设计取10a m =b ——椭圆曲线短半轴,一般取(1/3~1/2)D ,本设计取3b m =一般情况下椭圆曲线/34a b =,当引用流量及流速不大时,也可采用圆弧曲线代替,重要的工程应根据模型试验决定进口曲线,进口流速不宜太大。

进口面积不小于下式计算值:'/cos A A c θ=• 式中:A ——进口断面面积A '——引水断面面积(按渐变段末端)则:222/4 3.149/463.6A D m π'==⨯=θ——引水道中心线水平面间夹角,本设计取0θ=︒c ——收缩系数,一般取0.6~0.7,本设计取0.65c =由上式得:'2/cos 63.6/0.65cos 097.85A A c m θ=•=⨯=2)闸门段:闸门段是引水道和进口段的连接段,闸门口采用矩形,考虑进口的结构稳定性,进水口设支墩,布置两孔,高4.5m ,宽9.5m 的矩形平板闸门并相应设两孔检修闸门,检修闸门与工作闸门间距取2m 。

3)渐变段:渐变段是闸门段到压力引水管道的过渡段,其断面面积和流速应逐渐变化,使水流不产生漏流并尽量减小水头损失。

由矩形变成圆形通常采用四角加圆角过渡圆弧的中心位置和圆角半径r 均按直线变化,渐变段长度根据经验,一般为压力隧洞直径的1.5~2.0倍,收缩角不超过10º,以6~9º为宜。

本设计取其长度为16m 。

4)通气孔和进人孔:通气孔设在事故闸门之后其功用是当引水道充水时可以排气,当事故闸门关闭放空引水道时,可以补气以防出现有害真空。

通气孔面积按下式计算:2a aQ A v = 式中:a Q ——进水口进水量,一般为最大引用流量124.91m 3/sa v ——通气孔进气流速,一般为30~50m/s ,本设计取40m/s 由上式得:222124.91 6.2540a a Q A m v ⨯=== 为了便于进水口及压力水道的维护与检修,需设进人孔。

本设计采用通气孔兼作进人孔。

7.2.4进口设备1)拦污栅设计:为防止结冰及漂浮物堵塞和进入进水口,进水口前需设拦污栅,拦污栅在平面上布置或直线上面为垂直布置,即倾角为90º,过栅的水流净流速应尽量小,以减小水头损失和清污困难,不宜大于1m/s ,本设计取过栅流速为1m/s 。

则拦污栅净面积为:222124.91249.821.0a a Q A m v ⨯=== 2)闸门设计:工作闸门:选用平板闸门,闸门高度应大于洞径,本设计取9.5m ,闸门宽度一般等于或小于压力管道直径,由于进水口设中墩,闸门宽度取4.5m ,门厚0.8m ,要求在静水中开启,动水中关闭。

检修闸门:采用平板闸门,尺寸同工作闸门,要求在静水中开启,静水中关闭。

检修闸门与工作闸门之间的距离很近,为了便于检修,要求2~4m 的间距,本设计取为2m ,布置在同一闸室内,在闸门井上方布置一个共用的启闭机房。

7.3 引水隧洞7.3.1 线路与坡度的确定引水隧洞的路线选择是设计中的关键,它关系到隧洞的造价,施工难易,工程进度,运行可靠性等方面,选择洞线的一般原则和要求为:①隧洞的路线应尽量避免不利的地质构造,围岩可能不稳定及地下水位高,渗水量丰富的地段,以减小作用于衬砌上的围岩压力和外水压力,洞线要与岩层层面、构造破碎带和节理面有较大交角,在高地应力区应使洞线与最大水平地应力方向尽量一致,以减小隧洞侧向围岩压力,隧洞的进出口在开挖过程中容易塌方,易受地震破坏,应选在覆盖层风化较浅,岩石比较坚固完整的地段。

②洞线在平面上求短直,这样既可以减少工程量,方便施工。

有良好的水流条件,若因地形,地质,枢纽布置等必须转弯时应以曲线相连。

③隧洞应有一定的埋藏深度,包括:洞顶覆盖厚度和傍山隧洞岸边一侧的岩体厚度,统称为围岩厚度,围岩厚度涉及开挖时的成洞条件,运行中在内外水压力作用下围岩的稳定性,结构计算的边界条件和工程造价等。

④隧洞的纵坡应根据运用要求,上下游衔接,施工和检修等因素,综合分析比较后确定,无压隧洞的纵坡应大于临界坡度,有压隧洞的纵坡主要取决于进口高程,要求全线洞顶在最不利条件下保持不小于2m的压力水头。

有压隧洞不宜采用平坡或反坡,因为其不利于检修和排水。

⑤对于长隧洞,选择洞线时还应注意地形,地质条件。

布置一些施工之洞,斜井,竖井,以便增加工作面,有利于改善施工条件加快施工进度。

太平哨水电站根据上面原则和要求,选择了两条引水隧洞,所经路线地质构造良好,洞线在平面上短直,即减小工程造价、方便施工、具有良好的水流条件,隧洞有一定的埋深,围岩厚度大于3倍洞径。

为了利于检修与排水,隧洞纵坡率为2%,其工作闸门与检修闸门设在进口,隧洞在平面上有弯角,对于低流隧洞曲率半径不宜小于5倍的洞径,现取6倍的洞径,即54m,转角不宜大于60°,取30°,具体布置见坝区引水系统平面布置图。

7.3.2 断面形式与断面尺寸隧洞断面形式取决于水流流态、地质条件、施工条件及运行条件等,有压隧洞一般采用圆形断面,原因是圆形断面的水流条件受力条件都较为有利,本设计中隧洞断面采用圆形,直径为9m。

7.3.3 洞身衬砌为了保证水工隧洞的安全有效运行通常需要对隧洞进行衬砌,衬砌作用是①限制围岩变形,保证围岩稳定。

②承受围岩压力、内水压力等负荷。

③防止渗漏。

④保证岩石免受水流,空气,温度,干湿变化等充蚀破坏作用。

⑤减小表面糙率。

隧洞衬砌的主要类型①平整衬砌:亦称护面或抹平衬砌,它不承受外力只起减小隧洞表面糙率,防止渗漏和保护岩石不受风化作用平整衬砌适应于围岩条件较好,能自行稳定且水头,流速较低的情况下。

②单层衬砌:由混凝土、钢筋混凝土或浆砌石等组成,适用于中等地质条件断面较大,水头及流速较高情况。

根据工程经验,混凝土及钢筋混凝土厚度,一般约为洞径或洞宽的1/8-1/12且不小于25cm,由衬砌最终计算确定。

③组合式衬砌:由内层的钢板,钢筋网喷浆,外层为混凝土或钢筋混凝土,有顶拱为混凝土边墙或底板为浆砌石和顶拱边墙喷锚后再进行混凝土或钢筋混凝土等形式。

浑江太平哨水电站,为了保证引水隧洞安全有效运行,限制围岩变形,保证围岩稳定,承受围岩压力,内水压力等荷载,防止渗漏,保证岩石免受水流、空气、温度、干湿变化等冲蚀破坏作用,减小表面粗糙,需要对其进行衬砌,根据工程经验,采用单层衬砌形式,混凝土厚度为1m。

相关文档
最新文档