年华东师大版七年级数学下册期末考试题
华师大版七年级下册数学期末试题试卷含答案

华师大版七年级下册数学期末考试试卷一、选择题(每小题3分,共30分)1.(3分)下列是二元一次方程的是()A.3x﹣6=x B.3x=2y C.x﹣y2=0 D.2x﹣3y=xy2.(3分)下列交通标志中,是轴对称图形但不是中心对称图形的是()A.B.C.D.3.(3分)若关于x的方程x﹣2+3k=的解是正数,则k的取值范围是()A.k>B.k≥C.k<D.k≤4.(3分)为了搞活经济,某商场将一种商品A按标价9折出售,仍获利润10%,若商品A标价为33元,那么商品进货价为()A.31元B.元C.元D.27元5.(3分)根据不等式的性质,下列变形正确的是()A.由a>b得ac2>bc2B.由ac2>bc2得a>bC.由﹣a>2得a<2 D.由2x+1>x得x>16.(3分)已知等腰三角形的两边长分別为a、b,且a、b满足+(2a+3b ﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或10 C.6或7 D.7或107.(3分)我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A. B.C. D.8.(3分)已知三角形的三边长为3,8,x.若周长是奇数,则x的值有()A.6个B.5个C.4个D.3个9.(3分)选用下列某一种形状的瓷砖密铺地面,不能做到无缝隙,不重叠要求的()A.正方形B.任意三角形 C.正六边形D.正八边形10.(3分)关于x的不等式组的整数解共有5个,则a的取值范围()A.a=﹣3 B.﹣4<a<﹣3 C.﹣4≤a<﹣3 D.﹣4<a≤﹣3二、填空题(每小题3分,共15分)11.若关于x的方程(k﹣2)x|k﹣1|+5k+1=0 是一元一次方程,则k+x= .12.方程3x﹣y=4中,有一组解x与y互为相反数,则3x+y= .13.一个多边形的每一个外角都等于72°,则这个多边形是边形.14.一个三角形有两条边相等,周长为18cm,三角形的一边长为4cm,则其他两边长分别为cm,cm.15.书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书超过200元一律打七折.小丽在这次活动中,两次购书总共付款元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是元.三、解答题(本题共8小题,共75分)16.(8分)﹣=.17.(9分)解方程组:.18.(9分)解不等式组:把解集表示在数轴上并求出它的整数解的和.19.(9分)如图,已知△ABC≌△DEF,∠A=32°,∠B=48°,BF=3,求∠DFE 的度数和EC的长.20.(9分)如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)将△ABC向下平移5个单位得△A1B1C1,画出平移后的△A1B1C1.(2)画出△ABC关于点B成中心对称的图形.(3)在直线l上找一点P,使△ABP的周长最小.21.(10分)如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.(1)填空:∠AFC= 度;(2)求∠EDF的度数.22.(10分)某中学计划购买A型和B型课桌凳共200套.经招标,购买一套A 型课桌凳比购买一套B型课桌凳少用40元,且购买4套A型和5套B型课桌凳共需1820元.(1)求购买一套A型课桌凳和一套B型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B型课桌凳数量的,求该校本次购买A型和B型课桌凳共有几种方案哪种方案的总费用最低23.(11分)如图,取一副三角板按图1拼接,固定三角板ADE(含30°),将三角板ABC(含45°)绕点A顺时针方向旋转一个大小为α的角(0°<α≤45°),试问:(1)当∠α=度时,能使图2中的AB∥DE;(2)当旋转到AB与AE重叠时(如图3),则∠α=度;(3)当△ADE的一边与△ABC的某一边平行(不共线)时,直接写出旋转角α的所有可能的度数;(4)当0°<α≤45°时,连接BD(如图4),探求∠DBC+∠CAE+∠BDE的值的大小变化情况,并说明理由.参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)(2017春•淅川县期末)下列是二元一次方程的是()A.3x﹣6=x B.3x=2y C.x﹣y2=0 D.2x﹣3y=xy【分析】二元一次方程就是含有两个未知数,并且未知数的项的最高次数是1的整式方程,依据定义即可判断.【解答】解:A、是一元一次方程,故错误;B、正确;C、未知数的项的最高次数是2,故错误;D、未知数的项的最高次数是2,故错误.故选B.【点评】此题考查了二元一次方程的条件:①只含有两个未知数;②未知数的项的次数都是1;③整式方程.2.(3分)(2016•云南)下列交通标志中,是轴对称图形但不是中心对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形,符合题意;B、不是轴对称图形,也不是中心对称图形,不符合题意;C、不是轴对称图形,也不是中心对称图形,不符合题意;D、是轴对称图形,也是中心对称图形,不符合题意.故选A.【点评】此题主要考查了中心对称图形与轴对称的定义,根据定义得出图形形状是解决问题的关键.3.(3分)(2017春•淅川县期末)若关于x的方程x﹣2+3k=的解是正数,则k的取值范围是()A.k>B.k≥C.k<D.k≤【分析】解方程得出x=﹣4k+3,由解为正数得出﹣4k+3>0,解之可得答案.【解答】解:解方程x﹣2+3k=,得:x=﹣4k+3,∵方程得解为正数,∴﹣4k+3>0,解得:k<,故选:C.【点评】本题主要考查解方程和不等式的能力,根据题意列出关于k的不等式是解题的关键.4.(3分)(2006•恩施州)为了搞活经济,某商场将一种商品A按标价9折出售,仍获利润10%,若商品A标价为33元,那么商品进货价为()A.31元B.元C.元D.27元【分析】本题要注意关键语“按标价9折出售,仍获利润10%”.要求商品进货价,可先设出未知数,再依题意列出方程求解.【解答】解:设进货价为x元.那么根据题意可得出:(1+10%)x=33×90%,解得:x=27,故选:D.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.5.(3分)(2017春•淅川县期末)根据不等式的性质,下列变形正确的是()A.由a>b得ac2>bc2B.由ac2>bc2得a>bC.由﹣a>2得a<2 D.由2x+1>x得x>1【分析】根据不等式的性质,可得答案.【解答】解;A、a>b,c=0时,ac2=bc2,故A错误;B、不等式的两边都乘以或除以同一个正数,不等号的方向不变,故B正确;C、不等式的两边都乘以或除以同一个负数,不等号的方向改变,右边没诚乘以﹣2,故C错误;D、不等式的两边都加或都减同一个整式,不等号的方向不变,故D错误;故选:B.【点评】本题考查了不等式的性质,注意不等式的两边都乘以或除以同一个负数,不等号的方向改变.6.(3分)(2014•安顺)已知等腰三角形的两边长分別为a、b,且a、b满足+(2a+3b﹣13)2=0,则此等腰三角形的周长为()A.7或8 B.6或10 C.6或7 D.7或10【分析】先根据非负数的性质求出a,b的值,再分两种情况确定第三边的长,从而得出三角形的周长.【解答】解:∵+(2a+3b﹣13)2=0,∴,解得,当a为底时,三角形的三边长为2,3,3,则周长为8;当b为底时,三角形的三边长为2,2,3,则周长为7;综上所述此等腰三角形的周长为7或8.故选:A.【点评】本题考查了非负数的性质、等腰三角形的性质以及解二元一次方程组,是基础知识要熟练掌握.7.(3分)(2016•茂名)我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A.B.C.D.【分析】设有x匹大马,y匹小马,根据100匹马恰好拉了100片瓦,已知一匹大马能拉3片瓦,3匹小马能拉1片瓦,列方程组即可.【解答】解:设有x匹大马,y匹小马,根据题意得,故选C【点评】本题考查了二元一次方程组的应用,解题关键是弄清题意,合适的等量关系,列出方程组.8.(3分)(2017春•淅川县期末)已知三角形的三边长为3,8,x.若周长是奇数,则x的值有()A.6个B.5个C.4个D.3个【分析】根据三角形的三边关系定理可得8﹣3<x<8+3,解出x的取值范围,再根据周长为奇数确定x的值.【解答】解:根据三角形的三边关系可得:8﹣3<x<8+3,即:5<x<11,∵三角形的周长为奇数,∴x=6,8,10,共3个.故选D.【点评】此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边;三角形的两边差小于第三边.9.(3分)(2017春•淅川县期末)选用下列某一种形状的瓷砖密铺地面,不能做到无缝隙,不重叠要求的()A.正方形B.任意三角形 C.正六边形D.正八边形【分析】根据密铺的条件能整除360度的能密铺地面,分别对每一项进行分析即可.【解答】解:A、正方形的每个内角是90°,能整除360°,能密铺;B、任意三角形的内角和是180°,能整除360°,能密铺;C、正六边形每个内角是120°,能整除360°,能密铺;D、正八边形每个内角是135°,不能整除360°,不能密铺;故选D.【点评】此题考查了平面镶嵌,用到的知识点是:一种正多边形的镶嵌应符合一个内角度数能整除360°.10.(3分)(2017春•淅川县期末)关于x的不等式组的整数解共有5个,则a的取值范围()A.a=﹣3 B.﹣4<a<﹣3 C.﹣4≤a<﹣3 D.﹣4<a≤﹣3【分析】首先解不等式组确定不等式组的解集,然后根据不等式的整数解有5个,即可得到一个关于a的不等式组,解不等式组即可求解.【解答】解:,解①得:x≥a,解②得:x<2,则不等式组的解集是:a≤x<2,不等式组有5个整数解,则﹣4<a≤﹣3,故选D.【点评】此题考查的是一元一次不等式的解法,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.二、填空题(每小题3分,共15分)11.(3分)(2017春•淅川县期末)若关于x的方程(k﹣2)x|k﹣1|+5k+1=0 是一元一次方程,则k+x= .【分析】根据一元一次方程的定义,最高项的次数是1,且一次项系数不等于0即可求的m的值,进而求得x的值,从而求解.【解答】解:根据题意得:k﹣2≠0且|k﹣1|=1,解得:k=0.把k=0代入方程得﹣2x+1=0,解得:x=,则k+x=.故答案是:.【点评】本题考查了一元一次方程的概念和解法.一元一次方程的未知数的指数为1,理解定义是关键.12.(3分)(2017春•淅川县期末)方程3x﹣y=4中,有一组解x与y互为相反数,则3x+y= 2 .【分析】两数互为相反数,则两数和为0,即x+y=0,x=﹣y.可将x=﹣y代入方程中解出x、y的值,再把x、y的值代入3x+y=2中.即可解出本题.【解答】解:依题意得:x=﹣y.∴3x﹣y=3x+x=4x=4,∴x=1,则y=﹣1.∴3x+y=2.故答案为:2【点评】本题考查的是二元一次方程的解法与相反数的性质的综合题目.注意:两数互为相反数,它们的和为0.13.(3分)(2014•金平区模拟)一个多边形的每一个外角都等于72°,则这个多边形是五边形.【分析】用多边形的外角和360°除以72°即可.【解答】解:边数n=360°÷72°=5.故答案为:五.【点评】本题考查了多边形的外角和等于360°,是基础题,比较简单.14.(3分)(2017春•淅川县期末)一个三角形有两条边相等,周长为18cm,三角形的一边长为4cm,则其他两边长分别为7 cm,7 cm.【分析】题目中只给出了周长为18cm,三角形的一边长为4cm,没有明确该边是底边还是腰,所以分两种情况进行讨论.【解答】解:(1)若4cm为底边,则另外两边均为(18﹣4)=7厘米;(2)若4cm为腰长,则另一腰为4厘米,底边为18﹣4×2=10厘米∵4+4<10,∴此时不能构成三角形,舍去.因此其他两边的长分别为7cm、7cm.故答案为:7,7.【点评】此题主要考查学生对等腰三角形的性质及三角形的三边关系的掌握;做题时注意分情况讨论,并注意是否能构成三角形.15.(3分)(2016•绍兴)书店举行购书优惠活动:①一次性购书不超过100元,不享受打折优惠;②一次性购书超过100元但不超过200元一律打九折;③一次性购书超过200元一律打七折.小丽在这次活动中,两次购书总共付款元,第二次购书原价是第一次购书原价的3倍,那么小丽这两次购书原价的总和是248或296 元.【分析】设第一次购书的原价为x元,则第二次购书的原价为3x元.根据x的取值范围分段考虑,根据“付款金额=第一次付款金额+第二次付款金额”即可列出关于x的一元一次方程,解方程即可得出结论.【解答】解:设第一次购书的原价为x元,则第二次购书的原价为3x元,依题意得:①当0<x≤时,x+3x=,解得:x=(舍去);②当<x≤时,x+×3x=,解得:x=62,此时两次购书原价总和为:4x=4×62=248;③当<x≤100时,x+×3x=,解得:x=74,此时两次购书原价总和为:4x=4×74=296;④当100<x≤200时,x+×3x=,解得:x≈(舍去);⑤当x>200时,x+×3x=,解得:x≈(舍去).综上可知:小丽这两次购书原价的总和是248或296元.故答案为:248或296.【点评】本题考查了一元一次方程的应用,解题的关键是分段考虑,结合熟练关系找出每段x区间内的关于x的一元一次方程.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.三、解答题(本题共8小题,共75分)16.(8分)(2017春•淅川县期末)﹣=.【分析】首先对每个式子进行化简,然后去分母、去括号、移项、合并同类项、系数化为1即可求解.【解答】解:原式即﹣=,去分母,得5(10x﹣10)﹣3(10x+20)=18,去括号,得50x﹣50﹣30x﹣60=18,移项,得50x﹣30x=18+50+60,合并同类项,得20x=128,系数化为1得x=.【点评】本题考查解一元一次方程,解一元一次方程的一般步骤是:去分母、去括号、移项、合并同类项、化系数为1.注意移项要变号.17.(9分)(2013•黄冈)解方程组:.【分析】把方程组整理成一般形式,然后利用代入消元法其求即可.【解答】解:方程组可化为,由②得,x=5y﹣3③,③代入①得,5(5y﹣3)﹣11y=﹣1,解得y=1,把y=1代入③得,x=5﹣3=2,所以,原方程组的解是.【点评】本题考查的是二元一次方程组的解法,方程组中未知数的系数较小时可用代入法,当未知数的系数相等或互为相反数时用加减消元法较简单.18.(9分)(2017春•淅川县期末)解不等式组:把解集表示在数轴上并求出它的整数解的和.【分析】先求出每个不等式的解集,再求出不等式组的解集,求出不等式组的整数解,最后求解即可.【解答】解:∵解不等式①得:x<3,解不等式②得:x≥﹣4,∴不等式组的解集为﹣4≤x<3,在数轴上表示为:∴不等式组的最大整数解为﹣4、﹣3、﹣2、﹣1、0、1、2,∴这个不等式组的整数解得和为﹣4﹣3﹣2﹣1+0+1+2=﹣7.【点评】本题考查了解一元一次不等式组,不等式组的整数解,能根据不等式的解集求出不等式组的解集是解此题的关键.19.(9分)(2017春•淅川县期末)如图,已知△ABC≌△DEF,∠A=32°,∠B=48°,BF=3,求∠DFE的度数和EC的长.【分析】根据全等三角形的性质得出∠D=∠A=48°,∠E=∠B=32°,BC=EF,求出BF=EC,即可求出答案.【解答】解:∵△ABC≌△DEF,∠A=32°,∠B=48°,∴∠D=∠A=48°,∠E=∠B=32°,在△DEF中,∠D+∠E+∠DFE=180°,解得:∠DFE=100°,∵△ABC≌△DEF,∴BC=EF,∴BF+FC=EC+CF,∴BF=EC,∵BF=3,∴EC=3.【点评】本题考查了全等三角形的性质定理,能正确根据全等三角形的性质进行推理是解此题的关键,注意:全等三角形的对应角相等,对应边相等.20.(9分)(2017春•淅川县期末)如图,在所给网格图(每小格均为边长是1的正方形)中完成下列各题:(1)将△ABC向下平移5个单位得△A1B1C1,画出平移后的△A1B1C1.(2)画出△ABC关于点B成中心对称的图形.(3)在直线l上找一点P,使△ABP的周长最小.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)直接利用中心对称图形的性质得出对应点位置;(3)利用轴对称求最短路线的方法得出答案.【解答】解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△DEF,即为所求;(3)如图所示:P点位置,使△ABP的周长最小.【点评】此题主要考查了旋转变换以及平移变换以及利用轴对称求最短路线,正确得出对应点位置是解题关键.21.(10分)(2017春•淅川县期末)如图,在△ABC中,点D是BC边上的一点,∠B=50°,∠BAD=30°,将△ABD沿AD折叠得到△AED,AE与BC交于点F.(1)填空:∠AFC= 110 度;(2)求∠EDF的度数.【分析】(1)根据折叠的特点得出∠BAD=∠DAF,再根据三角形一个外角等于它不相邻两个内角之和,即可得出答案;(2)根据已知求出∠ADB的值,再根据△ABD沿AD折叠得到△AED,得出∠ADE=∠ADB,最后根据∠EDF=∠EDA+∠BDA﹣∠BDF,即可得出答案.【解答】解:(1)∵△ABD沿AD折叠得到△AED,∴∠BAD=∠DAF,∵∠B=50°∠BAD=30°,∴∠AFC=∠B+∠BAD+∠DAF=110°;故答案为110.(2)∵∠B=50°,∠BAD=30°,∴∠ADB=180°﹣50°﹣30°=100°,∵△ABD沿AD折叠得到△AED,∴∠ADE=∠ADB=100°,∴∠EDF=∠EDA+∠BDA﹣∠BDF=100°+100°﹣180°=20°.【点评】此题考查了三角形的内角和定理、三角形的外角的性质、翻折变换等问题,解答的关键是沟通外角和内角的关系.22.(10分)(2012•河南)某中学计划购买A型和B型课桌凳共200套.经招标,购买一套A型课桌凳比购买一套B型课桌凳少用40元,且购买4套A型和5套B型课桌凳共需1820元.(1)求购买一套A型课桌凳和一套B型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B型课桌凳数量的,求该校本次购买A型和B型课桌凳共有几种方案哪种方案的总费用最低【分析】(1)根据购买一套A型课桌凳比购买一套B型课桌凳少用40元,以及购买4套A型和5套B型课桌凳共需1820元,得出等式方程求出即可;(2)利用要求购买这两种课桌凳总费用不能超过40880元,并且购买A型课桌凳的数量不能超过B型课桌凳数量的,得出不等式组,求出a的值即可,再利用一次函数的增减性得出答案即可.【解答】解:(1)设A型每套x元,则B型每套(x+40)元.由题意得:4x+5(x+40)=1820.解得:x=180,x+40=220.即购买一套A型课桌凳和一套B型课桌凳各需180元、220元;(2)设购买A型课桌凳a套,则购买B型课桌凳(200﹣a)套.由题意得:,解得:78≤a≤80.∵a为整数,∴a=78、79、80.∴共有3种方案,设购买课桌凳总费用为y元,则y=180a+220(200﹣a)=﹣40a+44000.∵﹣40<0,y随a的增大而减小,∴当a=80时,总费用最低,此时200﹣a=120,即总费用最低的方案是:购买A型80套,购买B型120套.【点评】此题主要考查了一元一次方程的应用和不等式组的应用以及一次函数的增减性,根据已知得出不等式组,求出a的值是解题关键.23.(11分)(2017春•淅川县期末)如图,取一副三角板按图1拼接,固定三角板ADE(含30°),将三角板ABC(含45°)绕点A顺时针方向旋转一个大小为α的角(0°<α≤45°),试问:(1)当∠α=15 度时,能使图2中的AB∥DE;(2)当旋转到AB与AE重叠时(如图3),则∠α=45 度;(3)当△ADE的一边与△ABC的某一边平行(不共线)时,直接写出旋转角α的所有可能的度数;(4)当0°<α≤45°时,连接BD(如图4),探求∠DBC+∠CAE+∠BDE的值的大小变化情况,并说明理由.【分析】(1)根据平行线的性质,可得∠BAE=∠E=30°,再根据∠BAC=45°,即可得出∠CAE=45°﹣30°=15°;(2)根据当旋转到AB与AE重叠时,∠α=∠BAC即可得到结果;(3)要分5种情况进行讨论:AD∥BC、DE∥AB、DE∥BC、DE∥AC、AE∥BC,分别画出图形,计算出度数即可;(4)先设BD分别交AC、AE于点M、N,在△AMN中,∠AMN+∠CAE+∠ANM=180,再根据∠ANM=∠E+∠BDE,∠AMN=∠C+∠DBC,得出∠E+∠BDE+∠CAE+∠C+∠DBC=180°,然后根据∠C=30°,∠E=45°,即可得出∠BDE+∠CAE+∠DBC的度数.【解答】解:(1)如图2,当AB∥DE时,∠BAE=∠E=30°,∵∠BAC=45°,∴∠CAE=45°﹣30°=15°,即∠α=15°,故答案为:15;(2)当旋转到AB与AE重叠时,∠α=∠BAC=45°,故答案为:45;(2)当△ADE的一边与△ABC的某一边平行(不共线)时,旋转角α的所有可能的度数为15°,45°,105°,135°,150°.如图a﹣e所示:①当AD∥BC时,α=15°;②当DE∥AB时,α=45°;③当DE∥BC时,α=105°;④当DE∥AC时,α=135°;⑤当AE∥BC时,α=150°.(4)如图4,当0°<α≤45°时,∠DBC+∠CAE+∠BDE=105°,保持不变;理由如下:设BD分别交AC、AE于点M、N,在△AMN中,∠AMN+∠CAE+∠ANM=180°,∵∠ANM=∠E+∠BDE,∠AMN=∠C+∠DBC,∴∠E+∠BDE+∠CAE+∠C+∠DBC=180°,∵∠C=30°,∠E=45°,∴∠DBC+∠CAE+∠BDE=180°﹣75°=105°.【点评】本题考查了平行线的性质,三角形内角和定理以及旋转的性质的运用.解题时注意:旋转变化前后,对应点到旋转中心的距离相等,每一对对应点与旋转中心连线所构成的旋转角相等.。
【华东师大版】七年级数学下期末试卷(带答案)

一、选择题1.若关于x 的不等式组21x x a <⎧⎨>-⎩无解,则a 的取值范围是( )A .3a ≤-B .3a <-C .3a >D .3a ≥2.如图,宽为25cm 的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积是( )A .2200cmB .2150cmC .2100cmD .275cm3.已知下列各式:①12+=y x;②2x ﹣3y =5;③xy =2;④x+y =z ﹣1;⑤12123x x +-=,其中为二元一次方程的个数是( ) A .1B .2C .3D .44.《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x 尺,绳子长y 尺,根据题意列方程组正确的是( ) A . 4.512x y y xB . 4.512x y yxC .4.512xy x yD .4.512xyy x5.若方程6kx ﹣2y=8有一组解32x y =-⎧⎨=⎩,则k 的值等于(( )A .23-B .23 C .16- D .166.如图,在ABC ∆中,90ACB ∠=︒,AC BC =,点C 的坐标为()2,0-,点B 的坐标为()1,4,则点A 的坐标为( )A .()6,3-B .()3,6-C .()4,3-D .()3,4-7.如图,数轴上的点A,B,O,C,D分别表示数-2,-1,0,1,2,则表示数25-的点P应落在()A.线段AB上B.线段BO上C.线段OC上D.线段CD上8.给出下列各数①0.32,②227,③π,④5,⑤0.2060060006(每两个6之间依次多个0),⑥327,其中无理数是()A.②④⑤B.①③⑥C.④⑤⑥D.③④⑤9.下列所示的四个图形中,∠1和∠2是同位角的是()A.②③B.①②③C.①②④D.①④10.若a b<,则下列不等式中不正确的是()A.11+<+a b B.a b->-C.22a b--<--D.44a b<11.若关于x的不等式组132(2)x ax x≥-⎧⎨≤+⎩仅有四个整数解,则a的取值范围是()A.12a≤≤B.12a≤<C.12a<≤D.12a<<12.已知关于x的方程:24263a x xx--=-的解是非正整数,则符合条件的所有整数a 的值有()种.A.3 B.2 C.1 D.0二、填空题13.不等式组2x ax>⎧⎨>⎩的解为2x>,则a的取值范围是______.14.如果方程组25xbx ay=⎧⎨+=⎩的解与方程组41yby ax=⎧⎨+=⎩的解相同,则+a b的值为______.15.如果关于x,y的二元一次方程组111222a xb y ca xb y c+=⎧⎨+=⎩的解是62xy=⎧⎨=⎩,则关于x,y的二元一次方程组111222325325a xb y ca xb y c+=⎧⎨+=⎩的解是______.16.在x轴上方的点P到x轴的距离为3,到y轴距离为2,则点P的坐标为________.17.已知点A(2a+5,a﹣3)在第一、三象限的角平分线上,则a=_____.18.根据如图所示的程序计算,若输出y的值为16,则输入x的值为 ______.19.如图是某公园里一处矩形风景欣赏区ABCD,长AB=50米,宽BC=30米,为方便游人观赏,公园特意修建了如图所示的小路(图中非阴影部分),小路的宽均为1米,那么小明沿着小路的中间出口A到出口B所走的路线(图中虚线)长为______米.20.关于x的不等式组460930xx->⎧⎨-≥⎩的所有整数解的积是__________.三、解答题21.解不等式(组):(1)24123x x ---≤;(2)63(4) 23253x xx x-≥-⎧⎪⎨++>⎪⎩①②.22.11月份,是猕猴桃上市的季节,猕猴桃酸甜,含有丰富的维生素c和大量的营养元素.万州某水果超市的红心猕猴桃与黄心猕猴桃这两种水果很受欢迎,红心猕猴桃售价12元/千克,黄心猕猴桃售价9元/千克.(1)若第一周红心猕猴桃的销量比黄心猕猴桃的销量多200千克,要使这两种水果的总销售额不低于6600元,则第一周至少销售红心猕猴桃多少千克?(2)若该水果超市第一周按照(1)中红心猕猴桃和黄心猕猴桃的最低销量销售这两种水果,并决定第二周继续销售这两种水果,第二周红心猕猴桃售价不变,销量比第一周增加了43a%,黄心猕猴桃的售价保持不变,销量比第一周增加了13a%,结果这两种水果第二周的总销售额比第一周增加了711a%的基础上还多了280元,求a的值.23.今年“五一”小长假期间,某市外来与外出旅游总人数为226万人,分别比去年同期增长30%和20%,去年同期外来旅游比外出旅游的人数多20万人.求该市去年外来和外出旅游的人数.24.在平面直角坐标系xOy中,△ABC的位置如图所示.(l )分别写出△ABC 各个顶点的坐标.(2)请在图中画出△ABC 关于y 轴对称的图形△A'B'C'. (3)计算出△ABC 的面积. 25.(1)求x 的值:2490x -=; (2)计算:()2325227+--26.如图,已知12∠=∠,C D ∠=∠,求证:A F ∠=∠.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】利用不等式组取解集的方法:大大小小找不到即可得到a 的范围. 【详解】∵关于x的不等式组21xx a<⎧⎨>-⎩无解,∴a-1≥2,∴a≥3.故选:D.【点睛】考查了一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.2.C解析:C【分析】根据矩形的两组对边分别相等,可知题中有两个等量关系:小长方形的长+小长方形的宽=25,小长方形的长×2=小长方形的长+小长方形的宽×4,根据这两个等量关系,可列出方程组,再求解.【详解】设一个小长方形的长为xcm,宽为ycm,由图形可知,25 24x yx x y+=⎧⎨=+⎩,解得:205xy=⎧⎨=⎩,所以一个小长方形的面积为205100⨯=(cm2) .故选:C.【点睛】本题考查了二元一次方程的应用,解答本题关键是弄清题意,看懂图示,找出合适的等量关系,列出方程组.并弄清小正方形的长与宽的关系.3.A解析:A【分析】根据二元一次方程的定义即可判断.【详解】①是分式方程,故不是二元一次方程;②正确;③是二元二次方程,故不是二元一次方程;④有3个未知数,故不是二元一次方程;⑤是一元一次方程,不是二元一次方程.故选:A.【点睛】考查二元一次方程的定义,含有2个未知数,未知项的最高次数是1的整式方程就是二元一次方程.4.A解析:A 【分析】用一根绳子去量一根木条,绳子剩余4.5尺可知:绳子比木条长4.5尺得: 4.5x y ;绳子对折再量木条,木条剩余1尺可知:绳子对折后比木条短1尺得:12y x ;组成方程组即可. 【详解】解:如果设木条长x 尺,绳子长y 尺, 根据题意得: 4.512x yy x .故选:A . 【点睛】本题考查了由实际问题抽象出二元一次方程组,理解题意,找出等量关系是解题的关键.5.A解析:A 【分析】根据方程的解满足方程,课的关于k 的方程,根据解方程,可得答案. 【详解】 解:由题意,得 6×(-3)k-2×2=8,解得k=-23, 故选A . 【点睛】本题考查了二元一次方程,利用方程的解满足方程得出关于的k 方程是解题关键.6.A解析:A 【分析】过点A 作x 轴的垂线交于点E ,过点B 作x 轴的垂线交于点F ,运用AAS 证明ACE CBF ∆≅∆得到AE CF =,CE BF =即可求得结论. 【详解】解:过点A 作x 轴的垂线交于点E ,过点B 作x 轴的垂线交于点F ,90AEC CFB ∴∠=∠=︒ 90A ACE ∴∠+∠=︒,90ACB ∠=︒90ACE BCF ∴∠=∠=︒ A BCF ∴∠=∠,在ACE ∆和CBF ∆中,90A BCF AEC CFB AC BC ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩()ACE CBF AAS ∴∆≅∆AE CF ∴=,CE BF =,(2,0)C -,(1,4)B4BF ∴=,1(2)3CF =--=,3AE CF ∴==,4CE BF ==, 426OE CE OC ∴=+=+=,()6,3A ∴-故选A . 【点睛】此题考查了坐标与图形,证明ACE CBF ∆≅∆得到AE CF =,CE BF =是解决问题的关键.7.B解析:B 【分析】5 【详解】由被开方数越大算术平方根越大,得5由不等式的性质得:5故选B. 【点睛】本题考查了实数与数轴,无理数大小的估算,解题的关键正确估算无理数的大小.8.D解析:D 【分析】无理数就是无限不循环小数.初中范围内学习的无理数有:π,开方开不尽的数,以及像0.1010010001…,等有这样规律的数.由此逐一判断即可得答案.【详解】①0.32是有限小数,是有理数,②227是分数,是有理数,③π是无限循环小数,是无理数,⑤0.2060060006(每两个6之间依次多个0)是无限循环小数,是无理数,,是整数,是有理数,综上所述:无理数是③④⑤,故选:D.【点睛】此题主要考查了无理数的定义,初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数;熟练掌握定义是解题关键.9.C解析:C【分析】根据同位角的定义逐一判断即得答案.【详解】图①中的∠1与∠2是同位角,图②中的∠1与∠2是同位角,图③中的∠1与∠2不是同位角,图④中的∠1与∠2是同位角,所以在如图所示的四个图形中,图①②④中的∠1和∠2是同位角.故选:C.【点睛】本题考查了同位角的定义,属于基础概念题型,熟知概念是关键.10.C解析:C【分析】根据不等式的性质来解答即可.不等式的性质为:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变;(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.【详解】解:A:不等式a<b两边都加1,不等号的方向不变,原变形正确,故此选项不符合题意;B:不等式a<b两边都乘以-1,不等号的方向改变,原变形正确,故此选项不符合题意;C :不等式a <b 两边都乘-1再加上-2,不等号的方向改变,原变形不正确,故此选项符合题意;D :不等式a <b 两边都除以4,不等号的方向不变,原变形正确,故此选项不符合题意; 故选:C . 【点睛】本题考查了利用不等式的性质进行不等式的变形.解题的关键是熟练掌握不等式的性质并正确运用.11.C解析:C 【分析】先解含参的不等式组,根据不等式组仅有四个整数解得到关于a 的不等式组,求解即可. 【详解】解:132(2)x a x x ≥-⎧⎨≤+⎩①②,解不等式①,得1x a ≥-, 解不等式②,得:4x ≤, ∵不等式组仅有四个整数解, ∴011a <-≤,解得12a <≤, 故选:C . 【点睛】本题考查解不等式组,根据解集的情况得到关于a 的不等式组是解题的关键.12.A解析:A 【分析】先用含a 的式子表示出原方程的解,再根据解为非正整数,即可求得符合条件的所有整数a . 【详解】解:24263a x x x --=-()264212--=-x a x x 264+212-=-x a x x()24+8=-a x284+=-x a ∵方程的解是非正整数, ∴2804+-≤a∴2804+≥a ∴24+=1a 或2或4或8 ∴a=0或2或-2,共3个 故选:A 【点睛】本题考查了一元一次方程的解法及解不等式,根据方程的解为非正整数列出关于a 的不等式是解题的关键.二、填空题13.【分析】根据不等式组的公共解集即可确定a 的取值范围【详解】由不等式组的解为可得故答案为:【点睛】本题主要考查了不等式组的解法关键是熟练掌握不等式组解集的确定:同大取大;同小取小;大小小大中间找;大大 解析:2a ≤【分析】根据不等式组的公共解集即可确定a 的取值范围. 【详解】 由不等式组2x ax >⎧⎨>⎩的解为2x >, 可得2a ≤. 故答案为:2a ≤. 【点睛】本题主要考查了不等式组的解法,关键是熟练掌握不等式组解集的确定:同大取大;同小取小;大小小大中间找;大大小小找不到.14.1【分析】把代入方程组即可得到一个关于ab 的方程组即可求解【详解】解:由题意可知:为的解将代入得①×2-②得将代入①得故答案为:1【点睛】本题考查了二元一次方程组的解的定义理解定义是关键解析:1 【分析】把24x y =⎧⎨=⎩代入方程组51bx ay by ax +=⎧⎨+=⎩,即可得到一个关于a ,b 的方程组,即可求解.【详解】解:由题意可知:24x y =⎧⎨=⎩为51bx ay by ax +=⎧⎨+=⎩的解,∴将2x =,4y =代入得,245421b a b a +=⎧⎨+=⎩①②,①×2-②,得69a =,32a =, 将32a =代入①得,32452b +⨯=,12b =, 31122a b ⎛⎫+=+-= ⎪⎝⎭, 故答案为:1.【点睛】本题考查了二元一次方程组的解的定义,理解定义是关键.15.【分析】先将所求的方程组变形为然后根据题意可得进一步即可求出答案【详解】解:由方程组可得∵关于xy 的二元一次方程组的解是∴解得故答案为【点睛】本题考查了二元一次方程组的解法正确理解题意合理变形得出是解析:105x y =⎧⎨=⎩【分析】先将所求的方程组变形为11122232553255a b c a b c x y x y ⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎝⎭⎝⎭⎧+=⎪⎪⎨⎪+=⎪⎩,然后根据题意可得365225x y ⎧=⎪⎪⎨⎪=⎪⎩,进一步即可求出答案.【详解】解: 由方程组111222325325a x b y c a x b y c +=⎧⎨+=⎩可得11122232553255a b c a b c x y x y ⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎝⎭⎝⎭⎛⎫⎛⎫⋅⋅ ⎪ ⎪⎝⎭⎝⎭⎧+=⎪⎪⎨⎪+=⎪⎩, ∵关于x ,y 的二元一次方程组111222a x b y c a x b y c +=⎧⎨+=⎩的解是62x y =⎧⎨=⎩, ∴365225x y ⎧=⎪⎪⎨⎪=⎪⎩,解得105x y =⎧⎨=⎩, 故答案为105x y =⎧⎨=⎩. 【点睛】本题考查了二元一次方程组的解法,正确理解题意、合理变形、得出365225xy⎧=⎪⎪⎨⎪=⎪⎩是解本题的关键.16.(-23)或(23)【分析】先判断出点P在第一或第二象限再根据点到x轴的距离等于纵坐标的绝对值到y轴的距离等于横坐标的绝对值求解【详解】解:∵点P在x轴上方∴点P在第一或第二象限∵点P到x轴的距离为解析:(-2,3)或(2,3)【分析】先判断出点P在第一或第二象限,再根据点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值求解.【详解】解:∵点P在x轴上方,∴点P在第一或第二象限,∵点P到x轴的距离为3,到y轴的距离为2,∴点P的横坐标为2或-2,纵坐标为3,∴点P的坐标为(-2,3)或(2,3).故答案为:(-2,3)或(2,3).【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.17.﹣8【分析】根据第一三象限角平分线上的点的坐标特点:点的横纵坐标相等即可解答【详解】点A(2a+5a-3)在第一三象限的角平分线上且第一三象限角平分线上的点的坐标特点为:点的横纵坐标相等∴2a+5=解析:﹣8.【分析】根据第一、三象限角平分线上的点的坐标特点:点的横纵坐标相等,即可解答.【详解】点A(2a+5,a-3)在第一、三象限的角平分线上,且第一、三象限角平分线上的点的坐标特点为:点的横纵坐标相等,∴2a+5=a-3,解得a=-8.故答案为:-8.【点睛】本题考查了各象限角平分线上点的坐标的符号特征,第一、三象限角平分线上的点的坐标特点为:点的横纵坐标相等;第二、四象限角平分线上的点的坐标特点为:点的横纵坐标互为相反数.18.或【分析】根据题意得出解方程即可求解【详解】依题意得:∵∴或∴或故答案为:或【点睛】本题考查了乘方的意义解一元一次方程熟练掌握乘方的意义是解题的关键解析:6或2-【分析】根据题意得出()2216x -=,解方程即可求解.【详解】依题意得:()2216x -=,∵2416=,()2416-=,∴24x -=或24x -=-,∴6x =或2x =-,故答案为:6或2-.【点睛】本题考查了乘方的意义,解一元一次方程,熟练掌握乘方的意义是解题的关键. 19.98【解析】∵利用已知可以得出此图形可以分为横向与纵向分析水平距离等于AB 铅直距离等于(AD-1)×2又∵长AB=50米宽BC=25米∴小明沿着小路的中间出口A 到出口B 所走的路线(图中虚线)长为50解析:98【解析】∵利用已知可以得出此图形可以分为横向与纵向分析,水平距离等于AB ,铅直距离等于(AD -1)×2,又∵长AB =50米,宽BC =25米,∴小明沿着小路的中间出口A 到出口B 所走的路线(图中虚线)长为50+(25-1)×2=98米,故答案为98.20.6【分析】分别解出两不等式的解集再求其公共解然后求得整数解进行相乘即可【详解】解:由①得;由②得∴不等式组的解集为∴不等式组的解集中所有整数解有:23∴故答案为:6【点睛】此题考查了一元一次不等式组 解析:6【分析】分别解出两不等式的解集,再求其公共解,然后求得整数解进行相乘即可.【详解】解:460930->⎧⎨-≥⎩①②x x 由①得32x > ;由②得3x ≤∴不等式组的解集为332x <≤, ∴不等式组的解集中所有整数解有:2,3,∴23=6⨯ ,故答案为:6.【点睛】此题考查了一元一次不等式组的整数解.解题的关键在于正确解得不等式组或不等式的解集,然后再根据题目中对于解集的限制得到下一步所需要的条件,再根据得到的条件进而求得不等式组的整数解.三、解答题21.(1)x≤4;(2)1<x≤3.【分析】(1)先去分母,再去括号、移项、合并同类项、系数化为1得到解集;(2)分别解不等式即可得到不等式组的解集.【详解】解:(1)去分母,得:3(x ﹣2)﹣6≤2(4﹣x ),去括号,得:3x ﹣6﹣6≤8﹣2x ,移项,得:3x+2x≤8+6+6,合并同类项,得:5x≤20,系数化为1,得:x≤4;(2)解不等式①,得:x≤3,解不等式②,得:x >1,则不等式组的解集为1<x≤3.【点睛】此题考查解不等式及不等式组,掌握解不等式的方法是解题的关键.22.(1)第一周至少销售红心猕猴桃400千克;(2)a 的值为10.【分析】(1)设第一周销售红心猕猴桃x 千克.则黄心猕猴桃(x ﹣200)千克,根据总价=单价×数量结合总销售额不低于6600元,即可得出关于x 的一元一次不等式,解之取其中最小值即可得出结论;(2)根据总价=单价×数量,结合两种水果第二周的总销售额比第一周增加了711a %的基础上还多了280元,即可得出关于a 的一元一次方程,解之取其正值即可得出结论.【详解】(1)设第一周销售红心猕猴桃x 千克.则黄心猕猴桃(x ﹣200)千克,根据题意得:12x+9(x ﹣200)≥6600,解得:x≥400,答:第一周至少销售红心猕猴桃400千克;(2)根据题意得:12×400(1+43a%)+9×200(1+13a%)=6600(1+711a %)+280, 解得:a=10.答:a 的值为10.【点睛】本题考查了一元一次方程的应用以及一元一次不等式的应用,解题的关键是:(1)根据各数量之间的关系,正确列出一元一次不等式;(2)找准等量关系,正确列出一元一次方程.23.该市去年外来旅游的人数为100万人和外出旅游的人数为80万人【分析】设该市去年外来旅游的人数为x 万人和外出旅游的人数为y 万人,根据题意列二元一次方程组解答.【详解】设该市去年外来旅游的人数为x 万人和外出旅游的人数为y 万人,则 20(130%)(120%)226x y x y -=⎧⎨+++=⎩,解得10080x y =⎧⎨=⎩答:该市去年外来旅游的人数为100万人和外出旅游的人数为80万人.【点睛】此题考查二元一次方程组的实际应用,正确理解题意是解题的关键.24.(1)A (−1,6),B (−2,0),C (−4,3);(2)见解析;(3)7.5.【分析】(1)根据A ,B ,C 的位置写出坐标即可;(2)分别作出A ,B ,C 关于y 轴对称的对应点A′,B′,C′,依次连接各点即可; (3)利用割补法求三角形的面积即可.【详解】解:(1)A (−1,6),B (−2,0),C (−4,3).(2)如图,△A'B'C'即为所求.(3)S △ABC =3×6−12×3×3−12×2×3−12×1×6=7.5. 【点睛】 本题考查作图−轴对称变换,解题的关键是熟练掌握轴对称变换的性质. 25.(1)32x =或32x =-;(2)4 【分析】(1)利用开方要根的概念求出x 的值即可;(2)根据实数混合运算的法则进行计算即可.【详解】解:(1)294x = 32x =或3-2x = (2)原式=5+2﹣3=4.【点睛】 本题考查的是实数的运算,熟知实数混合运算的法则是解答此题的关键. 26.证明见解析【分析】根据平行线的判定与性质即可得证.【详解】解:∵12∠=∠,∴//BD CE ,∴C ABD ∠=∠,∵C D ∠=∠,∴D ABD ∠=∠,AC DF,∴//∠=∠.∴A F【点睛】本题考查平行线的判定与性质,熟练运用平行线的判定与性质定理是解题的关键.。
华东师大版七年级数学下册期末考试题及答案【完整版】

华东师大版七年级数学下册期末考试题及答案【完整版】班级:姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a,b满足方程组51234a ba b+=⎧⎨-=⎩则a+b的值为()A.﹣4 B.4 C.﹣2 D.22.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60 C.76 D.803.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是( )秒A.2.5 B.3 C.3.5 D.44.一副三角板按如图方式摆放,且∠1的度数比∠2的度数大50°,若设∠1=x°,∠2=y°,则可得到方程组为A.x y50{x y180=-+=B.x y50{x y180=++=C.x y50{x y90=++=D.x y50{x y90=-+=5.若数a 使关于x 的不等式组232x a x a ->⎧⎨-<-⎩无解,且使关于x 的分式方程5355ax x x-=---有正整数解,则满足条件的整数a 的值之积为( ) A .28 B .﹣4 C .4 D .﹣26.如图,在△ABC 中,∠ABC ,∠ACB 的平分线BE ,CD 相交于点F ,∠ABC =42°,∠A =60°,则∠BFC 的度数为( )A .118°B .119°C .120°D .121°7.下列各组数中,能作为一个三角形三边边长的是( )A .1,1,2B .1,2,4C .2,3,4D .2,3,58.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是 ( )A .20{3210x y x y +-=--=, B .210{3210x y x y --=--=, C .210{3250x y x y --=+-=, D .20{210x y x y +-=--=, 9.如图,将矩形ABCD 沿对角线BD 折叠,点C 落在点E 处,BE 交AD 于点F ,已知∠BDC =62°,则∠DFE 的度数为( )A .31°B .28°C .62°D .56° 10.计算()233a a ⋅的结果是( )A .8aB .9aC .11aD .18a 二、填空题(本大题共6小题,每小题3分,共18分)1.因式分解:x 3﹣4x=________.2.如图,四边形ACDF 是正方形,CEA ∠和ABF ∠都是直角,且点,,E A B 三点共线,4AB =,则阴影部分的面积是__________.3.如图,点E 是AD 延长线上一点,如果添加一个条件,使BC ∥AD ,则可添加的条件为__________.(任意添加一个符合题意的条件即可)4.如图,圆柱形玻璃杯高为14cm ,底面周长为32cm ,在杯内壁离杯底5cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm 与蜂蜜相对的点A 处,则蚂蚁从外壁A 处到内壁B 处的最短距离为_____cm (杯壁厚度不计).5.对于任意实数a 、b ,定义一种运算:a ※b=ab ﹣a+b ﹣2.例如,2※5=2×5﹣2+5﹣2=ll .请根据上述的定义解决问题:若不等式3※x <2,则不等式的正整数解是________.5.若x 的相反数是3,y =5,则x y +的值为_________.三、解答题(本大题共6小题,共72分)1.解下列方程:(1)4x +7=12x ﹣5 (2)4y ﹣3(5﹣y )=6(3)3157146x x ---= (4)20.30.40.50.3a a -+-=12.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2.(1)直接写出a+b ,cd ,m 的值;(2)求a b m cd m +++的值.3.如图,直线AB 、CD 相交于点O ,OE 把BOD ∠分成两部分,(1)直接写出图中AOC ∠的对顶角为________,BOE ∠的邻补角为________;(2)若AOC 70∠=︒,且BOE EOD ∠∠:=2:3,求AOE ∠的度数.4.如图,已知∠ACD=70°,∠ACB=60°,∠ABC=50°.试说明:AB∥CD.5.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?6.某农产品生产基地收获红薯192吨,准备运给甲、乙两地的承包商进行包销.该基地用大、小两种货车共18辆恰好能一次性运完这批红薯,已知这两种货车的载重量分别为14吨/吨和8吨/辆,运往甲、乙两地的运费如下表:(1)求这两种货车各用多少辆;(2)如果安排10辆货车前往甲地,其余货车前往乙地,其中前往甲地的大货车为a辆,总运费为w元,求w关于a的函数关系式;(3)在(2)的条件下,若甲地的承包商包销的红薯不少于96吨,请你设计出使总运费最低的货车调配方案,并求出最低总运费.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、D4、C5、B6、C7、C8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、x(x+2)(x﹣2)2、83、∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE4、205、16、2或-8三、解答题(本大题共6小题,共72分)1、(1) x=32;(2) y=3;(3)x=﹣1;(4)a=4.4.2、(1)a+b=0,cd=1,m=±2;(2)3或-13、(1)∠BOD;∠AOE;(2)152°.4、证明略5、(1)30;(2)①补图见解析;②120;③70人.6、(1)大货车用8辆,小货车用10辆;(2)w=70a+11400(0≤a≤8且为整数);(3)使总运费最少的调配方案是:3辆大货车、7辆小货车前往甲地;5辆大货车、3辆小货车前往乙地.最少运费为11610元.。
【华东师大版】七年级数学下期末试卷含答案

一、选择题1.如图,按下面的程序进行运算,规定:程序运行到“判断结果是否大于28”为一次运算,若运算进行了3次才停止,则x 的取值范围是( )A .24x <≤B .24x ≤<C .24x <<D .24x ≤≤2.不等式组1322<4x x ->⎧⎨-⎩的解集是( ) A .4x > B .1x >- C .14x -<< D .1x <- 3.把某一段公路的一侧全部栽上银杏树,要求路的两端各栽一棵,并且每两棵树的间隔相等.如果每隔5米栽1棵,则树苗缺21棵;如果每隔6米栽1棵,则树苗正好用完.设原有树苗x 棵,公路长为y 米.根据题意,下面所列方程组中正确的是( )A .6(1)5(211)y x x y =-⎧⎨+-=⎩B .6(1)5(21)y x x y =-⎧⎨+=⎩C .65(211)y x x y =⎧⎨+-=⎩D .65(21)y x x y =⎧⎨+=⎩4.某校体育器材室有篮球和足球共66个,其中篮球比足球的2倍多3个,设篮球有x 个,足球有y 个,根据题意可得方程组( )A .x y 66 x 2y 3+=⎧⎨=-⎩ B .x y 66 x 2y 3+=⎧⎨=+⎩ C .x y 66 y 2x 3+=⎧⎨=-⎩ D .x y 66 y 2x 3+=⎧⎨=+⎩ 5.不等式组1030x x -≤⎧⎨+>⎩中的两个不等式的解集在同一个数轴上表示正确的是( ) A .B .C .D .6.已知x=2是不等式()()5320x ax a --+≤的解,且x=1不是这个不等式的解,则实数a 的取值范围是( )A .a >1B .a≤2C .1<a≤2D .1≤a≤2 7.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有醇酒一斗,值钱五十;行酒一斗,值钱一十;今将钱三十,得酒二斗,问醇、行酒各得几何?”意思是:今有醇酒(优质酒)1斗,价值50钱;行酒(劣质酒)1斗,价值10钱;现用30钱,买得2斗酒,问分别能买到多少醇酒与行酒?设用30钱能买得的2斗酒里,买到醇酒x 斗,买到行酒y 斗,根据题意可列方程组为( )A .5010302x y x y +=⎧⎨+=⎩B .5010302y x x y +=⎧⎨+=⎩C .5010230x y x y +=⎧⎨+=⎩D .5010230y x x y +=⎧⎨+=⎩8.与方程529x y +=-构成的方程组,其解为33x y =-⎧⎨=⎩的是( ) A .21x y += B .328x y +=- C .348x y -=- D .543x y +=- 9.如图是医院、公园和超市的平面示意图,超市B 在医院O 的南偏东25︒的方向上,且到医院的距离为300m ,公园A 到医院O 的距离为400m .若∠90AOB =︒,则公园A 在医院O 的( )A .北偏东75︒方向上B .北偏东65︒方向上C .北偏东55︒方向上D .北偏西65°方向上10.在平面直角坐标系xOy 中,对于点P (x ,y ),我们把点P ′(﹣y +1,x +1)叫做点P 的伴随点.已知点A 1的伴随点为A 2,点A 2的伴随点为A 3,点A 3的伴随点为A 4…,这样依次得到点A 1,A 2,A 3,…,A n ,若点A 1的坐标为(3,1),则点A 2019的坐标为( ) A .(0,﹣2) B .(0,4) C .(3,1)D .(﹣3,1) 11.下列说法正确的是( ) A .2-是4-的平方根B .2是()22-的算术平方根C .()22-的平方根是2D .8的平方根是412.已知:如图,直线a ∥b ,∠1=50°,∠2=∠3,则∠2的度数为( )A .50°B .60°C .65°D .75°二、填空题13.不等式组324111 2xxxx≤-⎧⎪⎨--<+⎪⎩的整数解是_________.14.已知方程组3951x y ax y a+=+⎧⎨-=+⎩的解为正数,求a的取值范围是_______.15.重庆某快递公司规定:寄件不超过1kg的部分按起步价计费,超过1kg不足2kg,按照2kg收费;超过2kg不足3kg按照3kg收费,以此类推.某产家分别寄快递到重庆市内和北京,其中,寄往重庆市内的起步价为a元,超过部分b元/kg;寄往北京的起步价为()7a+元,超过部分()4b+元/kg.已知一个寄往重庆市内的快件,质量为2kg,收费13元;一个寄往北京的快件,质量为4.5kg,收费42元.如果一个寄往北京的快件,质量为2.8kg,应收费______元.16.某风景区有4个相同的出口、4个相同的入口,假设在任何情况下每个入口的人数均是匀速出入,每个出口的人数均是匀速出入,当风景区人数已达到可容纳人数的20%时,若同时开放4个入口和2个出口,则1.6小时刚好达到可容纳人数;若同时开放2个入口和2个出口,则8小时刚好达到可容纳人数.受疫情影响,2020年五一期间,该风景区游览人数只允许达到平时可容纳人数的60%,当风景区人数已达到平时可容纳人数的10%时,若同时开放3个入口和2个出口,则经过__________小时刚好达到平时可容纳人数的60%.17.小华在小明南偏西75°方向,则小明在小华______方向.(填写方位角)18.已知点()3,2P-,//MP x轴,6MP=,则点M的坐标为______.19.(1)小明解方程2x1x a332-+=-去分母时,方程右边的−3忘记乘6,因而求出的解为x=2,则原方程正确的解为多少?(2)设x,y是有理数,且x,y满足等式2x2y2y1742++=-,求x-y的值.20.如图,点О为直线AB上一点,,,135OC OD OE AB⊥⊥∠=︒.(1)EOD∠= °,2∠= °;(2)1∠的余角是_ ,EOD∠的补角是__ .三、解答题21.某校购买了A 型课桌椅100套和B 型课桌椅150套供学生使用,共付款53000元.已知每套A 型课桌椅比每套B 型课桌椅多花30元.(1)求该校购买每套A 型课桌椅和每套B 型课桌椅的钱数.(2)因学生人数增加,该校需再购买A 、B 型课桌椅共100套,只有资金22000元,求最多能购买A 型课桌椅的套数.22.某电影院某日某场电影的票价是:成人票30元,学生票15元,满50人可以购团体票(不足50人可按50人计算,票价打9折).某班在4位老师的带领下去电影院看电影,学生人数为x 人.(1)若按个人票购买,该班师生买票共付费_________元(用含x 的代数式表示);若按团体票购买,该班师生买票共付费___________(用含x 的代数式表示,且46x ≥) (2)①如果该班学生人数为36人,该班师生买票最少可付费多少元?②如果该班学生人数为42人,该班师生买票最少可付费多少元?(3)用含x 的代数式表示该班买票最少应付多少元?23.如图,线段AB 上有一点C ,D 为线段BC 的中点,E 为线段AC 上一点,EC =4AE , AB =25(1)若AD =20,求AE 的长;(2)若DE =14,求BC 的长24.在平面直角坐标系中,已知(0,1)A ,(2,0)B ,(4,3)C .(1)在给出的平面直角坐标系中画出ABC ∆;(2)已知P 为x 轴上一点,若ABP ∆的面积为2,求点P 的坐标.25.把下列各数的序号填入相应的括号内①-3,②π,327-,④-3.14,2,⑥0,⑦227,⑧-1,⑨1.3,⑩1.8080080008…(两个“8”之间依次多一个“0”). 整数集合{ …},负分数集合{ …},正有理数集合{ …},无理数集合{ …}.26.如图,AD 平分∠BAC ,点E ,F 分别在边BC ,AB 上,且∠BFE =∠DAC ,延长EF ,CA 交于点G ,求证:∠G =∠AFG .【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据程序运算进行了3次才停止,即可得出关于x 的一元一次不等式组:()()33222833322228x x ⎧--≤⎪⎨⎡⎤--->⎪⎣⎦⎩,解之即可得出x 的取值范围. 【详解】解:依题意,得:()()33222833322228x x ⎧--≤⎪⎨⎡⎤--->⎪⎣⎦⎩①②, 由①得:936x ≤4x ∴≤,由②得:()398x ->30,98x ∴->10,x >2,所以不等式组的解集为:24x <≤.故选:A .【点睛】本题考查了程序框图中的一元一次不等式组的应用,找准不等关系,正确列出一元一次不等式组是解题的关键.2.A解析:A【分析】首先求出不等式组中每一个不等式的解集,再求出其公共解集.【详解】解:解不等式13x ->得4x >,解不等式224x -<得1x >-,∴不等式组的解集为4x >.【点睛】此题主要考查了解一元一次不等式组,关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.3.A解析:A【分析】设原有树苗x 棵,公路长为y 米,由栽树问题“栽树的棵数=分得的段数+1”,建立方程组即可.【详解】设原有树苗x 棵,公路长为y 米,由题意,得6(1)5(211)y x x y =-⎧⎨+-=⎩, 故选:A .【点睛】本题考查了由实际问题抽象出二元一次方程组.关键是找出题目中的相等关系,有的题目所含的等量关系比较隐藏,要注意仔细审题,耐心寻找.4.B解析:B【分析】根据题中的等量关系列方程组即可【详解】解:依题意,得:x y 66x 2y 3+=⎧⎨=+⎩. 故选:B .【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.5.A解析:A【分析】先分别解两个不等式得到x≤1和x >-3,然后利用数轴分别表示出x≤1和x >-3,于是可得到正确的选项.【详解】解不等式x-1≤0得x≤1,解不等式x+3>0得x>-3,所以不等式组的两个不等式的解集在同一个数轴上表示为:.故选:A.【点睛】本题考查了在数轴上表示不等式的解集:用数轴表示不等式的解集时,要注意“两定”:一是定界点,一般在数轴上只标出原点和界点即可.定边界点时要注意,点是实心还是空心,若边界点含于解集为实心点,不含于解集即为空心点;二是定方向,定方向的原则是:“小于向左,大于向右”.6.C解析:C【解析】∵x=2是不等式(x−5)(ax−3a+2)⩽0的解,∴(2−5)(2a−3a+2)⩽0,解得:a⩽2,∵x=1不是这个不等式的解,∴(1−5)(a−3a+2)>0,解得:a>1,∴1<a⩽2,故选C.7.A解析:A【分析】设醇酒为x斗,行酒为y斗,根据两种酒共用30钱,共2斗的等量关系列出方程组即可.【详解】解:由题意,得2 501030 x yx y+=⎧⎨+=⎩,故选A.【点睛】本题考查了二元一次方程组的应用,弄清题意,找准等量关系列出相应的方程是解题的关键.8.D解析:D【分析】将解33xy=-⎧⎨=⎩代入选项中验证即可求解.【详解】解:A.33xy=-⎧⎨=⎩不是方程21x y+=的解,该项不符合题意;B.33xy=-⎧⎨=⎩不是方程328x y+=-的解,该项不符合题意;C.33xy=-⎧⎨=⎩不是方程348x y-=-的解,该项不符合题意;D.33xy=-⎧⎨=⎩是方程543x y+=-的解,该项符合题意;故选:D.【点睛】本题考查二元一次方程组的解,理解二元一次方程组的解的定义是解题的关键.9.B解析:B【解析】分析:首先根据勾股定理得出公园A到超市B的距离为500m,再计算出∠AOC的度数,进而得到∠AOD的度数.本题∵∠AOB=90°,∴3002+4002=5002,∴公园A到超市B的距离为500m∵超市在医院的南偏东25°的方向,∴∠COB=90°−25°=65°,∴∠AOC=90°−65°=25°,∴∠AOD=90°−25°=65°,故选B.10.D解析:D【分析】根据“伴随点”的定义依次求出各点,不难发现,每4个点为一个循环组依次循环,用2019除以4,根据商和余数的情况确定点A2019的坐标即可.【详解】解:∵A1的坐标为(3,1),∴A2(0,4),A3(﹣3,1),A4(0,﹣2),A5(3,1),…,依此类推,每4个点为一个循环组依次循环,∵2019÷4=504…3,∴点A2019的坐标与A3的坐标相同,为(﹣3,1).故选:D.【点睛】本题主要考查点的坐标规律,读懂题目信息,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键.11.B解析:B【分析】根据平方根、算术平方根,即可解答.【详解】A选项:4-没有平方根,故A错误;-=,4的算术平方根为2,故B正确;B选项:()224-=,4的平方根为2±,故C错误;C选项:()224D选项:8的平方根为±,故D错误故选B.【点睛】本题考查了平方根、算术平方根,解决本题的关键是熟记平方根、算术平方根的概念.12.C解析:C【分析】根据平行线的性质,即可得到∠1+∠2+∠3=180°,再根据∠2=∠3,∠1=50°,即可得出∠2的度数.【详解】∵a∥b,∴∠1+∠2+∠3=180°,又∵∠2=∠3,∠1=50°,∴50°+2∠2=180°,∴∠2=65°,故选:C.【点睛】本题主要考查了平行线的性质,角平分线的定义,解题时注意:两直线平行,同旁内角互补.二、填空题13.【分析】先求出每个不等式的解集然后得到不等式组的解集再求出整数解即可【详解】解:解不等式①得;解不等式②得;∴不等式组的解集为:;∴不等式组的整数解是;故答案为:【点睛】本题考查了解一元一次不等式组x=-解析:4【分析】先求出每个不等式的解集,然后得到不等式组的解集,再求出整数解即可.【详解】解:3241112x x x x ≤-⎧⎪⎨--<+⎪⎩①②, 解不等式①,得4x ≤-;解不等式②,得5x >-;∴不等式组的解集为:54x -<≤-;∴不等式组的整数解是4x =-;故答案为:4x =-.【点睛】本题考查了解一元一次不等式组,解题的关键是熟练掌握解一元一次不等式组的方法进行解题.14.-<<4【分析】先解方程组用含a 的式子表示方程组的解根据方程组的解是正数列出关于a 的不等式组再求解【详解】解:①+②得:①-②得:所以原方程组的解为:∵方程组的解为正∴>0且>0解得:-<<4故填: 解析:-54<a <4 【分析】先解方程组用含a 的式子表示方程组的解,根据方程组的解是正数,列出关于a 的不等式组,再求解.【详解】 解:3951x y a x y a +=+⎧⎨-=+⎩①②, ①+②得:2810x a =+,45x a =+,①-②得:228y a =-+,4y a =-+,所以,原方程组的解为:454x a y a =+⎧⎨=-+⎩, ∵ 方程组的解为正,∴45a +>0且4a -+>0, 解得:-54<a <4, 故填:-54<a <4. 【点睛】本题考查了方程组的解法,以及一元一次不等式组的解法,解此类问题要先用字母a 表示方程组的解,再根据题意,列不等式组,最后求解.15.30【分析】根据分别寄快递到上海和北京的快递质量和费用即可得出关于ab 的二元一次方程组解之然后根据28kg 按照3kg 收费即可得出应收费【详解】解:依题意得:解得寄往北京市快件重28kg 按照3kg 收费解析:30【分析】根据分别寄快递到上海和北京的快递质量和费用,即可得出关于a ,b 的二元一次方程组,解之,然后根据2.8kg 按照3kg 收费即可得出应收费.【详解】解:依题意,得:137(51)(4)42a b a b +=⎧⎨++-+=⎩, 解得112a b =⎧⎨=⎩, 寄往北京市快件重2.8kg 按照3kg 收费,应收费:7(31)(4)1172(24)30a b ++-+=++⨯+=元,故答案为:30.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.16.【分析】设每个入口每小时可进可容纳人数的每个出口每小时可出可容纳人数的根据当风景区人数已达到可容纳人数的20时若同时开放4个入口和2个出口则16小时刚好达到可容纳人数;若同时开放2个入口和2个出口则 解析:53【分析】设每个入口每小时可进可容纳人数的%x ,每个出口每小时可出可容纳人数的%y ,根据“当风景区人数已达到可容纳人数的20%时,若同时开放4个入口和2个出口,则1.6小时刚好达到可容纳人数;若同时开放2个入口和2个出口,则8小时刚好达到可容纳人数”,即可得出关于,x y 的二元一次方程组,解之即可得出,x y 的值,再将其代入60%10%3%2%x y --即可求出结论.【详解】解:设每个入口每小时可进可容纳人数的%x ,每个出口每小时可出可容纳人数的%y , 依题意,得: 1.64 1.62100208282=10020x y x y ⨯-⨯=-⎧⎨⨯-⨯-⎩, 解得:2015x y =⎧⎨=⎩,∴60%10%50%5 3%2%320%215%3x y-== -⨯-⨯.故答案为:53.【点睛】本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.17.北偏东75°【分析】依据物体位置利用平行线的性质解答【详解】如图有题意得∠CAB=∵AC∥BD∴∠DBA=∠CAB=∴小明在小华北偏东75°方向故答案为:北偏东75°【点睛】此题考查了两个物体的位置解析:北偏东75°【分析】依据物体位置,利用平行线的性质解答.【详解】如图,有题意得∠CAB=75︒,∵AC∥BD,∴∠DBA=∠CAB=75︒,∴小明在小华北偏东75°方向,故答案为:北偏东75°..【点睛】此题考查了两个物体的位置的相对性,两直线平行内错角相等,分别以小明和小华的位置为观测点利用平行线的性质解决问题是解题的关键.18.(9﹣2)或(﹣3﹣2)【分析】根据平行线的性质可得点M的纵坐标与点P的纵坐标相同是﹣2再根据MP=6即可求出点M的坐标【详解】解:∵点P(3−2)MP//x轴∴点M的横坐标与点P的横坐标相同是﹣2解析:(9,﹣2)或 (﹣3,﹣2)【分析】根据平行线的性质可得点M的纵坐标与点P的纵坐标相同,是﹣2,再根据MP=6,即可求出点M的坐标.【详解】解:∵点P(3,−2), MP//x 轴,∴点M 的横坐标与点P 的横坐标相同,是﹣2,又∵MP =6,∴点M 的横坐标为为3+6=9,或3−6=−3,∴点M 的坐标为 (9,﹣2)或 (﹣3,﹣2).故答案为:(9,﹣2)或 (﹣3,﹣2).【点睛】本题考查了点坐标的问题,掌握平行线的性质、点坐标的性质是解题的关键.19.(1)x =−13;(2)(2)x-y 的值为9或-1【分析】(1)将错就错把x =2代入计算求出a 的值即可确定出正确的解;(2)根据题意可以求得xy 的值从而可以求得x−y 的值【详解】(1)把x =2代入2解析:(1)x =−13;(2)(2)x-y 的值为9或-1.【分析】(1)将错就错把x =2代入计算求出a 的值,即可确定出正确的解;(2)根据题意可以求得x 、y 的值,从而可以求得x−y 的值.【详解】(1)把x =2代入2(2x−1)=3(x +a )−3中得:6=6+3a−3,解得:a =1, 代入方程得:2x 1x 1332-+=-, 去分母得:4x−2=3x +3−18,解得:x =−13;(2)∵x 、y 是有理数,且 x ,y 满足等式2x 2y 17++=-∴22174x y y ⎧+=⎨=-⎩, 解得,54x y =⎧⎨=-⎩或54x y =-⎧⎨=-⎩, ∴当x =5,y =−4时,x−y =5−(−4)=9,当x =−5,y =−4时,原式=−5−(−4)=−1.故x-y 的值为9或-1.【点睛】此题考查了解一元一次方程,熟练掌握运算法则是解本题的关键.也考查了实数. 20.(1)3555;(2)与【分析】(1)由可得所以所以已知的度数即可得出与的度数;(2)由(1)可得的余角是与要求的补角即要求的补角的补角是【详解】(1);(2)由(1)可得的余角是与的补角是的补角是解析:(1)35,55;(2)COE ∠与2∠,COB ∠【分析】(1)由OC OD ⊥,OE AB ⊥可得=90COD ∠︒,=90AOE ∠︒,所以1290∠+∠=︒,190COE ∠+∠=︒,90EOD COE ∠+∠=︒,所以1=EOD ∠∠,已知1∠的度数,即可得出2∠与EOD ∠的度数;(2)由(1)可得1∠的余角是COE ∠与2∠,要求EOD ∠的补角,即要求1∠的补角,1∠的补角是COB ∠.【详解】(1)OC OD ⊥,OE AB ⊥,∴=90COD ∠︒,=90AOE ∠︒,∴1290∠+∠=︒,190COE ∠+∠=︒,90EOD COE ∠+∠=︒,∴1=EOD ∠∠,135∠=︒,∴255∠=︒,35=EOD ∠︒;(2)由(1)可得1∠的余角是COE ∠与2∠,1180COB =∠∠+︒,∴1∠的补角是COB ∠,∴EOD ∠的补角是COB ∠.故答案为:(1)35,55;(2)COE ∠与2∠,COB ∠.【点睛】本题主要考查余角、补角以及垂直的定义,熟记补角、余角以及垂直的定义是解题关键.三、解答题21.(1)该校购买每套A 型课桌椅需230元,购买每套B 型课桌椅需200元.(2)最多能购买A 型课桌椅66套.【分析】(1)设该校购买每套B 型课桌椅需x 元,则购买每套A 型课桌椅需(x+30)元,根据购买A 型课桌椅100套和B 型课桌椅150套共需53000元,即可得出关于x 的一元一次方程,解之即可得出结论;(2)设可以购买A 型课桌椅m 套,则购买B 型课桌椅(100-m )套,根据总价=单价×数量结合总价不超过22000元,即可得出关于m 的一元一次不等式,解之即可得出m 的取值范围,再取其中的最大整数值即可得出结论.【详解】解:(1)设该校购买每套B 型课桌椅需x 元,则购买每套A 型课桌椅需(30)x +元, 依题意得:100(30)15053000x x ++=,解得:200x =,30230x ∴+=.答:该校购买每套A 型课桌椅需230元,购买每套B 型课桌椅需200元.(2)设可以购买A 型课桌椅m 套,则购买B 型课桌椅(100)m -套,依题意得:230200(100)22000m m +-,解得:2003m. 又m 为整数,m ∴可以取的最大值为66.答:最多能购买A 型课桌椅66套.【点睛】本题考查了一元一次方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)根据各数量之间的关系,正确列出一元一次不等式.22.(1)()15120x +;()13.5108x +;(2)①660元;②729元;(3)若040x <≤时,该班买票至少应付()12015x +元;若4146x ≤≤时,该班买票至少应付729元;若46x >时,该班买票至少应付()10813.5x +元.【分析】(1)若按个人票购买,则费用为(4×30+15x )元;若按团体票购买,该班师生买票共付费(4×30×0.9+15x ×0.9)元;(2)①把x =36代入计算即可求解,注意团体票x 不足46取46;②把x =42代入计算即可求解,注意团体票x 不足46取46;(3)先计算学生人数为x 时,购团体票比实际票便宜时的人数为x ≥40 35;因此根据此结果分三种情况计算:①若41≤x ≤46时,购团体最少;②若x >46时,按实际打折计算;③若0<x ≤40时,按实际不打折计算.【详解】解:(1)()4301515120x x ⨯+=+元,所以若按个人票购买,该班师生买票共付费()15120x +元;()4300.9150.913.5108x x ⨯⨯+⋅=+元.所以若按团体票购买,该班师生买票共付费()13.5108x +元;故答案为:()15120x +;()13.5108x +;(2)①当按个人票购买时,1536120660⨯+=(元),当按团体票购买时,13.546108729⨯+=(元).所以该班师生买票最少可付费660元;②当按个人票购买时,1542120750⨯+=(元),当按团体票购买时,13.546108729⨯+= (元).所以该班师生买票最少可付费729元;(3)依题意有()4301543046150.9x ⨯+≥⨯+⨯⨯,15609x ≥,解得3405x ≥, ①若4146x ≤≤时,最好团体购票,则需费用:()43046150.98100.9729⨯+⨯⨯=⨯=(元),②若46x >时,则需费用为:()430150.910813.5x x ⨯+⨯=+(元),③若040x <≤时,则需费用:4301512015x x ⨯+=+(元),答:若040x <≤时,该班买票至少应付()12015x +元;若4146x ≤≤时,该班买票至少应付729元;若46x >时,该班买票至少应付()10813.5x +元.【点睛】本题考查了列代数式,代数式求值以及用一元一次不等式解决问题,求代数式的值可以直接代入、计算.如果给出的代数式可以化简,要先化简再求值.23.(1)AE=3;(2)BC=20【分析】(1)设AE =a ,CD =b ,根据线段的和差倍数关系即可求解;(2)设AE =a ,CD =b ,根据线段的和差倍数关系即可求解;【详解】解:(1)设AE =a ,CD =b ,∵EC =4AE ,D 为线段BC 的中点,∴CE =4a ,AC =AE +CE =5a ,BC =2b ,∵AD =20,AB =25∴AC +CD =5a +b =20AC +BC =5a +2b =25解得:a =3,b =5即AE =a =3;(2)设AE =a ,CD =b ,∵EC =4AE ,D 为线段BC 的中点,∴CE =4a ,BC =2b ,∵DE =CE +CD =4a +b =14AB =AE +CE +BC =5a +2b =25解得:a =1,b =10即BC =2b =20.【点睛】本题考查两点间的距离和二元一次方程组,解题的关键是熟练掌握线段中点的性质及线段的和差倍数.24.(1)详见解析;(2)(﹣2,0)或(6,0)【分析】(1)在平面直角坐标系中描出对应点,然后连线即可;(2)根据题意求得PB,分两种情况讨论即可求得P的坐标.【详解】(1)在平面直角坐标系中画出△ABC如图所示:(2)由题意可知△ABP的面积=12×PB×OA=2∵OA=1,∴PB=4,∴P(﹣2,0)或(6,0).【点睛】本题考查了坐标与图形性质,三角形的面积,重点是掌握平面直角坐标系内点的特征.25.见解析.【分析】先求出立方根,再根据整数、负分数、正有理数、无理数的定义即可得.【详解】3273-=-,26.见解析【分析】先利用角平分线的定义得到∠BAD=∠DAC,结合已知条件∠BFE=∠DAC,可得∠BFE=∠BAD,根据平行线的判定可证EG∥AD,再由平行线的性质得∠G=∠DAC,∠AFG=∠BAD,则利用等量代换即可证得结论.【详解】证明:∵AD平分∠BAC,∴∠BAD=∠DAC,∵∠BFE=∠DAC,∴∠BFE=∠BAD,∴EG∥AD,∴∠G=∠DAC,∠AFG=∠BAD,∴∠G=∠AFG.【点睛】本题考查了平行线的判定与性质,掌握平行线的判定的方法及利用性质证明角相等是解答此题的关键.。
【华东师大版】七年级数学下期末试卷附答案

一、选择题1.如图,在数轴上标出若干个点,每相邻的两个点之间的距离都是1个单位,点A 、B 、C 、D 表示的数分别是整数a 、b 、c 、d ,且满足2319a d ,则b c +的值为( )A .3-B .2-C .1-D .02.解方程组229229232x y y z z x +=⎧⎪+=⎨⎪+=⎩得x 等于( )A .18B .11C .10D .9 3.已知方程组2325x y x y +=⎧⎨-=⎩,则39x y +的值为( ) A .2- B .2 C .6- D .64.与方程529x y +=-构成的方程组,其解为33x y =-⎧⎨=⎩的是( ) A .21x y += B .328x y +=- C .348x y -=-D .543x y +=- 5.若点P(3a+5,-6a-2)在第四象限,且到两坐标轴的距离相等,则a 的值为( ) A .-1 B .79- C .1 D .26.如图,一个粒子在第一象限内及x 轴,y 轴上运动,第一分钟内从原点运动到(1,0),第二分钟从(1,0)运动到(1,1),而后它接着按图中箭头所示的与x 轴,y 轴平行的方向来回运动,且每分钟移动1个长度单位,那么,第2017分钟时,这个粒子所在位置的坐标是( )A .(7,44)B .(8,45)C .(45,8)D .(44,7) 7.下列各组数中都是无理数的为( )A .0.07,23,π;B .0.7•,π2;C 26,π;D .0.1010101……101,π38.有下列命题:①两点之间,线段最短;②相等的角是对顶角;③当a ≥0时,|a |=a ;④内错角互补,两直线平行.其中是真命题的有( )A .1个B .2个C .3个D .4个9.若关于x 的不等式组0722x m x -<⎧⎨-≤⎩的整数解共有3个,则m 的取值范围是( ) A .5<m <6B .5<m ≤6C .5≤m ≤6D .6<m ≤7 10.如果点P(m ,1m -)在第四象限,则m 的取值范围是( ) A .0m >B .01m <<C .1m <D .1m 11.如图,有理数a 在数轴上的位置如图所示,下列各数中,大小一定在0至1之间的是( )A .aB .1a +C .1-aD .1a- 12.若关于 x?的不等式组2x 1x 3x a +<-⎧⎨>⎩无解,则实数 a?的取值范围是( ) A .a 4<- B .a 4=- C .a 4?≥- D . a 4>-二、填空题13.不等式组233225x x x -≥⎧⎨+>-⎩的解集是__________. 14.已知一个两位数,它的十位上的数字与个位上的数字和是3,若颠倒个位数字与十位数字的位置,得到的新数比原数小9,求这个两位数是_____.15.若2|327|(521)0a b a b +++-+=,则a b +=______.16.对于平面坐标系中任意两点()11,A x y ,()22,B x y 定义一种新运算“*”为:()()()11221221,*,,x y x y x y x y =.若()11,A x y 在第二象限,()22,B x y 在第三象限,则*A B 在第_________象限.17.如果点P (a ﹣1,a +2)在x 轴上,则a 的值为_____.18.“比差法”是数学中常用的比较两个数大小的方法,即0,0,0,a b a b a b a b a b a b ->>⎧⎪-==⎨⎪-<<⎩则则则 192与2的大小;1922194-=, 161925<<,则4195<<,19221940-=>,1922>.请根据上述方法解答以下问题:(1329_______3;(2)比较2233-的大小,并说明理由.19.命题“如果两个三角形全等,那么这两个三角形的周长相等”的逆命题是_______命题(填“真”或“假”).20.若干名学生住宿舍,每间住4人,2人无处住;每间住 6人,空一间还有一间不空也不满,问多少学生多少宿舍?设有x间宿舍,则可列不等式组为____三、解答题21.解不等式(组):(1)24123x x---≤;(2)63(4)23253x xx x-≥-⎧⎪⎨++>⎪⎩①②.22.解不等式,并把不等式的解集在数轴上表示出来.(1)6327x x->-;(2)21123x x-+-≤.23.阅读小林同学数学作业本上的截图内容并完成任务.任务:(1)这种解方程组的方法称为________;(2)小林的解法正确吗?________(填“正确”或“不正确”),如果不正确,错在第________步,并选择恰当的方法解该方程组.24.某部队在大西北戈壁滩上进行军事演习,部队司令部把部队分为“蓝军”、“黄军”两方.蓝军的指挥所在A地,黄军的指挥所地B地,A地在B地的正西边(如图).部队司令部在C地.C在A的北偏东60︒方向上、在B的北偏东30方向上.(1)BAC∠=______°;(2)请在图中确定(画出)C的位置,标出字母C;(3)演习前,司令部要蓝军、黄军派人到C地汇报各自的准备情况.黄军一辆吉普车从B地出发、蓝军一部越野车在吉普车出发3分钟后从A地出发,它们同时到达C地.已知吉普车行驶了18分钟.A到C的距离是B到C的距离的1.7倍.越野车速度比吉普车速度的2倍多4千米.求越野车、吉普车的速度及B地到C地的距离(速度单位用:千米/时).25.计算:(1)3168--.(2)()23540.255(4)8⨯--⨯⨯-.26.如图,直线AB 、CD 相交于点O ,OE 平分BOD ∠,OF 平分COE ∠,2AOD BOD =∠∠.(1)求DOE ∠的度数;(2)求BOF ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】先根据数轴上各点的位置可得到d-a=8,与2319a d -=-组成方程组可求出a 、d ,然后根据d-c=3,d-b=4求出b 、c 的值,再代入b+c 即可.【详解】解:由数轴上各点的位置可知d-a=8,d-c=3,d-b=4,82319d a a d -=⎧⎨-=-⎩, 所以35d a =⎧⎨=-⎩ 故c=d-3=0,b=d-4=-1,代入b+c=-1.故选:C .【点睛】本题考查的是数轴上两点间的距离及二元一次方程组的应用,根据题意列出方程组是解题关键.2.C解析:C【分析】利用加减消元法解方程组即可.【详解】229229232x y y z z x +=⎧⎪+=⎨⎪+=⎩①②③,①+②+③得:3x+3y+3z=90.∴x+y+z=30 ④②-①得:y+z-2x=0 ⑤④-⑤得:3x=30∴x=10故答案选:C .【点睛】本题考查的是三元一次方程组的解法,掌握加减消元法是解题的关键.3.C解析:C【分析】方程组两方程相减求出x+3y 的值,进而即可求得3x+9y 的值.【详解】2325x y x y +=⎧⎨-=⎩①②, ①-②得:32x y +=-,∴()39336x y x y +=+=-,故选:C .【点睛】本题考查了求代数式的值以及解二元一次方程组,解二元一次方程组利用了消元的思想,消元的方法有:代入消元法与加减消元法.灵活运用整体代入法是解题的关键. 4.D解析:D 【分析】将解33xy=-⎧⎨=⎩代入选项中验证即可求解.【详解】解:A.33xy=-⎧⎨=⎩不是方程21x y+=的解,该项不符合题意;B.33xy=-⎧⎨=⎩不是方程328x y+=-的解,该项不符合题意;C.33xy=-⎧⎨=⎩不是方程348x y-=-的解,该项不符合题意;D.33xy=-⎧⎨=⎩是方程543x y+=-的解,该项符合题意;故选:D.【点睛】本题考查二元一次方程组的解,理解二元一次方程组的解的定义是解题的关键.5.C解析:C【分析】判断出点P的横坐标与纵坐标互为相反数,然后根据互为相反数的两个数的和等于0列式求解即可.【详解】解:∵点P(3a+5,-6a-2)在第四象限,且到两坐标轴的距离相等,∴3a+5+(-6a-2)=0,解得a=1,此时,3a+5=8,-6a-2=-8,符合.故选:C.【点睛】本题考查了点的坐标,熟记第四象限内到两坐标轴的距离相等的点的横坐标与纵坐标互为相反数是解题的关键.6.D解析:D【分析】根据题意依次写出第一象限角平分线上整数点的坐标及对应的运动分钟数,通过分析发现,点(n,n),运动时间n(n+1)分钟,n为奇数,运动方向向左,n为偶数,运动方向向下,找到规律后,将2017写成44×45+37,可以看做点(44,44)向下运动37个单位长度,进而求出答案.【详解】解:根据已知图形分析:坐标(1,1),2分钟,2=1×2,运动方向向左,坐标(2,2),6分钟,6=2×3,运动方向向下,坐标(3,3),12分钟,12=3×4,运动方向向左,坐标(4,4),20分钟,20=4×5,运动方向向下,由此发现规律,当点坐标(n ,n ),运动时间n (n+1)分钟,n 为奇数,运动方向向左,n 为偶数,运动方向向下,∵2017=44×45+37,∴可以看做点(44,44)向下运动37个单位长度,∴2017分钟后这个粒子所处的位置(坐标)是(44,7).故选:D .【点睛】本题考查了点的坐标的规律变化,解决此类问题的关键是找到特殊点与变化序号之间的关系.7.C解析:C【分析】根据无理数的定义,依次判断即可.【详解】解:A. 0.07,23是有理数,故该选项错误; B .0.7 是有理数,故该选项错误;C ,π都是无理数,故该选项正确;D .0.1010101……101是有理数,故该选项错误.故选:C .【点睛】本题主要考查了无理数的定义.其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.8.B解析:B【分析】根据线段公理、对顶角、绝对值运算、平行线的判定逐个判断即可得.【详解】①两点之间,线段最短,是真命题;②相等的角不一定是对顶角,是假命题;③当0a ≥时,a a =,即非负数的绝对值等于它本身,是真命题;④内错角相等,两直线平行,是假命题;综上,真命题的个数是2个,【点睛】本题考查了线段公理、对顶角、绝对值运算、平行线的判定,熟练掌握各判定定理与性质是解题关键.9.B解析:B【分析】分别求出不等式组中不等式的解集,利用取解集的方法表示出不等式组的解集,根据解集中整数解有3个,即可得到m的范围.【详解】解不等式x﹣m<0,得:x<m,解不等式7﹣2x≤2,得:x≥52,因为不等式组有解,所以不等式组的解集为52≤x<m,因为不等式组的整数解有3个,所以不等式组的整数解为3、4、5,所以5<m≤6.故选:B.【点睛】此题考查了一元一次不等式组的整数解,表示出不等式组的解集,根据题意找出整数解是解本题的关键.10.D解析:D【分析】根据点P(m,1m-)在第四象限列出关于m的不等式组,解之可得.【详解】∵点P(m,1m-)在第四象限,∴10mm>⎧⎨-<⎩,解得m>1,故选:D.【点睛】本题考查了解一元一次不等式组以及点的坐标,正确把握各象限内点的坐标特点是解题关键.11.D解析:D由已知可得a<-1或a<-2,由此可以判断每个选项是正确还是错误.【详解】解:由绝对值的意义及已知条件可知|a|>1,∴A 错误;∵a<-1,∴a+1<0,∴B 错误;∵a<-2有可能成立,此时|a|>2,|a|-1>1,∴C 错误;由a<-1可知-a>1,因此101a<-<,∴D 正确. 故选D .【点睛】本题考查有理数的应用,熟练掌握有理数在数轴上的表示、绝对值、倒数及不等式的性质是解题关键. 12.C解析:C【分析】先解出第一个不等式的解集,再根据题意确定a 的取值范围即可.【详解】解:2x 1x 3x a +<-⎧⎨>⎩①② 解①的:x ﹤﹣4,∵此不等式组无解,∴a≥﹣4,故选:C .【点睛】本题考查一元一次不等式组的解法,熟知不等式组解集应遵循的原则“同大取大,同小取小,大小小大取中间,大大小小无解”是解答的关键.二、填空题13.【分析】把不等式组每个不等式的解集求出来后计算其交集即可得到答案【详解】解:不等式组由①得:由②得:x>-7∴不等式组的解集为:故答案为:【点睛】本题考查不等式组的求解掌握求每个不等式解集交集方法是 解析:71x -<≤-【分析】把不等式组每个不等式的解集求出来后计算其交集即可得到答案.【详解】解:不等式组233225x x x -≥⎧⎨+>-⎩①②,由①得: 1x ≤-,由②得:x>-7,∴不等式组的解集为:71x -<≤-,故答案为:71x -<≤-.【点睛】本题考查不等式组的求解,掌握求每个不等式解集交集方法是解题关键.14.21【分析】设这个两位数十位数字为x 个位数字为y 根据题意可得:据此列方程组求解【详解】解:设这个两位数十位数字为x 个位数字为y 由题意得:解得:则这个两位数为21故答案为:21【点睛】本题主要考查了二 解析:21【分析】设这个两位数十位数字为x ,个位数字为y ,根据题意可得:10(10)93x y y x x y +-+=⎧⎨+=⎩据此列方程组求解.【详解】解:设这个两位数十位数字为x ,个位数字为y ,由题意得:10(10)93x y y x x y +-+=⎧⎨+=⎩解得:21x y =⎧⎨=⎩则这个两位数为21.故答案为:21.【点睛】本题主要考查了二元一次方程的应用,理解题意从中找出相应的等量关系列出二元一次方程组是解题的关键.15.-3【分析】由|3a+2b+7|+(5a-2b+1)2=0可得:3a+2b+7=0和5a-2b+1=0联立成方程组后解方程组可得a 和b 的值问题得解【详解】解:由题意得解方程组得所以【点睛】本题考查非解析:-3【分析】由|3a+2b+7|+(5a-2b+1)2=0,可得:3a+2b+7=0和5a-2b+1=0,联立成方程组后解方程组可得a 和b 的值,问题得解.【详解】解:由题意,得3270,5210,a b a b ++=⎧⎨-+=⎩解方程组得1,2,a b =-⎧⎨=-⎩所以3a b +=-.本题考查非负数的性质,利用其特殊的性质:非负数≥0,将问题转化为解方程或解方程组.这是解答此类题的规律,要求掌握.16.四【分析】根据直角坐标系象限坐标特征即可判断【详解】解:∵在第二象限在第三象限∴;;;=∴∴在第四象限故答案为:四【点睛】本题属于新定义提醒以及考察了直角坐标系点的特征关键在于坐标系的点的特征是关键 解析:四【分析】根据直角坐标系象限坐标特征即可判断.【详解】解:∵()11,A x y 在第二象限,()22,B x y 在第三象限∴10x <; 20x <; 10y >;20y <*A B =()()()11221221,*,,x y x y x y x y =∴1221,00x y x y ><∴*A B 在第四象限故答案为:四【点睛】本题属于新定义提醒,以及考察了直角坐标系点的特征,关键在于坐标系的点的特征是关键.17.﹣2【分析】根据x 轴上点的纵坐标为0列方程求出a 的值再求解即可【详解】解:∵点P (a ﹣1a+2)在x 轴上∴a+2=0解得a =﹣2故答案为:﹣2【点睛】本题考查了点的坐标熟记x 轴上点的纵坐标为0是解题解析:﹣2.【分析】根据x 轴上点的纵坐标为0列方程求出a 的值,再求解即可.【详解】解:∵点P (a ﹣1,a +2)在x 轴上,∴a +2=0,解得a =﹣2,故答案为:﹣2.【点睛】本题考查了点的坐标,熟记x 轴上点的纵坐标为0是解题的关键.18.(1)>;(2)<【分析】(1)由<<可得:<<从而可得答案;(2)由<<可得<<从而可得:<即<从而可得答案【详解】解:(1)<<<<故答案为:>(2)<<<<<<<<【点睛】本题考查的是实数的大解析:(1)>;(2)3-<2-.(1,可得:3<4,从而可得答案;(245,从而可得:0<5-0<()23-,从而可得答案.【详解】解:(1)327<,3∴<4,故答案为:>.(2)16<4∴5,0∴<50∴<3+2,0∴<()23-,∴ 3-<2-.【点睛】本题考查的是实数的大小比较,掌握实数的大小比较的方法是解题的关键.19.假;【分析】将原命题的条件与结论对换位置即可得到逆命题然后判断真假【详解】如果两个三角形全等那么这两个三角形的周长相等的逆命题是如果两个三角形的周长相等那么这两个三角形全等根据周长相等无法判定三角形 解析:假;【分析】将原命题的条件与结论对换位置,即可得到逆命题,然后判断真假.【详解】“如果两个三角形全等,那么这两个三角形的周长相等”的逆命题是“如果两个三角形的周长相等,那么这两个三角形全等”,根据周长相等,无法判定三角形全等,故该逆命题是假命题,故答案为:假.【点睛】本题考查逆命题与命题的判断,掌握原命题与逆命题的关系是解题的关键.20.【分析】先根据每间住人人无处住可得学生人数再根据每间住人空一间还有一间不空也不满建立不等式组即可得【详解】设有间宿舍则学生有人由题意得:故答案为:【点睛】本题考查了列一元一次不等式组理解题意正确找出 解析:()142626x x ≤+--<先根据“每间住 4人,2人无处住”可得学生人数,再根据“每间住 6人,空一间还有一间不空也不满”建立不等式组即可得.【详解】设有x 间宿舍,则学生有()42x +人,由题意得:()142626x x ≤+--<,故答案为:()142626x x ≤+--<.【点睛】本题考查了列一元一次不等式组,理解题意,正确找出不等关系是解题关键.三、解答题21.(1)x≤4;(2)1<x≤3.【分析】(1)先去分母,再去括号、移项、合并同类项、系数化为1得到解集;(2)分别解不等式即可得到不等式组的解集.【详解】解:(1)去分母,得:3(x ﹣2)﹣6≤2(4﹣x ),去括号,得:3x ﹣6﹣6≤8﹣2x ,移项,得:3x+2x≤8+6+6,合并同类项,得:5x≤20,系数化为1,得:x≤4;(2)解不等式①,得:x≤3,解不等式②,得:x >1,则不等式组的解集为1<x≤3.【点睛】此题考查解不等式及不等式组,掌握解不等式的方法是解题的关键.22.(1)1x >-,在数轴上表示见解析;(2)2x ≥,在数轴上表示见解析【分析】(1)先按照移项、合并同类项和系数化为1的步骤求出不等式的解集,进一步即可将不等式的解集在数轴上进行表示;(2)先按照去分母、去括号、移项、合并同类项和系数化为1的步骤求出不等式的解集,进一步即可将不等式的解集在数轴上进行表示.【详解】解:(1)移项,得6237x x ->-,合并同类项,得44x >-,系数化为1,得1x >-;不等式的解集在数轴上表示如下:(2)去分母,得()()63221x x --≤+,去括号,得63622x x -+≤+,移项,32266x x --≤--,合并同类项,得510x --≤,系数化为1,得2x ≥.不等式的解集在数轴上表示如下:【点睛】本题考查了一元一次不等式的解法,属于基础题目,熟练掌握解一元一次不等式的方法是解题的关键.23.(1)代入消元法;(2)不正确,二,39x y =-⎧⎨=-⎩【分析】(1)由解二元一次方程的的方法,即可得到答案;(2)由代入消元法的步骤进行计算,即可得到答案.【详解】解:()1这种解方程组的方法叫代入消元法.故答案为:代入消元法. ()2小林的解法不正确,错在第二步,正确解法:由①得,23y x =-③,把③代入②得,(23)12x x +-=-,解得:3x =-,把3x =-代入③,解得:9y =-;则方程组的解为:39.x y =-⎧⎨=-⎩, 【点睛】本题考查了解二元一次方程组的方法,解题的关键是熟练掌握解二元一次方程组的方法进行解题.24.(1)30;(2)画图见解析;(3)越野车为204千米/时、吉普车的速度为100千米/时,B 地到C 地的距离为30千米.【分析】(1)由方位角的知识即可求解;(2)根据题意画出方位角,交点即为C 点位置;(3)设吉普车的速度为x 千米/时,则越野车的速度为(2x+4)千米/时,B 到C 距离为1860x 千米,A 到C 的距离为181.760x ⨯千米,根据“越野车在吉普车出发3分钟后从A 地出发,它们同时到达C 地”找到等量关系列出方程即可求解. 【详解】(1)由题意可知:906030BAC ∠=︒-︒=︒,故答案为:30;(2)如图所示,点C 即为所求.(3)设吉普车的速度为x 千米/时,则越野车的速度为(2x+4)千米/时,B 到C 距离为1860x 千米,A 到C 的距离为181.760x ⨯千米, 由题意,得181.760x ⨯=(2x+4)18360-⨯, 解得x=100,2x+4=204,1860x =30, 答:越野车为204千米/时、吉普车的速度为100千米/时,B 地到C 地的距离为30千米.【点睛】 此题考查了方位角和一元一次方程的实际应用.设出合适的未知数,找到等量关系列出方程是解答此题的关键.25.(1)6;(2)70.【分析】(1)首先计算算术平方根、立方根,然后进行加减计算即可;(2)首先计算乘方、乘法,最后进行加减计算即可.【详解】解:(13168-=4-(-2)=6.(2)()23540.255(4)8⨯--⨯⨯-=()()5160.255648⨯--⨯⨯-=1080-+=70.【点睛】 本题考查了实数的混合运算,正确理解算术平方根、立方根性质及乘方法则,确定运算顺序是关键.26.(1)30°,(2)45°.【分析】(1)根据邻补角的和等于180°求出∠BOD 的度数,然后根据角平分线的定义解答; (2)先求出∠COE 的度数,再根据角平分线的定义求出∠EOF ,再根据∠BOF =∠EOF -∠BOE ,代入数据进行计算即可得解.【详解】解:(1)∵2AOD BOD =∠∠,∠AOD +∠BOD =180°,∴∠BOD =13×180°=60°, ∵OE 平分∠BOD , ∴∠DOE =∠BOE=12∠BOD =12×60°=30°; (2)∠COE =∠COD ﹣∠DOE =180°﹣30°=150°,∵OF 平分∠COE ,∴∠EOF =12∠COE =12×150°=75°, 由(1)得,∠BOE =30°,∴∠BOF =∠EOF -∠BOE =75°-30°=45°.【点睛】本题考查了对顶角相等的性质,角平分线的定义,比较简单,准确识图并熟记性质与概念是解题的关键.。
【华东师大版】初一数学下期末试卷(带答案)

一、选择题1.下列四组数值中,方程组02534a b c a b c a b c ++=⎧⎪-+=-⎨⎪--=-⎩的解是( )A .011a b c =⎧⎪=⎨⎪=-⎩B .121a b c =-⎧⎪=⎨⎪=-⎩C .112a b c =-⎧⎪=⎨⎪=-⎩D .123a b c =⎧⎪=-⎨⎪=⎩2.已知x ,y 满足方程组4,5,x m y m +=⎧⎨-=⎩则无论m 取何值,x ,y 恒有的关系式是( )A .1x y +=B .1x y +=-C .9x y +=D .9x y -=-3.小明去商店购买A B 、两种玩具,共用了10元钱,A 种玩具每件1元,B 种玩具每件2元.若每种玩具至少买一件,且A 种玩具的数量多于B 种玩具的数量.则小明的购买方案有( ) A .5种B .4种C .3种D .2种4.若关于x 的不等式组255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩只有5个整数解,则a 的取值范围( )A .1162a -<- B .116a 2-<<-C .1162a -<-D .1162a --5.若方程组21322x y kx y +=-⎧⎨+=⎩的解满足0x y +=,则k 的值为( )A .1-B .1C .0D .不能确定6.象棋在中国有三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图是一局象棋残局,已知棋子“马”和“车”表示的点的坐标分别为(4,1),(2,1)--,则在第三象限的棋子有( )A .1颗B .2颗C .3颗D .4颗7.一只跳蚤在第一象限及x 轴、y 轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1)→(1,1)→(1,0)→(2,0)…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是( )A .(4,0)B .(5,0)C .(0,5)D .(5,5) 8.下列实数是无理数的是( ) A . 5.1-B .0C .1D .π9.下列命题是真命题的是( )A .如果一个数的相反数等于这个数本身,那么这个数一定是0B .如果一个数的倒数等于这个数本身,那么这个数一定是1C .如果一个数的平方等于这个数本身,那么这个数一定是0D .如果一个数的算术平方根等于这个数本身,那么这个数一定是0 10.不等式组36030x x +>⎧⎨-≤⎩的解集在数轴上表示正确的是( )A .B .C .D .11.若01x <<,则下列选项正确的是( )A .21x x x<< B .21x x x<<C .21x x x<<D .21x x x<< 12.如果a 、b 两个数在数轴上的位置如图所示,则下列各式正确的是( )A .0a b +>B .0ab <C .0b a -<D .0ab> 二、填空题13.关于x ,y 的二元一次方程组23224x y m x y +=-+⎧⎨+=⎩的解满足x +y >﹣1,则m 的取值范围是_____.14.令a 、b 两个数中较大数记作{}max ,a b 如{}max 2,33=,已知k 为正整数且使不等式{}max 21,33k k +-+≤成立,则关于x 方程21136x k x---=的解是_____________. 15.若点(2,2)A m n m n ++在y 轴的负半轴上,且点A 到x 轴的距离为6,则m n +=___________.16.已知2353210x y x y +=⎧⎨+=⎩,则x +y ﹣2020=_____.17.如图所示,点1,0A 、B(-1,1)、()2,2C ,则ABC 的面积是_________.18.若不在第一象限的点(),22A x x -+到两坐标轴距离相等,则A 点坐标为 _________. 19.定义一种新运算“”规则如下:对于两个有理数a ,b ,ab ab b =-,若()()521x -=-,则x =______20.如图,已知∠1=(3x +24)°,∠2=(5x +20)°,要使m ∥n ,那么∠1=_____(度).三、解答题21.某校计划安排初三年级全体师生参观黄石矿博园.现有36座和48座两种客车供选择租用,若只租用36座客车若干辆,则正好坐满;若只租用48座客车,则能少租一辆,且有一辆车没有坐满,但超过了30人;已知36座客车每辆租金400元,48座客车每辆租金480元.(1)该校初三年级共有师生多少人参观黄石矿博园? (2)请你帮该校设计一种最省钱的租车方案.22.某企业在疫情复工准备工作中,为了贯彻落实“生命重于泰山,疫情就是命令,防控就是责任”的思想.计划购买300瓶消毒液,已知甲种消毒液每瓶30元,乙种消毒液每瓶18元.(1)若该企业购买两种消毒液共花费7500元,则购买甲、乙两种消毒液各多少瓶? (2)若计划购买两种消毒液的总费用不超过9600元,则最多购买甲种消毒液多少瓶? 23.“滴滴打车”深受大众欢迎,该打车方式的总费用由里程费和耗时费组成,其中里程费按p 元/千米计算,耗时费按q 元/分钟计算,小明、小亮两人用该打车方式出行,按上述计价规则,其打车总费用、行驶里程数与车速如表:时间(分钟) 里程数(千米) 车费(元)小明 7 5 12.1 小亮 64.510.8(1)求p ,q 的值;(2)“滴滴”推出新政策,在原有付费基础上,当里程数超过8千米后,超出的部分要加收0.6元/千米的里程费.某天,小丽两次使用“滴滴打车”共花费52元,总里程20千米,已知两次“滴滴打车”行驶的平均速度为40千米/小时,求小丽第一次“滴滴打车”的里程数? 24.在如图的平面直角坐标系中表示下面各点,并在图中标上字母:A (0,3);B (﹣2,4);C (3,﹣4);D (﹣3,﹣4).(1)点A 到原点O 的距离是 ,点B 到x 轴的距离是 ,点B 到y 轴的距离是 ;(2)连接CD ,则线段CD 与x 轴的位置关系是 . 25.计算:(1)37|2|27--+-(2)23115422⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭26.如图,已知:∠DGA=∠FHC ,∠A=∠F .求证:DF ∥AC .(注:证明时要求写出每一步的依据)【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】分析:首先利用②-①和②+③得出关于a 和b 的二元一次方程组,从而求出a 和b 的值,然后将a 和b 代入任何一个式子得出c 的值,从而得出方程组的解.详解:0?25?34? a b c a b c a b c ++=⎧⎪-+=-⎨⎪--=-⎩①②③,②-①可得:a -2b=-5 ④, ②+③可得:5a -2b=-9 ⑤,④-⑤可得:-4a=4,解得:a=-1, 将a=-1代入④可得:b=2,将a=-1,b=2代入①可得:c=-1,∴方程组的解为:121a b c =-⎧⎪=⎨⎪=-⎩,故选B .点睛:本题主要考查的是三元一次方程组的解法,属于基础题型.消元法的使用是解决这个问题的关键.2.C解析:C 【分析】由方程组消去m ,得到一个关于x ,y 的方程,化简这个方程即可. 【详解】解:将5m y =-代入4x m +=,得54x y +-=,所以9x y +=. 故选C. 【点睛】解二元一次方程组的基本思想是“消元”,基本方法是代入法和加减法,此题实际是消元法的考核.3.C解析:C 【分析】设A 种玩具的数量为x ,B 种玩具的数量为y ,根据共用10元钱,可得关于x 、y 的二元一次方程,继而根据11x y x y ≥≥,,>以及x 、y 均为正整数进行讨论即可得. 【详解】设A 种玩具的数量为x ,B 种玩具的数量为y , 则210x y +=, 即52xy =-, 又x 、y 均为正整数,且11x y x y ≥≥,,>, 当2x =时,4y =,不符合; 当4x =时,3y =,符合; 当6x =时,2y =,符合; 当8x =时,1y =,符合,共3种购买方案, 故选C. 【点睛】本题考查了二元一次方程的应用——方案问题,弄清题意,正确进行分析是解题的关键.4.A解析:A 【分析】分别解两个不等式得到得x <20和x >3-2a ,由于不等式组只有5个整数解,则不等式组的解集为3-2a <x <20,且整数解为15、16、17、18、19,得到14≤3-2a <15,然后再解关于a 的不等式组即可. 【详解】255332x x x x a +⎧>-⎪⎪⎨+⎪<+⎪⎩①② 解①得x <20 解②得x >3-2a ,∵不等式组只有5个整数解, ∴不等式组的解集为3-2a <x <20, ∴14≤3-2a <15,1162a ∴-<-故选A 【点睛】本题主要考查对不等式的性质,解一元一次不等式,一元一次不等式组的整数解等知识点的理解和掌握,能求出不等式14≤3-2a <15是解此题的关键.5.B解析:B 【分析】方程组中两方程相加得到以k 为未知数的方程,解方程即可得答案. 【详解】 解:①+②,得 3(x+y )=3-3k , 由x+y=0,得 3-3k=0, 解得k=1, 故选:B . 【点睛】本题考查了二元一次方程组的解,利用等式的性质是解题关键.6.A解析:A 【分析】根据题意可以画出相应的平面直角坐标系,从而可以解答本题. 【详解】由题意可得,建立的平面直角坐标系如图所示,则在第三象限的棋子有“车”(21)--,一个棋子, 故选:A . 【点睛】本题考查了坐标确定位置,解答本题的关键是明确题意,画出相应的平面直角坐标系.注意:第三象限点的坐标特征()--, . 7.B解析:B 【分析】根据题意,找出其运动规律,质点每秒移动一个单位,质点到达(1,0)时,共用3秒;质点到达(2,0)时,共用4秒;质点到达(0,2)时,共用4+4=8秒;质点到达(0,3)时,共用9秒;质点到达(3,0)时,共用9+6=15秒;以此类推, 即可得出答案. 【详解】解:由题意可知,质点每秒移动一个单位 质点到达(1,0)时,共用3秒; 质点到达(2,0)时,共用4秒; 质点到达(0,2)时,共用4+4=8秒; 质点到达(0,3)时,共用9秒; 质点到达(3,0)时,共用9+6=15秒; 以此类推,质点到达(4,0)时,共用16秒; 质点到达(0,4)时,共用16+8=24秒; 质点到达(0,5)时,共用25秒; 质点到达(5,0)时,共用25+10=35秒 故答案为:B . 【点睛】本题考查整式探索与表达规律,根据题意找出规律是解题的关键.8.D解析:D 【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项. 【详解】解:A 、 5.1-是分数,是有理数,故选项不符合题意; B 、0是整数,是有理数,故选项不符合题意; C 、1是整数,是有理数,故选项不符合题意; D 、π是无理数,故选项符合题意. 故选:D . 【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.9.A解析:A 【分析】根据相反数是它本身的数为0;倒数等于这个数本身是±1;平方等于它本身的数为1和0;算术平方根等于本身的数为1和0进行分析即可. 【详解】A 、如果一个数的相反数等于这个数本身,那么这个数一定是0,是真命题;B 、如果一个数的倒数等于这个数本身,那么这个数一定是1,是假命题;C 、如果一个数的平方等于这个数本身,那么这个数一定是0,是假命题;D 、如果一个数的算术平方根等于这个数本身,那么这个数一定是0,是假命题; 故选A . 【点睛】此题主要考查了命题与定理,关键是掌握正确的命题为真命题,错误的命题为假命题.10.C解析:C 【分析】先分别求出各不等式的解集,再求其公共解集即可. 【详解】36030x x +>⎧⎨-≤⎩①②, 解①得:2x >-, 解②得:3x ≤, 在数轴上表示如图所示:不等式组的解集为23x -<≤. 故选:C . 【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.11.C解析:C 【分析】利用不等式的基本性质,分别求得x 、x 2及1x的取值范围,然后比较,即可做出选择. 【详解】 解:∵0<x <1,∴0<x 2<x (不等式两边同时乘以同一个大于0的数x ,不等号方向不变); 0<1<1x(不等式两边同时除以同一个大于0的数x ,不等号方向不变); ∴x 2<x <1x. 故选:C . 【点睛】考查了有理数大小比较,解答此题的关键是熟知不等式的基本性质: 基本性质1:不等式两边同时加或减去同一个数或式子,不等号方向不变;基本性质2:不等式两边同时乘以(或除以)同一个大于0的数或式子,不等号方向不变;基本性质3:不等式两边同时乘以(或除以)同一个小于0的数或式子,不等号方向改变.12.B解析:B 【分析】由题意可得a 、b 的大小关系和符号关系,从而根据不等式的基本性质和有理数乘除法的符号法则可以得到正确解答. 【详解】解:由题意可得:a<b ,-a>b ,所以由不等式的性质可得:b-a>0,a+b<0,故A 、C 错误; 又由题意可得a 、b 异号,所以B 正确,D 错误; 故选B . 【点睛】本题考查数轴的应用,利用数形结合的思想方法、不等式的性质和有理数乘除法的符号法则求解是解题关键.二、填空题13.【分析】先将方程组中的两个方程相加化简可得再代入可得一个关于m 的一元一次不等式然后解不等式即可得【详解】两个方程相加得:即由题意得:解得故答案为:【点睛】本题考查了二元一次方程组一元一次不等式熟练掌 解析:3m <【分析】先将方程组中的两个方程相加化简可得2x y m +=-+,再代入1x y +>-可得一个关于m 的一元一次不等式,然后解不等式即可得. 【详解】23224x y m x y +=-+⎧⎨+=⎩, 两个方程相加得:3336x y m +=-+,即2x y m +=-+,由题意得:21m -+>-, 解得3m <, 故答案为:3m <. 【点睛】本题考查了二元一次方程组、一元一次不等式,熟练掌握二元一次方程组的特殊解法是解题关键.14.【分析】根据新定义分两种情况分别列出不等式求解得出k 的值代入分别求解可得【详解】①当时解得:;②当时解得:;∵为正整数解析:95【分析】根据新定义分213213k k k +>-+⎧⎨+≤⎩、21333k k k +≤-+⎧⎨-+≤⎩两种情况,分别列出不等式求解得出k的值,代入分别求解可得. 【详解】①当213213k k k +>-+⎧⎨+≤⎩时,解得:213k <≤;②当21333k k k +≤-+⎧⎨-+≤⎩时,解得:203k ≤≤;∵k 为正整数,15.-2【分析】根据题意列出方程组求得mn 的值即可求解【详解】根据题意得:①+②得:∴故答案为:【点睛】本题考查了坐标与图形坐标轴上点的坐标特征二元一次方程组的应用解此题的关键是列出关于的方程组解析:-2【分析】根据题意列出方程组,求得m 、n 的值,即可求解.【详解】根据题意,得:2026m n m n +=⎧⎨+=-⎩①②, ①+②得:336m n +=-,∴2m n +=-,故答案为:2-.【点睛】本题考查了坐标与图形,坐标轴上点的坐标特征,二元一次方程组的应用,解此题的关键是列出关于m 、n 的方程组.16.-2017【分析】先将两式相加求出x+y 然后代入求解即可【详解】解:①+②得5x+5y =15即x+y =3所以x+y ﹣2020=3﹣2020=﹣2017故答案为﹣2017【点睛】本题考查了二元一次方程解析:-2017【分析】先将两式相加求出x+y ,然后代入求解即可.【详解】解:2353210x y x y +=⎧⎨+=⎩①②, ①+②得,5x +5y =15,即x +y =3,所以,x +y ﹣2020=3﹣2020=﹣2017.故答案为﹣2017.【点睛】本题考查了二元一次方程组的解法,发现两式相加可求出x+y 是解答本题的关键. 17.5【分析】作BD ⊥x 轴于DCE ⊥x 轴于E 则∠ADB=∠AEC=根据点B(-11)得到BD=1CE=2OA=1OD=1OE=2求得AD=2AE=1根据代入数值计算即可【详解】作BD ⊥x 轴于DCE ⊥x 轴解析:5【分析】作BD ⊥x 轴于D ,CE ⊥x 轴于E ,则∠ADB=∠AEC=90︒,根据点1,0A 、B(-1,1)、()2,2C ,得到BD=1,CE=2,OA=1,OD=1,OE=2,求得AD=2,AE=1,根据BDEC ABD A ABC CE SS S S =--△梯形代入数值计算即可.【详解】 作BD ⊥x 轴于D ,CE ⊥x 轴于E ,则∠ADB=∠AEC=90︒,∵点1,0A 、B(-1,1)、()2,2C ,∴BD=1,CE=2,OA=1,OD=1,OE=2,∴AD=2,AE=1,∴BDEC ABD A ABC CE S S S S =--△梯形 =11()2212B AD DC B ED CE D AE E -⋅-⋅+⋅ 11(12)321221122=--+⨯⨯⨯⨯⨯ =2.5,故答案为:2.5..【点睛】此题考查直角坐标系中图形面积计算,点到坐标轴的距离,理解点到坐标轴的距离得到线段长度由此利用公式计算面积是解题的关键.18.或或【分析】根据点不在第一象限内利用平面直角坐标系内点的坐标的几何意义分别讨论在第二第三第四象限的情况即可解答【详解】解:∵点不在第一象限内则点在第二第三第四象限内∵点到两坐标轴距离相等∴解之得:或 解析:()2,2-或()2,2-或22,33⎛⎫-- ⎪⎝⎭. 【分析】 根据点(),22A x x -+不在第一象限内,利用平面直角坐标系内点的坐标的几何意义,分别讨论在第二、第三、第四象限的情况即可解答.【详解】解:∵点(),22A x x -+不在第一象限内,则点(),22A x x -+在第二、第三、第四象限内,∵点(),22A x x -+到两坐标轴距离相等,∴22x x =-+,解之得:2x =或2x =-,23x =,∴点A 的坐标是:()2,2-或()2,2-或22,33⎛⎫-- ⎪⎝⎭ 故答案是:()2,2-或()2,2-或22,33⎛⎫-- ⎪⎝⎭. 【点睛】 本题主要考查了平面直角坐标系内各象限内点的坐标的符号及点的坐标的几何意义,注意横坐标的绝对值就是到y 轴的距离,纵坐标的绝对值就是到x 轴的距离.19.【分析】根据给定新运算的运算法则可以得到关于x 的方程解方程即可得到解答【详解】解:由题意得:(5x-x )⊙(−2)=−1∴-2(5x-x )-(-2)=-1∴-8x+2=-1解之得:故答案为【点睛】本解析:38【分析】根据给定新运算的运算法则可以得到关于x 的方程,解方程即可得到解答.【详解】解:由题意得:(5x-x )⊙(−2)=−1,∴-2(5x-x )-(-2)=-1,∴-8x+2=-1,解之得:38x =, 故答案为38. 【点睛】 本题考查新定义下的实数运算,通过阅读题目材料找出有关定义和运算法则并应用于新问题的解决是解题关键 .20.75【分析】直接利用邻补角的定义结合平行线的性质得出答案【详解】如图所示:∠1+∠3=180°∵m ∥n ∴∠2=∠3∴∠1+∠2=180°∴3x+24+5x+20=180解得:x=17则∠1=(3x+解析:75【分析】直接利用邻补角的定义结合平行线的性质得出答案.【详解】如图所示:∠1+∠3=180°,∵m ∥n ,∴∠2=∠3,∴∠1+∠2=180°,∴3x+24+5x+20=180,解得:x=17,则∠1=(3x+24)°=75°.故答案为75.【点睛】此题主要考查了平行线的判定与性质,正确得出∠1+∠2=180°是解题关键.三、解答题21.(1)180,(2)租36座车1辆,48座3辆最省钱.【分析】(1)设租36座的车x 辆,则租48座的客车(x ﹣1)辆.根据不等关系:租48座客车,则能少租一辆,且有一辆车没有坐满,但超过30人,列不等式组即可.(2)根据(1)中求得的人数,进一步计算不同方案的费用:①只租36座客车;②只租42座客车;③合租两种车.再进一步比较得到结论即可.【详解】解:(1)设租36座的车x 辆.据题意得:3648(2)303648(2)48x x x x --⎧⎨--⎩><, 解得:1124x x ⎧⎪⎨⎪⎩<>.∴不等式组的解集为4112x <<. ∵x 是整数,∴x =5.36×5=180(人),答:该校初三年级共有师生180人参观黄石矿博园.(2)设租36座车m 辆,租48座车n 辆,根据题意得,36m+48n≥180,∵m 、n 为非负整数,方案①:租36座车5辆,费用为:5×400=2000元;方案②:租36座车4辆,48座至少1辆,最低费用为:4×400+480=2080元; 方案③:租36座车3辆,48座至少2辆,最低费用为:3×400+2×480=2160元; 方案④:租36座车2辆,48座至少3辆,最低费用为:2×400+3×480=2240元; 方案⑤:租36座车1辆,48座至少3辆,最低费用为:1×400+3×480=1840元; 方案⑥:租48座车4辆,费用为:4×480=1920元;∴选择方案⑤:租36座车1辆,48座3辆最省钱.本题考查了不等式组的应用和方案选择问题,正确设未知数,准确把握不等关系,列出不等式或不等式组,是解决问题的关键.22.(1)175,125;(2)350【分析】(1)设购买甲种消毒液x瓶,购买乙种消毒液y瓶,根据题意列出方程组求解;(2)设购买甲种消毒液a瓶,根据总费用不超过9600元,列不等式求解.【详解】解:(1)设购买甲种消毒液x瓶,购买乙种消毒液y瓶,依题意得:30030187500x yx y+=⎧⎨+=⎩,解得175125xy=⎧⎨=⎩,答:购买甲种消毒液175瓶,购买乙种消毒液125瓶;(2)设购买甲种消毒液a瓶,依题意得:30a+18(300-a)≤9600 ,解得a≤350 ,答:最多购买甲种消毒液350瓶.【点睛】本题考查二元一次方程组和不等式的应用,解题的关键是根据题意列出方程组和不等式进行求解.23.(1)p=2;q=0.3;(2)7或13.【分析】(1)利用表格中信息列出方程组即可;(2)不妨设第一次的路程为x千米,有三种可能:分别列出方程即可解决问题.【详解】解:(1)由题意5712.1 4.5610.8p qp q+⎧⎨+⎩==,解得20.3 pq⎧⎨⎩==;(2)不妨设第一次的路程为x千米,有三种可能:①第一次路程不超过8千米,第二次的路程超过8千米,2×20+0.3(20÷40)×60+(20-x-8)×0.6=52,解得x=7;②第一次路程超过8千米,第二次的路程也超过8千米,2×20+0.3(20÷40)×60+(x-8)×0.6+(20-x-8)×0.6=52,不存在;③第一次路程超过8千米,第二次的路程不超过8千米,2×20+0.3(20÷40)×60+(x-8)×0.6=52,解得x=13.本题考查了二元一次方程组的应用.解题关键是弄清题意,合适的等量关系,列出方程组.24.(1)3,4,2;(2)平行【分析】(1)根据坐标得表示方法可得到点到x 轴的距离是纵坐标的绝对值,点到y 轴的距离是横坐标的绝对值,根据点A 坐标即可求得点A 到原点O 的距离;(2)因为点C 与点D 的纵坐标相等,所以线段CD 与x 轴平行.【详解】(1)点A 到原点O 的距离是3,点B 到x 轴的距离是4,点B 到y 轴的距离是2; (2)因为点C 与点D 的纵坐标相等,所以线段CD 与x 轴平行.【点睛】本题考查点的坐标,熟练掌握利用平面直角坐标系写出点的坐标和确定点的位置是解题的关键.25.(1)2;(2)5【分析】(1)先计算绝对值及开立方,再计算加减法;(2)先计算括号中的减法及乘方,再按顺序计算乘除法.【详解】解:(1)37|2|27---=7-2-3=2;(2)23115422⎛⎫⎛⎫⨯-÷- ⎪ ⎪⎝⎭⎝⎭=15144⨯÷ =5.【点睛】 此题考查实数的混合运算,掌握运算法则及运算顺序是解题的关键.26.见解析.【分析】先根据∠DGA=∠EGC证出AE∥BF,再根据平行证明出∠F=∠FBC即可求证出结论.【详解】证明:∵∠DGA=∠EGC(对顶角相等)又∵∠DGA=∠FHC(已知)∴∠EGC=∠FHC(等量代换)∴AE∥BF (同位角相等,两直线平行)∴∠A=∠FBC (两直线平行,同位角相等)又∵∠A=∠F(已知)∴∠F=∠FBC (等量代换)∴DF∥AC (内错角相等,两直线平行).【点睛】此题考查平行线的判定与性质:同位角相等,两直线平行;两直线平行,同位角相等;内错角相等,两直线平行.。
华东师大版七年级数学下册期末试卷及答案【完整版】

华东师大版七年级数学下册期末试卷及答案【完整版】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.已知a=255,b=344,c=533,d=622 ,那么a,b,c,d 大小顺序为( ) A .a<b<c<d B .a<b<d<c C .b<a<c<d D .a<d<b<c2.如图,直线AB ∥CD ,则下列结论正确的是( )A .∠1=∠2B .∠3=∠4C .∠1+∠3=180°D .∠3+∠4=180°3.若229x kxy y -+是一个完全平方式,则常数k 的值为( )A .6B .6-C .6±D .无法确定4.将一副三角板和一张对边平行的纸条按如图摆放,两个三角板的一直角边重合,含30°角的直角三角板的斜边与纸条一边重合,含45°角的三角板的一个顶点在纸条的另一边上,则∠1的度数是( )A .15°B .22.5°C .30°D .45°5.已知点C 在线段AB 上,则下列条件中,不能确定点C 是线段AB 中点的是( )A .AC =BCB .AB =2AC C .AC +BC =ABD .12BC AB = 6.如图,在△ABC 中,∠ABC ,∠ACB 的平分线BE ,CD 相交于点F ,∠ABC =42°,∠A =60°,则∠BFC 的度数为( )A.118°B.119°C.120°D.121°7.把1aa-根号外的因式移入根号内的结果是()A.a-B.a--C.a D.a-8.实数a、b在数轴上的位置如图所示,则化简|a-b|﹣a的结果为()A.-2a+b B.b C.﹣2a﹣b D.﹣b9.如图,在△ABC中,P为BC上一点,PR⊥AB,垂足为R,PS⊥AC,垂足为S,∠CAP=∠APQ,PR=PS,下面的结论:①AS=AR;②QP∥AR;③△BRP≌△CSP.其中正确的是()A.①②B.②③C.①③D.①②③10.如图,在菱形ABCD中,AC=62,BD=6,E是BC边的中点,P,M分别是AC,AB上的动点,连接PE,PM,则PE+PM的最小值是()A.6 B.3 C.6 D.4.5二、填空题(本大题共6小题,每小题3分,共18分)116的平方根是.2.如图a是长方形纸带,∠DEF=25°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是__________°.3.若点P(2x,x-3)到两坐标轴的距离之和为5,则x的值为____________. 4.如图,圆柱形玻璃杯高为14cm,底面周长为32cm,在杯内壁离杯底5cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为_____cm(杯壁厚度不计).5.为了开展“阳光体育”活动,某班计划购买甲、乙两种体育用品(每种体育用品都购买),其中甲种体育用品每件20元,乙种体育用品每件30元,共用去150元,请你设计一下,共有________种购买方案.6.已知|x|=3,则x的值是________.三、解答题(本大题共6小题,共72分)1.解方程组:3416 5633 x yx y+=⎧⎨-=⎩2.已知关于x,y的方程组54522x yax by+=⎧⎨+=-⎩与2180x yax by-=⎧⎨--=⎩有相同的解,求a,b的值.3.如图①,在三角形ABC中,点E,F分别为线段AB,AC上任意两点,EG交BC于点G,交AC的延长线于点H,∠1+∠AFE=180°.(1)证明:BC∥EF;(2)如图②,若∠2=∠3,∠BEG=∠EDF,证明:DF平分∠AFE.4.如图,∠1=70°,∠2 =70°. 说明:AB∥CD.5.为了解某市市民“绿色出行”方式的情况,某校数学兴趣小组以问卷调查的形式,随机调查了某市部分出行市民的主要出行方式(参与问卷调查的市民都只从以下五个种类中选择一类),并将调查结果绘制成如下不完整的统计图.种类 A B C D E出行方式共享单车步行公交车的士私家车根据以上信息,回答下列问题:(1)参与本次问卷调查的市民共有人,其中选择B类的人数有人;(2)在扇形统计图中,求A类对应扇形圆心角α的度数,并补全条形统计图;(3)该市约有12万人出行,若将A,B,C这三类出行方式均视为“绿色出行”方式,请估计该市“绿色出行”方式的人数.6.某校计划组织师生共300人参加一次大型公益活动,如果租用6辆大客车和5辆小客车,恰好全部坐满,已知每辆大客车的乘客座位数比小客车多17个.(1)求每辆大客车和每辆小客车的乘客座位数;(2)由于最后参加活动的人数增加了30人,学校决定调整租车方案,在保持租用车辆总数不变的情况下,且所有参加活动的师生都有座位,求租用小客车数量的最大值.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、D2、D3、C4、A5、C6、C7、B8、A9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±2.2、105°3、2或2 -34、205、两6、±3三、解答题(本大题共6小题,共72分)1、612 xy=⎧⎪⎨=-⎪⎩2、12 ab=⎧⎨=-⎩.3、(1)略;(2) 略.4、略.5、(1)800,240;(2)补图见解析;(3)9.6万人.6、(1)每辆小客车的乘客座位数是18个,每辆大客车的乘客座位数是35个;(2)租用小客车数量的最大值为3.。
华师大版七年级数学下册《期末试卷》(附答案)

华师大版七年级数学下册《期末试卷》(附答案)学校姓名班级座位号一、选择题(每小题3分,共30分)1.方程3x-1=-x+1的解是(。
)。
A。
x=-2 B。
x=0 C。
x=1 D。
x=22.下列图形是我国国产品牌汽车的标识,在这些汽车标识中,是中心对称图形的是()。
A。
B。
C。
D。
3.三角形的三边长分别是3,1-2a,8,则数a的取值范围是()。
A。
-5<a<-2 B。
-5<a<2 C。
5<a<11 D。
a<24.如果关于x的不等式(a+2)x>a+2的解集为x<1,那么a的取值范围是()。
A。
a>5 B。
a-2 D。
a<-55.不等式组的解集在数轴上表示为()。
A。
B。
C。
D。
6.将△XXX沿BC方向平移3个单位得△DEF。
若△ABC的周长等于8,则四边形ABFD的周长为()。
A。
14 B。
12 C。
10 D。
87.XXX所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费x元;超过5吨,超过部分每吨加收2元,XXX家今年5月份用水9吨,共交水费为44元,根据题意列出关于x的方程正确的是()。
A。
5x+4(x+2)=44 B。
5x+4(x-2)=44 C。
9(x+2)=44 D。
9(x+2)-4×2=448.CD相交于点F,如图,在△ABC中,∠ABC、∠XXX的平分线BE,且∠ABC=42°,∠A=60°,则∠XXX等于()。
A。
121° B。
120° C。
119° D。
118°9.把边长相等的正五边形ABCDE和正方形ABFG按照XXX所示的方式叠合在一起,则∠EAG的度数是()。
A。
18° B。
20° C。
28° D。
30°10.如图,△ABC≌△ADE且BC、DE交于点O,连结BD、CE,则下列四个结论:①BC=DE,②∠ABC=∠ADE,③∠BAD=∠CAE,④BD=CE,其中一定成立的有()。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2013-2014年七年级下期期末考试题
班级
姓名:
一、选择题(每小题3分,共30分) 1、正五边形的对称轴共有( )
A .2条
B .4条
C .5条
D .10条
2、有一个两位数,它的十位数字与个位数字之和为
5,则符合条件的数有(
)
个A .4
B .5
C .6
D .无数
3、为了搞活经济,某商场将一种商品A 按标价9折出售,仍获利润10%,若商品A 标价为33元,那么商品进货价为(
)
A .31元
B .30.2元
C .29.7元
D .27元
4、已知15 5-2x m y
m ,若3m
,则x 与y 的关系为( ) A .x
y
B .x y
C .x
y
D .不能确定
5、一个多边形除了一个内角外,其余内角之和为257°,
则这一内角等于( ) A .90°
B .105°
C .130°
D .120°
6、如图2,已知:在△ABC 中,AB=AC ,D 是BC 边上任意一点,DF ⊥AC 于点F ,E 在AB 边上,ED ⊥BC 于D ,∠AED=155°,则∠EDF 等于( )
A .50°
B .65°
C .70°
D .75°
7、有一种足球是由32块黑白相间的牛皮缝制而成的(如图3),黑皮可看作正五边形,白皮可看作正六边形,设白皮有
x 块,则黑皮有
32x 块,每块白皮有六条边,共6x 边,因每块白皮有三条边和黑皮连在一起,故黑皮有3x 条边.
要求出白皮、黑皮的块数,列出的方程正确的是(
)
A .332x x
B .3532x x
C .5332x
x
D .632x
x
A
B
C
F
E
D
图2
图3。