等腰三角形中的分类讨论好题强烈推荐

合集下载

专题11 等腰三角形中的分类讨论 (原卷版)

专题11 等腰三角形中的分类讨论 (原卷版)

专题11 等腰三角形中的分类讨论【知识点睛】❖ 在等腰三角形中,没有明确指明边是腰还是底时,要进行分类讨论,且求出未知边的长后,一定要看这三边能否组成三角形;❖ 没有明确指明角是顶角或底角时,也要进行分类讨论 设等腰三角形中有一个角为α时 对应结论 当α为顶角时底角=α2190-︒ 当α为直角或钝角时不需要分类讨论,该角必为顶角 当α为锐角时α可以为顶角;也可以为底角 当等腰三角形的一个外角为α时对应结论 若α为锐角、直角α必为顶角的外角 若α为钝角α可以是顶角的外角,也可以是底角的外角❖ 动态环境下的等腰三角形存在性问题【类题训练】1.已知△ABC 是等腰三角形,它的周长为20cm ,一条边长6cm ,那么腰长是 cm .2.(1)等腰三角形中有一个角是70°,则它的顶角是 .(2)等腰三角形中有一个角是100°,则它的另两个角是 .(3)等腰三角形的一个内角为70°,它一腰上的高与底边所夹的度数为 .3.如果等腰三角形的周长是35cm ,一腰上中线把三角形分成两个三角形,其周长之差是4cm ,则这个等腰三角形的底边长是 .4.等腰三角形一腰上的高与另一腰所成的夹角为45°,则这个等腰三角形的顶角的度数为 .5.如图,已知直角三角形ABC中,∠ACB=90°,∠CAB=60°,在直线BC或AC上取一点P,使得△ABP为等腰三角形,则符合条件的点有()A.4个B.5个C.6个D.7个6.用一根长为21厘米的铁丝围成一个三条边长均为整数厘米的等腰三角形,则方案的种数为()A.5B.6C.7D.87.如图,∠AOB=60°,OC平分∠AOB,如果射线OA上的点E满足△OCE是等腰三角形,那么∠OEC的度数为.8.如图,M,N是∠AOB的边OA上的两个点(OM<ON),∠AOB=30°,OM=a,MN =4.若边OB上有且只有1个点P,满足△PMN是等腰三角形,则a的取值范围是.9.如图,是四张形状不同的纸片,用剪刀沿一条直线将它们分别剪开(只允许剪一次),不能够得到两个等腰三角形纸片的是()A.B.C.D.10.已知△ABC的三条边长分别为3,4,6,在△ABC所在平面内画一条直线,将△ABC 分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()A.5条B.6条C.7条D.8条11.如图,△ABC中,∠B=60°,∠C=90°,在射线BA上找一点D,使△ACD为等腰三角形,则∠ADC的度数为.12.如图,等边△ABC的边长为6,点P沿△ABC的边从A→B→C运动,以AP为边作等边△APQ,且点Q在直线AB下方,当点P、Q运动到使△BPQ是等腰三角形时,点Q 运动路线的长为.13.如图,在△ABC中,∠ACB=2∠A,过点C的直线能将△ABC分成两个等腰三角形,则∠A的度数为.14.已知等边△ABC的边长为3,点E在直线AB上,点D在直线CB上,且ED=EC,若AE=6,则CD的长为.15.△ABC的高AD、BE所在的直线交于点M,若BM=AC,求∠ABC的度数.16.已知△ABC中,∠ACB=90°,AC=BC,过点C作直线l,BE⊥l于E,AD⊥l于D.若BE=2,AD=6,求DE的长.17.如图,△ABC中,∠ABC=∠ACB,点D在BC所在的直线上,点E在射线AC上,且AD=AE,连接DE.(1)如图①,若∠B=∠C=35°,∠BAD=80°,求∠CDE的度数;(2)如图②,若∠ABC=∠ACB=75°,∠CDE=18°,求∠BAD的度数;(3)当点D在直线BC上(不与点B、C重合)运动时,试探究∠BAD与∠CDE的数量关系,并说明理由.18.定义:如果两条线段将一个三角形分成3个等腰三角形,我们把这两条线段叫做这个三角形的三分线.(1)图①是顶角为36°的等腰三角形,这个三角形的三分线已经画出,请你在图②中用不同于图①的方法画出顶角为36°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数.(若两种方法分得的三角形成3对全等三角形,则视为同一种)(2)图③是顶角为45°的等腰三角形,请你在图③中画出顶角为45°的等腰三角形的三分线,并标注每个等腰三角形顶角的度数.(3)△ABC中,∠B=30°,AD和DE是△ABC的三分线,点D在BC边上,点E在AC边上,且AD=BD,DE=CE,设∠C=x°,则x所有可能的值为.19.如图,在四边形ABCD中,AB∥CD,AE交BC于点P,交DC的延长线于点E,点P 为AE的中点.(1)求证:点P也是BC的中点;(2)若CB⊥AB,且DP=,CD=,AB=4,求AP的长;(3)在(2)的条件下,若线段AE上有一点Q,使得△ABQ是等腰三角形,求AQ的长.。

八年级数学从等腰三角形看分类讨论专题练习(含答案)

八年级数学从等腰三角形看分类讨论专题练习(含答案)

八年级数学从等腰三角形看分类讨论专题练习试卷简介:分类讨论在中招试题中十分常见,这类题目不仅考查了学生对数学基础知识和方法的掌握,也考查了学生思维的深刻度。

而解决这类问题时,因考虑不全导致的失分现象十分严重,针对这个问题,本套题目以等腰三角形为依托,详细介绍了何时分类、如何分类的思想与方法,希望能对大家有所启发。

学习建议:分类不全面、不知如何分类是同学们在解决分类讨论型问题时的常见问题,如何才能做到最终结果的不重不漏,同学们需要重点注意一下几点:1、熟悉不同图形间的差异,并根据图形做出分类的初始判断;2、准确把握题目告知的信息,从问题中找到分类的依据;3、了解常见问题的分类准则;4、永远比其他人多想一步。

一、单选题(共12道,每道10分)1.某等腰三角形的两条边长分别为3cm和6cm,则它的周长为()A.9cmB.12cmC.15cmD.12cm或15cm答案:C解题思路:此题属于腰或底边不确定时注意分类讨论,两条边长轮流做三角形的腰长:(1)6cm做腰长时(如图):周长为6+6+3=15(cm)(2)3cm做腰长时:周长为3+3+6=12(cm)验证,第一种情况:最短边+较短边>最长边(3+6>6),可以构成三角形. 第二种情况:由于3+3=6,不符合最短边+较短边>最长边,构不成三角形. 综上:C选项正确试题难度:一颗星知识点:三角形三边关系2.若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为()A.50°B.80°C.65°或50°D.50°或80°答案:D解题思路:解题思路:此题属于角不确定时注意50°可能是顶角,可能是底角:(1)50°为顶角时(如图),这个等腰三角形的顶角为50°(2)50°为底角时(如图),可知等腰三角形的两个底角相等,均为50°,由三角形内角和为180°,可求得顶角度数为:80°.综上,D选项正确试题难度:一颗星知识点:等腰三角形的性质3.等腰三角形的两角之差为30°,求该三角形顶角的度数为()A.80°B.40°C.40°或80°D.50°或80°答案:C解题思路:此题属于角不确定时,设顶角为x度,底角为y度,注意分类讨论:(1)顶角-底角=30°此时,满足方程组:解得:(2)底角-顶角=30°,此时满足方程组解得:综上:顶角度数为40°或80°,所以,C 选项正确试题难度:二颗星知识点:等腰三角形的性质4. 如图,在等腰三角形ABC中,AB=AC,∠A=20°.线段AB的垂直平分线交AB于D,交AC于E,连结BE,则∠CBE等于()A.80°B.70°C.60°D.50°答案:C解题思路:此题直接给出了图形,所以不用再分类讨论了.由三角形内角和为180°得∠A+∠ABC+∠C=180°,已知∠A=20°得,∠ABC+∠A=160°,又因为三角形ABC为等腰三角形,即∠ABC=∠C,所以∠ABC=80°,因为DE为线段AB的垂直平分线,所以∠A=∠ABE=20°,从而∠CBE=∠ABC-∠ABE=60°.所以:C选项正确试题难度:二颗星知识点:等腰三角形的性质5. 等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为()A.60°B.120°C.60°或150°D.60°或120°答案:D解题思路:此题属于高的位置关系不确定时, 要考虑两种情况(1)(如图)已知△ABC中AB=AC,BD为AC线的高,即∠ABD=30°则∠A=90°-30°=60°(2)(如图)已知△ABC 中AB=AC,BD垂直于AC交CA的延长线于点D,其中∠ABD=30°,则∠ABD=60°,从而∠BAC=180°-60°=120°综上,顶角度数为60°或120°,D选项正确试题难度:二颗星知识点:等腰三角形的性质6. 在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为()A.7B.11C.7或11D.15答案:C解题思路:先根据题意做出图形,如图:设AD长为x,BC长为y则CD的长为x,AB为2x,则中线BD分三角形周长两部分为x+2x=3x,x+y从而应有两种情况,即:或解得或最后要检验:最短边+较短边>第三边,此题经过检验,均符合题意,所以底边长为7或11,答案为C试题难度:二颗星知识点:等腰三角形的性质7. 在△ABC中,AB=AC,AB的中垂线与AC所在直线相交所得的锐角为50°,则底角∠B=( )A.70°B.50°C.70°或20°D.20°答案:C解题思路:根据题意作图:题干中说的是AB的中垂线与AC所在直线相交所得的锐角为50°,所以分两种情况:(1)如图与AC线段相交所得锐角为50°,即∠1=50°,则此时∠A=40°,∠B=∠C=(180°-40°)/2=70°(2)如图与AC线段所在直线相交所得锐角为50°,即∠1=50°,则此时∠BAE=40°,所以,∠B=∠C=(180°-140°)/2= 20°综上,C选项正确.试题难度:三颗星知识点:等腰三角形的性质8.等腰三角形的周长是16,其中两边之差为2,求它的腰长为()A.B.6D.6或答案:D解题思路:设腰长为x,底边长为y,因不知腰长与底边长的大小关系,注意分类讨论:(1)x>y时,此时有以下方程组成立:,解得:(2)x<y时,此时有以下方程组成立:,解得:验证:最短边+较短边>最长边,由4+4>6知第一种情况成立,即:腰长为6. 由+>知第二种情况也成立,即:腰长为. 综上:答案为D试题难度:三颗星知识点:等腰三角形的性质9.已知线段AB,以点A和点B为其中两个点作位置不同的等腰直角三角形,一共可以作( )A.2个B.4个C.6个D.8个答案:C解题思路:此题属于腰或底边不确定时,分两种情况:(1)线段AB为腰时,此时如图:有等腰直角三角形ABC,等腰直角三角形ABD,等腰直角三角形ABG,等腰直角三角形ABF (2)线段AB为底边时,此时如图:有等腰三角形ABI,有等腰三角形ABK 综上共有6个,从而答案为C试题难度:三颗星知识点:等腰三角形的性质10. 等腰三角形周长是29,其中一边是7,则等腰三角形的底边长是()A.15B.15或7C.7D.11答案:C解题思路:此题属于腰或底边不确定时,分两种情况讨论(1)7为底时,腰=(29-7)/2=11 (2)7为腰时,底=29-7-7=15,此时7+7=14小于15不满足构成三角形的条件,舍去正确答案:C试题难度:二颗星知识点:等腰三角形的性质11. 已知一等腰三角形的两个内角的度数之比为1:4,求等腰三角形底角的度数()A.30°B.80°C.30°或80°D.90°答案:C解题思路:此题属于角不确定时(1)顶角与底角之比为1:4,由三角形内角和定理可得底角+底角+顶角=180°求得底角=80°(2)底角与顶角之比为1:4,同样可求得底角=30°正确答案:C试题难度:二颗星知识点:等腰三角形的性质12.等腰三角形一腰上的高与一边的夹角为50°,则该等腰三角形的底角度数()A.50°B.40°或20°或70°C.70°或20°D.40°或70°答案:B解题思路:此题属于高的位置关系不确定时,如图图一不符合实际,舍去正确答案:B试题难度:三颗星知识点:等腰三角形的性质。

“分类讨论”在等腰三角形中的应用

“分类讨论”在等腰三角形中的应用

“分类讨论”在等腰三角形中的应用在最近几年的全国各地中考试卷中,出现了以等腰三角形为背景,考查学生分类讨论能力的试题,为帮助同学们提高对此类问题的解题能力,现列举几例:一、要讨论谁是底边或腰长例1、已知一个等腰三角形的一边长为5,另一边长为7,则这个等腰三角形的周长()A. 12 B 17 C 19 D 17或19分析:题中并未说明5或7是底边,还是腰,应分情况讨论.解:当等腰三角形的一腰长为5时,此时7为底边,满足任意两边之和大于第三边,所以满足题意的三角形的周长为5+5+7=17;当等腰三角形的一腰长为7时,此时5为底边,也满足任意两边之和大于第三边,故满足题意的三角形的周长为7+7+5=19.综上知选D.例2、有一个等腰三角形,三边分别是3x-2,4x-3,6-2x,求等腰三角形的周长.分析:已知等腰三角形三边长,说明有两边相等,但不知谁是腰,必须分三种情况分析.解:(1)当3x-2=4x-3时,即x=1,则三边为1,1,4,由于1+1<4,所以不成立;(2)当3x-2=6-2x时,即85x=,则三边长为141714555、、,由于141417555+>,所以成立;(3)当4x-3=6-2x时,即x=1.5,则三边为2.5,3,3,由于2.5+3>3,所以成立.由上可知等腰三角形周长为9或8.5.说明:如果等腰三角形的腰长为A,底边长为B,则有222b b aa+<<.二、要讨论腰与底谁较大例3、一等腰三角形的周长为20cm,从底边上的一个顶点引腰的中线,分三角形周长为两部分,其中一部分比另一部分长2cm,求腰长.分析:题目中的条件是一部分比另一部分长2cm,这里可能是腰比底长,也可能是底比腰长,应分两种情况讨论,因为是中线,周长分成的两部分之差就是腰长与底边长之差.解:不妨设腰长为x cm,底边长为y cm ,根据题意有(1)当腰长大于底边时,有2220x yx y-=⎧⎨+=⎩,解得221633x y==、;(2)当腰长小于底边时,有2220y xx y-=⎧⎨+=⎩,解得68x y==、;因为两种情形都符合三角形的三边关系定理,故腰长为223cm或6cm.说明:分类讨论后,要用三角形三边关系定理来判断所给三边能否构成三角形,从而避免造成错解.三、要讨论谁是底角或顶角例4、(1)等腰三角形的一个角是30°,求底角.(2)等腰三角形的一个角是100°,求底角.分析:等腰三角形的一个角可能指底角,也可能指顶角,须分情况讨论,但顶角可以是锐有、直角、钝角,而底角只能是锐角.解:(1)当30°是底角时,底角即为30°;当30°是顶角时,底角为180302︒-︒,即为75°;(2)因100°只能是顶角,所以底角是1801002︒-︒,即为40°.说明:等腰三角形的底角只能为锐角,不能为直角、钝角,但顶角可以为锐角、直角、钝角.四、要讨论高在三角形内部或外部例5、已知等腰三角形ABC中,BC边上的高12AD BC=,求∠BAC的度数.分析:题中未交代哪条边是底边,哪条边是腰,所以必须分三种情况讨论.解:(1)当BC为底边时,则D是BC中点,△ABC为等腰直角三角形∠BAC=90°;(2)当BC为腰,且高AD在△ABC内部时,1122AD BC AB==,∠B=30°,所以∠BAC=75°;(3)当BC为腰,且高AD在△ABC的外部时,1122AD BC AB==,∠DBA=30°;所以∠BAC=15°.综上所述∠BAC的度数可以为15°、75°、90°.说明:由于题目的图形未画出,因此考虑情况时要周全,不要出现漏解.试一试:1、在活动课上,小红已有两根长为4cm、8cm的小木棒,现打算拼一个等腰三角形,则小红应取的第三根小木棒长是_____Cm.2、在平面直角坐标系中,已知点为A(-2,0),B(2,0)画出等腰三角形ABC(画出一个即可),并写出你画出的ABC的顶点C的坐标.3、下面是数学课堂的一个学习片段,,阅读后, 请回答下面的问题:学习等腰三角形有关内容后,张老师请同学们交流讨论这样一个问题:“已知等腰三角形ABC的角A等于30°,请你求出其余两角”.同学们经片刻的思考与交流后,李明同学举手说:“其余两角是30°和120°”;王华同学说:“其余两角是75°和75°” ,还有一些同学也提出了不同的看法……(1)假如你也在课堂中,你的意见如何? 为什么?(2)通过上面数学问题的讨论, 你有什么感受? (用一句话表示)“分类讨论”在等腰三角形中的应用当面临的问题不宜用一种方法处理或同一种形式叙述时,我们就要想到“分类讨论”——“分而治之,各个击破”.下面就让“分类讨论”思想在等腰三角形中“大放光彩”吧!例1 等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为()A、60°B、120°C、60°或150°D、60°或120°分析:分两种情况,①当顶角是锐角时,如图1,∵∠ABD=30°,∠ADB=90°,∴∠A=60°;②当顶角是钝角时,如图2,∵∠ABD=30°,∠ADB=90°,∴∠BAD=60°,∴∠BAC =120°.所以顶角度数为60°或120°,所以选D .例2 等腰三角形的周长为13,其中一边长为3,则该等腰三角形的底边长为( ) A 、7 B 、3 C 、5或3 D 、5分析:长为3的边可能是底边,也可能是腰,因此有两种情况,①若长为3的边为底边,则该等腰三角形的底边长为3; ②若长为3的边为腰,则该等腰三角形的底边长为(13-3)÷2=5.故选C .说明:边长为3的边、可能是底边,不要只认为它是腰.例3 已知点A 和点B ,以点A 和点B 为其中两个点作位置不同的等腰直角三角形,一共可以作出( )A 、2个B 、4个C 、6个D 、8个分析:如图3,以线段AB 为底边可作出两个等腰直角三角形,以AB 为腰可作出4个等腰直角三角形,因此,共可作出6个等腰直角三角形,故选C . 说明:解题时容易忽视为腰长的情况,因此,分析问题一定要用心,充分考虑各种情形. 例4 如图4,在等边△ABC 所在的平面内求一点P ,使△P AB 、△PBC 、△P AC 都是的等腰三角形,你能找到几个这样的点?画图描述它们的位置.分析:如图4,△ABC 三条边的垂直平分线的交点1p 满足条件,分别以点A 、点B 为圆心,AB 为半径画圆弧,交AC 的垂直平分线于2p 、3p 两点,则△、、、AC P BC P AB P 222∆∆、、、AC P BC P AB P 333∆∆也是等腰三角形,同样可以在AB 、BC 的垂直平分线上再找到4个点P ,使△P AB 、△PBC 、△P AC 是等腰三角形.所以共有7个点.画出的图形如图4.说明:此题乍一看只能确定在△ABC 内一点,关键要注意三个等腰三角形的腰是哪两条边.分类讨论探究题既是中考热点又是考生易错点,克服方法是解题时常提醒自己:“还有其它情况吗?”切记!…图1B 图2 图3B。

等腰三角形的分类讨论

等腰三角形的分类讨论

等腰三角形的分类讨论模块一等腰三角形的分类讨论例1(1)等腰三角形的一边长为3,一边长为7,那么它的周长是。

(2)等腰三角形的一边长为4,周长为9,那么它的腰长是。

(3)已知等腰三角形一腰上的中线将它的周长分为6和12两部分,求此等腰三角形的腰长。

练习(1)已知一个等腰三角形两内角的度数之比为1:2,求这个等腰三角形顶角的度数。

(2)若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为。

例2(1)若等腰三角形一腰上的高和另一腰的夹角为25°,求该三角形的底角的度数。

(2)(2016—2017武昌区八上期中第16题)已知△ABC是等腰三角形,由点A作BC边上的高恰好等于BC的一半,则∠BAC的度数为。

练习例3如图,在△ABC 中,∠ABC=90°,∠A=30°.将△ABC 绕B 点逆时针旋转α(0<α≤60°)角度后得到△A ’BC ’,A ’C ’与AC 交于点F ,与AB 交于点E ,连BF 。

当△BEF 为等腰三角时,α= 。

A模块二 两圆一中垂知识导航已知线段AB ,在平面上找一点C ,使△ABC 为等腰三角形。

图1 图2 图3AABB① 如图1,以A 为圆心,AB 为半径作圆,此圆上的所有点C 均满足AC=AB 。

② 如图2,以B 为圆心,BA 为半径作圆,此圆上的所有点C 均满足BC=BA 。

③ 如图3,作AB 的垂直平分线,此垂直平分线上的所有点C 均满足CA=CB 。

“两圆一中垂”上的所有点C 均满足△ABC 为等腰三角形,即满足“等腰”条件的C 点有无数个。

因此,题目会对C 点再加上另外一个限定条件----例如还限定C 点在坐标轴上或格点,这样,C 点的个数就只有几个了。

例4(2014—2016江岸区八上期末)如图:在4×4的网格中存在线段AB ,每格表示一个单位长度,并构建了平面直角坐标系。

在现有的网格中(包括网格的边界)存在一点P,点P 的横纵坐标都为整数,连接PA 、PB 后得到△PAB 为等腰三角形,则满足条件的点P 有 个。

八年级等腰三角形的分类讨论专题

八年级等腰三角形的分类讨论专题

专题一:等腰三角形中的分类讨论(一)角分类:顶角和底角+ 三角形内角和;外角1.已知一个等腰三角形两内角的度数之比为1:4,求顶角的度数。

2.一个等腰三角形的一个内角比另一个内角的2倍少30o,求这个三角形的三个内角的度数。

3.如果一个等腰三角形的一个外角等于100°,则该等腰三角形的底角的度数是.(二)边分类:底边和腰+ 三角形三边关系4.等腰三角形的两边分别是8,6,这个等腰三角形的周长为5.等腰三角形的两边分别是8,3,这个等腰三角形的周长为6.在等腰三角形ABC中,AB的长是AC的2倍,三角形的周长是40,则AB的长等于_______________.(三)中线分类7.已知等腰三角形一腰上的中线将它的周长分为9和12两部分,求腰长和底长。

8.等腰三角形的底边长为6cm,一腰上的中线把这个三角形的周长分为两部分,这两部分之差是3cm,求这个等腰三角形的腰长(四)高、垂直平分线分类9.已知等腰三角形一腰上的高与另一腰的夹角为25°,求底角的度数10.在ΔABC中,AB=AC,AB的中垂线与AC所在直线相交所得的锐角为50°,则底角∠B=____________11.(2018·哈尔滨中考)在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,连接AD,若△ABD为直角三角形,则∠ADC的度数12.(2019·白银中考)定义:等腰三角形的顶角与其一个底角的度数的比值b 称为这个等腰三角形的“特征值”.若等腰三角形ABC中,∠A=80°,则它的特征值k=13.(2018·绍兴中考)数学课上,张老师举了下面的例题:例1等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2等腰三角形ABC中,∠A=40°,求∠B的度数.(答案:40°或70°或100°)张老师启发同学们进行变式,小敏编了如下一题:等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题。

与等腰三角形有关的分类讨论问题

与等腰三角形有关的分类讨论问题

与等腰三角形有关的分类讨论是一种特殊而又十分重要的三角形,就是因为这种特殊性,在具体处理问题时往往又会出现错误,因此,同学们在求解有关等腰三角形的问题时一定要注意分类讨论.一:与角有关的分类讨论例1、已知等腰三角形的一个内角为75°则其顶角为________分析:对于一个等腰三角形,若条件中并没有确定顶角或底角时,应注意分情况讨论,先确定这个已知角是顶角还是底角,再运用三角形内角和定理求解.二:与边有关的分类讨论例2、已知等腰三角形的一边等于5,另一边等于6,则它的周长等于_________.分析:对于底和腰不等的等腰三角形,若条件中没有明确哪是底哪是腰时,应在符合三角形三边关系的前提下分类讨论.三:与高有关的分类讨论例3、一等腰三角形的一腰上的高与另一腰成35°,则此等腰三角形的顶角是________度.分析:因不知此等腰三角形的顶角是钝角、直角、锐角,应分情况讨论.解:(1)当顶角为锐角时,(如图1)则顶角为90°-35°=55°.(2)当顶角为直角时,不符合题意(如图2),应舍去.(3)当顶角为钝角时(如图3),顶角为180°-(90°-35°)=125°故此等腰三角形的顶角为55°或125°.小结:此题涉及了顶角有“钝角、直角、锐角”之分的分类讨论,特别是当顶角为钝角时的情况容易漏解,请同学们注意体会.30m的草皮铺设一块一边长为10m的等腰三角形绿地,例4、美化环境,计划在某小区内用2请你求出这个等腰三角形绿地的另两边长.分析:例5、在直角坐标系中,O 为坐标原点,已知A (-2,2), 试在x 轴上确定点P ,使△AOP 为等腰三角形, 求符合条件的点P 的坐标 练习:1、等腰三角形一腰上的高与另一腰所成的夹角为45°,这个等腰三角形的顶角的度数_____度. 归纳:三角形的高是由三角形的形状决定的,对于等腰三角形,当顶角是锐角时,腰上的高在三角形内;当顶角是钝角时,腰上的高在三角形外.2、如图,在平面直角坐标系xoy 中,分别平行x 、y 轴的两直 线a 、b 相交于点A (3,4).连接OA ,若在直线a 上存在点P , 使△AOP 是等腰三角形.那么所有满足条件的点P 的坐标 是3、练习如图,在网格图中找格点M ,使△MPQ 为等腰三角形.并画出相应的△MPQ 的对称轴.baxAOA (-2,2)yxoPQPQPOCBA4、变式这样的点M 共有_________个5、如图,△ABC 是等腰直角三角形,∠BAC =90°,点D 是边BC 上一点,△EAD 是等腰直角三角形,∠EAD =90°,ED 与AC 相交于点F , 联结CE . (1)说明∠B =∠ACE 的理由;(2)若△CFE 是等腰三角形,请求出∠BAD 的度数.6、已知如图点O 是等边三角形ABC 内一点,∠AOB =110°, 将点O 绕点A 按顺时针方向旋转60°到点P ,联结OP 、CP (1)求证:△AOP 是等边三角形(2)若△COP 是等腰三角形,求 ∠BOC 的度数。

专题训练等腰三角形中的分类讨论

专题训练等腰三角形中的分类讨论

专题复习——等腰三角形中的分类讨论例1. 已知等腰△ABC中,有一个内角为40o,则另两个内角分别为________________.例2. 在△ABC中,∠A的外角等于110°,△ABC是等腰三角形,那么∠B=。

例3.等腰三角形两内角的度数比为2∶1,则顶角为。

例1.等腰三角形有两条边长为4cm和9cm,则该三角形的周长是例2. 等腰三角形的周长为22 cm,其中一边的长是8 cm,则其余两边长分别为_________.例3. 一等腰三角形的周长是25cm,作某一腰上的中线分得两个三角形的周长一个比另一个长5cm,则腰长是例1. 等腰三角形一腰上的高等于腰长的一半,它的底角为例2. 等腰三角形一腰上的高与另一腰的夹角等于20 ,则等腰三角形的顶角度数为例1. 如图,点B在直线L上,点A在直线L外,在直线L上找点C,使得△ABC为等腰三角形。

(要求保留作图痕迹,写清点C的个数)LB例2.在直角坐标系中,O点为坐标原点,A(2,-4),动点B在坐标轴上。

则满足△OAB为等腰三角形的有B点共有个例3. P为直线1:32l y x A=-上一点,(2,0),求使△PAO为等腰三角形的点P的坐标.等腰三角形中的分类讨论练习姓名:日期:指导老师:侯尧等腰三角形是一种特殊的三角形,它除了具有一般三角形的基本性质以外,还具有许多独特的性质,最主要的体现就是它的两底角相等,两腰相等,正是由于具有这两个相等,所以在解等腰三角形的有关题目时必须全面思考,分类讨论,以防漏解。

下面就常见题型举例说明如下:一、角不确定时需分类讨论1、若等腰三角形的一个角为40°,则其他两个角分别为若等腰三角形的一个角为100°,则其他两个角分别为二、边不确定时需分类讨论2、等腰三角形一边长是10cm,另一边长是6cm,则它的周长是等腰三角形的两边长分别是9cm和4cm,则它的周长是等腰三角形周长是20cm,一边长为8cm,则其他两边长分别是等腰三角形周长是20cm,一边长为4cm,则其他两边长分别是等腰三角形周长是13,其中一边长为3,则该等腰三角形的底边长为三、高不确定时需分类讨论3、等腰三角形一腰上的高与另一腰的夹角为30°,则顶角的度数为等腰三角形一腰上的高与底边的夹角为30°,则顶角的度数为等腰三角形一腰上的高与底边的夹角等于顶角的若等腰三角形一腰上的高等于腰长的一半,则底角的度数为四、其它(1)等腰三角形一腰上的中线把该三角形的周长分成12cm和15cm的两部分,求三角形各边的长(2)等腰三角形一腰上的中线把该三角形的周长分成12cm和21cm两部分,求三角形的三边长(3)一等腰三角形的周长为20cm,从底边上的一个顶点引腰的中线,分三角形周长为两部分,其中一部分比另一部分长2cm,求腰长5、已知点A和点B,以点A和点B为其中两个点作位置不同的等腰三角形,一共可以作个6、有一个等腰三角形,三边分别是3x-2,4x-3,6-2x,求等腰三角形的周长7、如图,在等边ΔABC所在的平面内求一点P,使ΔPAB、ΔPBC、ΔPAC都是等腰三角形,你能找到几个这样的点?画图描述他们的位置。

八年级数学等腰三角形中的分类讨论专项练习

八年级数学等腰三角形中的分类讨论专项练习

八年级数学等腰三角形中的分类讨论专项练习类型一:遇角需讨论1.若等腰三角形的一个外角等于110°则底角的度数为()A.70°或40° B.40°或55° C.55°或70° D.70°2.已知等腰三角形一腰上的高线与另一腰的夹角为50°,那么这个等腰三角形的底角的度数为()A.15°或75° B.70° C.20° D.70°或20°3.若等腰三角形一腰上的高与底边的夹角为70°,则顶角的度数为___________________.4.数学课上,张老师举了下面的例题:例1 等腰三角形ABC中,∠A=110°,求∠B的度数.(答案:35°)例2 等腰三角形ABC中,∠A=40°,求∠B的度数.(答案:40°或70或100°)张老师启发同学们进行变式,小敏编了如下一题:变式等腰三角形ABC中,∠A=80°,求∠B的度数.(1)请你解答以上的变式题;(2)解(1)后,小敏发现,∠A的度数不同,得到∠B的度数的个数也可能不同,如果在等腰三角形ABC中,设∠A=x°,当∠B有三个不同的度数时,请你探索x的取值范围.5.【定义】数学课上,陈老师对我们说:如果1条线段将一个三角形分成2个等腰三角形,那么这条线段就称为这个三角形的“好线”;如果2条线段将一个三角形分成3个等腰三角形,那么这2条线段就称为这个三角形的“好好线”.【理解】(1)如图①,在△ABC中,∠A=27°,∠C=72°,请你在这个三角形中画出它的“好线”,并标出等腰三角形顶角的度数;(2)如图②,已知△ABC是一个顶角为45°的等腰三角形,请你在这个三角形中画出它的“好好线”,并标出所分得的等腰三角形底角的度数.【应用】(3)在△ABC中,已知一个内角为42°,若它只有“好线”,请你写出这个三角形中最大内角的所有可能值为____________________________________________;(4)在△ABC中,∠C=27°,AD和DE分别是△ABC的“好好线”,点D在边BC上,点E 在边AB上,且AD=DC,BE=DE,请你根据题意画出示意图,并求∠B的度数.类型二:遇边需讨论6.若一个等腰三角形的一边长为6cm,周长为30cm,则它的另两边长分别为()A.6cm.,18 cm B.12 cm,12 cmC.6 cm,12 cm D.6 cm,18 cm 或12cm,12 cm a,相交于点O,∠1=50°,点A在直线a上,直线b存在点B,使以点O,7.如图,直线bA,B为顶点的三角形是等腰三角形,这样的点B有()A.1个B.2个C.3个D.4个8.如图,有一个三角形纸片ABC,∠A=80°,D是边AC上一点,沿BD方向剪开三角形纸片后,发现所得两纸片均为等腰三角形,则∠C的度数可以是_________________________.9.在等腰三角形ABC中,如果过顶角的顶点A的一条直线AD将△ABC分割成两个等腰三角形,那么∠BAC=_________________________.10.如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形.(要求:画出3种不同的示意图,并在所画等腰三角形长为3的边上标注数字3)类型三:遇中线需讨论11.已知等腰三角形的底边长为10cm,一腰上的中线把这个等腰三角形的周长分为两部分,其中一部分比另一部分长5cm,那么这个等腰三角形的腰长为____________________cm.12.已知等腰三角形一腰上的中线将三角形的周长分成了21和27两个部分,求等腰三角形的底边长和腰长.参考答案CD140°5、6、B7、D 8、15。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

等腰三角形中的分类讨论
分类一、当腰长或底边长不能确定时
【例1】已知等腰三角形的两边长分别为8cm和10cm,求周长.
【例2】等腰三角形的两边长分别为3cm和7cm,求周长.
【拓展】已知一等腰三角形的三边分别是3x-1,x+1,5,试求x的值.
分类二、当顶角或底角不能确定时
【例3】等腰三角形的一个角是另一个角的4倍,求它的各个内角的度数. 【例4】已知等腰三角形的一个外角等于150°,求它的各个内角.
分类三、当高的位置关系不确定时
【例5】等腰三角形一腰上的高与另一边的夹角为25°,求这个三角形的各个内角的度数.
分类四、腰的垂直平分线不确定时
【例6】在三角形ABC中,AB=AC,AB边上的垂直平分线与AC所在的直线相交所得的锐角为40°,求底角B的度数.
分类五、腰上中线引起的分类讨论
【例7】等腰三角形ABC底边BC为5,腰AC边上的中线BD把其周长分为差为3的两部分,求腰长.
分类六、几何图形之间的位置关系不明确
【例8】已知C、D两点在线段AB的中垂线上,且∠ACB=50°,∠ADB=80°,求∠CAD 的度数.
【例9】在下图三角形的边上找出一点,使得该点与三角形的两顶点构成等腰三角形.。

相关文档
最新文档