城市规划与智慧城市

合集下载

智慧城市的规划和建设

智慧城市的规划和建设

智慧城市的规划和建设近年来,随着科技的飞速发展,人们的生活方式和需求也在不断演变,尤其是城市化进程加速,对城市的智能化、数字化和信息化要求也越来越高。

于是,许多城市开始探索建设“智慧城市”,以此来提升城市发展水平,满足市民需求,为城市可持续发展打下良好的基础。

智慧城市是一种依托信息技术,将城市的各个方面进行数字化,实现了城市管理的高效、智能和可持续发展的新型城市。

智慧城市建设需要综合考虑城市规划、基础设施建设、信息化技术、管理服务等多个方面的因素,需要有一套全面的规划和建设方案。

一、城市规划城市规划是智慧城市建设的第一步,是实现城市可持续发展的关键。

城市规划要结合城市的地理特点、资源优势和发展需要,科学规划、有序引导城市的产业发展,以此为基础,规划城市交通、水、气、电、热等公共基础设施建设。

城市规划中还要考虑到智慧城市建设的需求,将信息化的技术纳入城市总体规划中。

比如,规划建设智慧交通系统,提高市民的出行体验;规划建设智慧环保系统,提高城市环境的质量;以及规划建设智慧医疗系统,提供更便捷的医疗服务等等。

二、基础设施建设基础设施建设是智慧城市建设的重要组成部分。

包括城市交通、水、气、电、热等公共基础设施,以及信息化基础设施和智能硬件设施。

有了高质量的基础设施,才能够为智慧城市的建设提供稳定的支撑。

基础设施建设中,信息化基础设施的建设尤为重要。

智慧城市的实现离不开互联网技术、人工智能技术、感知技术等先进技术的支撑,因此需要大力发展城市宽带网络、建设云计算中心、构建大数据平台等。

此外,还需要在城市内部建设WiFi热点、智能路灯、智能公交车等硬件设施,以此为城市的智能化建设提供保障。

三、信息化技术信息化技术是智慧城市建设的核心。

它将城市各个领域的数据进行集成和分析,从而实现城市管理的精细化、高效化、智能化,为城市的可持续发展提供有力的支撑。

信息化技术包括互联网技术、感知技术、人工智能技术、大数据分析技术等。

智慧城市:城市规划与智能交通建设培训ppt

智慧城市:城市规划与智能交通建设培训ppt
深圳
深圳市在智慧城市建设方面也取得了显著成果,重点推进智慧政务、智慧交通 、智慧环保等领域,打造了具有国际水平的智慧城市样板。
国际智慧城市建设案例
纽约
纽约市在智慧城市建设方面注重技术 创新和数据开放,通过智能化的交通 管理、能源管理和公共安全系统,提 高了城市运行效率和应急响应能力。
伦敦 伦敦市以建设全球领先的智慧城市为 目标,重点发展智能交通、智能能源 和智能环保等领域,通过数据共享和 跨界合作,推动城市的可持续发展。
未来智慧城市的发展方向
1 2
数字化转型
利用大数据、云计算、物联网等技术,实现城市 各领域的数字化转型,提高城市治理效率和公共 服务水平。
绿色可持续发展
注重生态保护和资源循环利用,推动城市绿色低 碳发展,实现经济、社会和环境的协调发展。
3
智能化升级
加强人工智能、5G通信等新一代信息技术在城 市规划、建设和管理中的应用,提升城市的智能 化水平。
利用人工智能技术,对城市运行 数据进行智能分析和决策,为城 市规划和智能交通建设提供科学
依据。
智能控制和服务
通过人工智能技术,实现城市设 备的智能控制和服务,提高设备
的自动化和智能化水平。
04
智慧城市建设的实践案例
国内智慧城市建设案例
上海
上海作为国内智慧城市建设的先行者,通过引进先进技术,实施了一系列智慧 城市项目,如智慧交通、智慧医疗、智慧教育等,提高了城市管理和服务水平 。
智能交通系统的发展趋势与挑战
发展趋势
随着科技的不断进步,智能交通 系统将朝着更加智能化、自动化 的方向发展,为城市交通提供更 加高效、安全的服务。
挑战
随着智能交通系统的普及和应用 ,数据安全和隐私保护问题也日 益突出,需要加强技术和管理措 施,确保数据安全和隐私保护。

智慧城市2024年城市规划的未来趋势

智慧城市2024年城市规划的未来趋势

大数据技术: 对城市数据进 行收集、分析
和处理
人工智能技术: 提高城市管理 效率和能化水平云计算技术: 提供强大的计 算能力和存储
资源
5G技术:实 现高速、低延 时的网络连接
区块链技术: 保障城市数据 的安全和隐私
智能交通:实时监控交通流量,优化交通信号灯,减少拥堵 智能医疗:远程医疗、智能诊断、电子病历管理等 智能教育:在线教育、个性化学习、智能辅导等 智能能源:智能电网、节能减排、可再生能源管理等 智能安防:视频监控、人脸识别、公共安全预警等 智能环保:环境监测、污染治理、生态保护等
2024年智慧城市 规划的重点领域
自动驾驶技术:实现车辆自动驾驶,提高道路安全 智能交通信号灯:根据交通流量实时调整信号灯时长 智能停车系统:实现车位信息实时更新,提高停车效率 公共交通系统:实现公共交通工具的智能化调度和管理
智能建筑:利用物联网、大数据等技术,实现建筑的智能化管理
节能环保:通过绿色建筑设计、节能技术应用等措施,降低建筑能耗, 减少环境污染
商业模式创新:探索 新的商业模式,如共 享经济、订阅经济等, 以实现可持续发展
资源利用:提高资 源利用效率,减少 浪费,实现可持续 发展
环境保护:加强环 境保护,减少污染 ,实现可持续发展
社会责任:承担社 会责任,关注员工 福利,实现可持续 发展
未来智慧城市的趋 势展望
数字化技术将 全面应用于城 市规划、建设
智能交通:实现交通信息的实时采集、处理和发布,提高交通效率和安全性
智能医疗:利用大数据和人工智能技术,提高医疗服务质量和效率
智能教育:通过在线教育、虚拟现实等技术,实现教育资源的共享和个性化教育 智能政务:利用互联网、大数据等技术,实现政务服务的在线办理和信息公开透明

城市规划与建设的数字化转型与智慧城市发展

城市规划与建设的数字化转型与智慧城市发展

城市规划与建设的数字化转型与智慧城市发展近年来,随着科技的快速发展和城市化进程的不断加快,城市规划与建设正面临着数字化转型的挑战和机遇。

数字化转型是指借助信息技术,将传统的城市规划与建设过程数字化,并将其与智慧城市的发展相结合,以实现城市管理的精细化、智能化及可持续发展。

本文将就城市规划与建设的数字化转型与智慧城市发展进行探讨。

一、数字化转型在城市规划中的应用数字化转型为城市规划带来了许多新的机遇和挑战。

首先,借助地理信息系统(GIS)等技术,城市规划师可以更准确地获取和分析城市数据,包括人口分布、交通流量、土地利用等方面的数据,从而更好地进行城市规划。

此外,数字化转型使得城市规划师能够利用虚拟现实技术进行城市模拟,预测不同规划方案的效果,并为决策者提供科学的依据。

另外,数字化转型还能够有效提高城市规划与建设的效率和质量。

传统的城市规划与建设过程需要消耗大量人力物力,并且容易出现信息不对称和沟通不畅等问题。

而借助信息技术的支持,城市规划师可以对城市各个方面进行全面、准确的分析,并通过数字化的方式进行规划和设计。

此外,数字化转型还可以实现城市规划与建设过程的追踪和监控,使得决策者能够及时了解项目进展情况,并及时采取措施进行调整。

二、数字化转型与智慧城市的融合数字化转型为智慧城市的发展提供了有力的支持。

智慧城市是指利用信息技术和物联网等技术手段对城市进行智能化管理和服务,以提高城市的运行效率和居民的生活品质。

其中,城市规划与建设是智慧城市的基础,决定了智慧城市的布局和功能。

数字化转型将信息技术融入到城市规划与建设中,为智慧城市的发展提供了基础。

数字化转型使得城市规划与建设能够更好地与智慧城市的各个领域进行融合。

例如,借助物联网技术,城市规划师可以对城市的交通、能源、环境等方面进行实时监测和管理,并根据数据进行精准的调整和优化。

此外,数字化转型还使得城市规划与建设能够与智慧交通、智慧能源、智慧环保等领域进行有机衔接,形成一个智慧城市的整体框架。

城市规划建设领域智慧城市规划与实施方案

城市规划建设领域智慧城市规划与实施方案

城市规划建设领域智慧城市规划与实施方案第一章智慧城市规划概述 (2)1.1 智慧城市规划的定义与意义 (2)1.1.1 定义 (2)1.1.2 意义 (3)1.2 智慧城市规划的发展历程 (3)1.2.1 传统城市规划阶段 (3)1.2.2 数字城市规划阶段 (3)1.2.3 智慧城市规划阶段 (3)1.3 智慧城市规划的国际现状 (3)1.3.1 欧洲智慧城市规划现状 (3)1.3.2 美国智慧城市规划现状 (3)1.3.3 亚洲智慧城市规划现状 (4)第二章智慧城市规划的关键技术 (4)2.1 大数据在城市规划中的应用 (4)2.2 物联网技术与应用 (5)2.3 人工智能在城市规划中的应用 (5)第三章智慧城市实施方案设计 (6)3.1 实施方案的基本原则 (6)3.2 实施方案的关键要素 (6)3.3 实施方案的制定流程 (7)第四章智慧城市基础设施规划 (7)4.1 城市交通系统规划 (7)4.2 城市能源系统规划 (8)4.3 城市信息基础设施规划 (8)第五章智慧城市公共服务规划 (8)5.1 教育资源规划 (8)5.2 医疗卫生资源规划 (9)5.3 文化体育资源规划 (9)第六章智慧城市生态环境规划 (10)6.1 城市绿化规划 (10)6.1.1 绿化目标与原则 (10)6.1.2 绿化空间布局 (10)6.1.3 绿化技术与措施 (10)6.2 城市水环境规划 (10)6.2.1 水环境规划目标与原则 (11)6.2.2 水环境规划内容 (11)6.2.3 水环境规划技术与措施 (11)6.3 城市大气环境规划 (11)6.3.1 大气环境规划目标与原则 (11)6.3.2 大气环境规划内容 (11)6.3.3 大气环境规划技术与措施 (12)第七章智慧城市安全规划 (12)7.1 公共安全规划 (12)7.1.1 概述 (12)7.1.2 规划目标 (12)7.1.3 规划内容 (12)7.2 灾害预防与应对规划 (12)7.2.1 概述 (12)7.2.2 规划目标 (13)7.2.3 规划内容 (13)7.3 食品药品安全规划 (13)7.3.1 概述 (13)7.3.2 规划目标 (13)7.3.3 规划内容 (13)第八章智慧城市产业发展规划 (13)8.1 产业结构优化规划 (14)8.2 创新创业环境规划 (14)8.3 产业链协同发展规划 (14)第九章智慧城市实施方案评估与调整 (14)9.1 实施方案评估体系 (14)9.2 实施方案调整策略 (15)9.3 实施方案持续优化 (15)第十章智慧城市规划与实施方案案例分析 (15)10.1 典型智慧城市规划案例 (15)10.1.1 案例背景 (16)10.1.2 规划目标 (16)10.1.3 规划内容 (16)10.2 典型智慧城市实施方案案例 (16)10.2.1 案例背景 (16)10.2.2 实施方案 (16)10.3 案例启示与展望 (16)10.3.1 启示 (17)10.3.2 展望 (17)第一章智慧城市规划概述1.1 智慧城市规划的定义与意义1.1.1 定义智慧城市规划是指运用现代信息技术,以大数据、云计算、物联网、人工智能等手段为支撑,对城市空间布局、资源配置、环境建设、产业发展等进行科学规划,实现城市可持续发展的一种新型城市规划模式。

探究“智慧城市”背景下的城市规划创新

探究“智慧城市”背景下的城市规划创新

探究“智慧城市”背景下的城市规划创新在当今时代,信息技术的飞速发展正在深刻地改变着我们的生活方式和城市的运行模式。

“智慧城市”作为一种全新的城市发展理念,正逐渐成为全球城市发展的主流趋势。

在这一背景下,城市规划也面临着前所未有的挑战和机遇,需要不断创新以适应新的发展需求。

智慧城市,简单来说,就是利用先进的信息技术,如物联网、大数据、云计算、人工智能等,实现城市的智能化管理和运行,提高城市的效率、品质和可持续性。

在智慧城市中,城市的各个系统,如交通、能源、环境、公共服务等,都能够实现互联互通和智能化协同,从而为居民提供更加便捷、高效、舒适的生活环境。

那么,在智慧城市的背景下,城市规划需要在哪些方面进行创新呢?首先,数据驱动的规划决策成为关键。

在过去,城市规划往往依赖于规划师的经验和有限的调研数据。

而在智慧城市中,大量的实时数据可以被收集和分析,包括人口流动、交通流量、能源消耗、环境质量等。

这些数据能够为规划决策提供更加准确和全面的依据,帮助规划师更好地了解城市的运行状况和居民的需求,从而制定出更加科学合理的规划方案。

例如,通过分析交通流量数据,可以优化城市的道路布局和公共交通线路;通过分析能源消耗数据,可以制定更加节能的城市能源规划。

其次,城市规划需要更加注重多规合一。

智慧城市的建设需要整合多个领域的规划,包括土地利用规划、交通规划、产业规划、生态规划等。

传统的规划往往存在各自为政、缺乏协调的问题,导致城市发展出现诸多矛盾和问题。

在智慧城市背景下,通过建立统一的信息平台和规划标准,实现多规合一,可以有效避免规划之间的冲突,提高规划的整体性和协同性。

例如,在进行土地利用规划时,要充分考虑交通、产业和生态等因素,实现土地的高效利用和城市的可持续发展。

再者,以人为本的规划理念需要得到更加充分的体现。

智慧城市的建设最终目的是为了提高居民的生活质量,因此城市规划要更加关注居民的需求和体验。

在规划过程中,要充分考虑居民的出行、居住、休闲、教育、医疗等方面的需求,打造更加便捷、舒适、安全的生活环境。

智慧城市:城市规划与智能交通建设培训ppt

智慧城市:城市规划与智能交通建设培训ppt

智慧城市的核心技术
总结词
智慧城市的核心技术包括物联网、云计算、大数据和 人工智能等。
详细描述
物联网技术通过各类传感器和终端设备,实现城市各 类设施和服务的互联互通,为数据采集和分析提供了 基础。云计算技术为海量数据的存储和处理提供了强 大的计算能力和存储空间。大数据技术通过对海量数 据的挖掘和分析,揭示出城市运行的各种规律和趋势 。人工智能技术则通过机器学习和深度学习等方法, 实现对城市运行状态的智能监测和自动控制。
数字化转型
智能化升级
利用大数据、云计算、物联网等技术 ,实现城市各领域的数字化转型,提 高城市治理效率和公共服务水平。
加强人工智能、机器学习等技术在城 市规划、建设和管理中的应用,生态保护和资源循环利用,推广 绿色建筑和低碳交通,降低城市环境 负荷。
未来智慧城市的创新点
01
02
03
新型基础设施建设
建设高速互联网、物联网 、智能感知等基础设施, 为智慧城市提供有力支撑 。
数据驱动决策
通过大数据分析,实现城 市决策的科学化和智能化 ,提高城市治理效能。
跨界合作与共享
打破行业壁垒,推动政企 合作、产学研结合,实现 资源共享和优势互补。
未来智慧城市的挑战与机遇
技术安全风险
详细描述
智慧城市通过物联网、云计算、大数据、人工智能等新一代信息技术,对城市运行状态进行实时监测、分析和优 化,实现城市资源的智能配置和高效利用。同时,智慧城市还强调跨部门、跨领域的协同创新和公共服务水平的 提升,为市民提供更加便捷、舒适的生活环境。
智慧城市的发展历程
要点一
总结词
智慧城市的发展经历了萌芽期、探索期、成熟期三个阶段 。
城市规划的原则与目标

智慧城市建设中的城市规划与信息化研究

智慧城市建设中的城市规划与信息化研究

智慧城市建设中的城市规划与信息化研究一、引言随着科技的飞速发展和社会的进步,智慧城市已经成为人们关注的热门话题。

在建设智慧城市的过程中,城市规划和信息化技术都起到了至关重要的作用。

本文就从这个角度来探讨智慧城市建设中的城市规划和信息化研究。

二、城市规划在智慧城市建设中的作用城市规划是智慧城市建设的前提和基础。

城市规划包括空间规划、土地利用规划、市政基础设施规划等,它们的主要目标是保障城市的可持续发展。

在智慧城市建设中,城市规划的作用主要有以下三方面:1.为信息化应用提供基础城市规划可以为信息化应用提供必要的基础设施,比如通信基础设施、智能交通系统、城市安防系统等,这些设施将大大提高城市的智能化程度。

同时,城市规划还可以统筹考虑各项基础设施的布局和规划,充分利用城市资源,提高城市的整体运营效率。

2.促进城市发展城市规划可以统筹考虑城市各项资源的使用,提高城市的整体运作效率,同时可以促进城市的发展和改善居民的生活质量。

比如城市规划可以提高城市公共交通系统的效率,缓解城市交通拥堵,提高居民的出行便利性和生活质量。

3.实现城市智能化提升城市规划可以通过规划城市信息和技术发展路线,推进城市信息化建设,实现城市智能化提升。

比如城市规划可以规划和推广智慧城市的核心应用技术,比如物联网和云计算等技术,为城市的智慧化转型提供技术支持。

三、信息化技术在智慧城市建设中的应用信息化技术是智慧城市建设中重要的推动力量,为城市提供数字化和智能化服务。

信息化技术包括大数据、云计算、物联网和人工智能等技术,它们的应用将促进城市信息化水平的提升。

1.大数据技术大数据技术可以开展城市信息的大规模收集、分析和利用。

大数据技术可以帮助城市规划部门收集大量的城市人口、环境和社会经济数据,然后进行分析,识别城市潜在问题并提供解决方案。

举个例子,大数据可以对城市人口流动、房价等做出重要判断,对城市规划和管理提供科学依据。

2.物联网技术物联网技术可以将城市中各种设备和机器连接起来,形成一个智能化的网络,实现设备之间的数据和信息交换。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Urban Planning and Smart Cities: Interrelations and ReciprocitiesLeonidas G. Anthopoulos1, and Athena Vakali2Assistant Professor, Project Management Department, TEI of Larissa, Greece lanthopo@teilar.gr 2 Associate Professor, Computer Science Department, Aristotle University of Thessaloniki, Greece avakali@csd.auth.gr1Abstract. Smart cities are emerging fast and they introduce new practices and services which highly impact policy making and planning, while they co-exist with urban facilities. It is now needed to understand the smart city’s contribution in the overall urban planning and vice versa, to recognize urban planning offerings to a smart city context. This chapter highlights and measures smart city and urban planning interrelation and identifies the meeting points among them. Urban planning dimensions are drawn from the European Regional Cohesion Policy and they are associated with smart city’s architecture layers.Keywords: Smart city, digital city, sustainability, urban planning, regional planning.1IntroductionRegional planning concerns the context and the organization of human activities in a determined space via taking into account the available natural resources and the financial requirements. Urban planning particularizes regional planning in a residential area. Both regional and urban planning are policy frameworks that reflect the Government willing for sustainable land uses and development in a specific space for a limited time period [6], [9], [12], [14]. Planning accounts various parameters such as the environmental capacity, population, financial cohesion, and transportation and other public service networks. Smart cities appeared in late 80s as a means to visualize urban context and they evolve fast since then. Today, they enhance digital content and services in urban areas, they incorporate pervasive computing and they face environmental challenges. Various international cases present alternative approaches to the smart city, while they capitalize the Information and Communication Technologies (ICT) for multiple purposes, which vary from simple e-service delivery to sophisticated data collection for municipal decision making. South Korean smart cities for instance, use pervasive computing to measure various environmental indices [15], which are used by the localadfa, p. 1, 2011. © Springer-Verlag Berlin Heidelberg 2011Government to carry out interventions for the improvement of life in the city (e.g. for traffic improvement). This chapter is inspired by the co-existence of the smart city and the urban space, and seeks to investigate the relation between the smart city and the urban planning, in terms of mutual support and benefit. In order for this relation to be identified, an analysis of these terms and of their structure is performed, and the points of mutual interest are recognized. Moreover, this chapter addresses the Future Internet application areas that comprise out of user areas and communities, where the Future Internet can boost their innovation capabilities. In this context, various smart city’s infrastructure and applications can contribute to urban planning data collection and decision making by the planning stakeholders’ groups. In the following background section the notions of regional and urban planning are described and the planning framework is outlined on the basis of the European practice. Moreover, the smart city context is clarified, along with a classification of various metropolitan ICT-based environments which are further evaluated according to a generic architecture. Section 3 identifies and summarizes interrelations between urban planning and smart city contexts. The final section 4 has the conclusions of this chapter and some future implications.2Urban planning : principles and dimensionsVarious relations configure an urban space, such as financial, environmental and social [14], which extend the notion of a city beyond a simple land formulation. Urbanism exist for more than 5,000 years and cities were formed according to variants such as the physical topography, the distance from and the position of the sea, the ordinance of rivers and the transportation networks that connect cities. Forms such as disorder, radius planning, Hippodamus planning and metropolis are the most usual [14]. In the mid-19th century the urban and the regional planning arose as a reaction against the industrial cities, in order to provide with some rules for environmental and for cultural protection, and to determine future national development. Legislation authorizes the State to control planning’s implementation and it defines the dimensions of the regional and the urban planning (depicted in Fig. 1) [1], [7]. These dimensions meet built environment dimensions [9] and they refer to the following: • Environmental protection (Quality): it deals with qualitative criteria such as: livability, environmental quality, quality of life [11] and respect on biodiversity. In this context planning delimits the urbanization zones, the seashore and streams; • Sustainable residential development (Viability Timeline): it covers the urban viability timeline since it “meets the needs of current generations without compromising the ability of future generations to meet their needs and aspirations” [11]; • Resources’ capitalization (Capacity): it concerns both natural and human resources’ capitalization with means of optimal demographic allocation and decentralization, water and other natural resources’ use, residential and farming allocation etc;• Coherent regional growth support (History and Landscape): it embraces the urban history and landscape and it is based on various Government programs’ planning and implementation, which respect traditional settlements, archaeological areas, forests and parks. Fig. 1 outlines the dimensions and the hierarchical organization of a representative European regional planning set of frameworks [5], which follows the European directives for sustainable land use and development. According to this suggestion, planning’s dimensions are allocated to particular frameworks: (a) the general framework for long-term (15 years) national sustainable development; (b) the regional framework that focuses on peripheral long-term development; (c) the special frameworks that concern specific productivity sectors. Each particular framework contains studies and drawings that determine: • Demographic distribution that concerns the Capacity dimension; • Land uses that meet the Quality and the History and Landscape dimensions; • Transportation and other utility infrastructures that align to Capacity dimension; • Forests and parks that concern both the Quality and the Viability Timeline dimensions; • The environmental protection framework that contributes to the Quality dimension; • The authorities that monitor and evaluate the planning rules that meet all of the framework’s dimensions. In this context, the regional planning [5], [11] seeks to protect the environment and to secure the natural and cultural resources, while it highlights the competitive advantages of different areas. Moreover, it strengthens the continuous and balanced national development via taking into account the broader supranational surroundings. Finally, it focuses on financial and on social national cohesion via signalizing particular geographic areas with lower growth rates. As highlighted in Fig. 1, urban planning particularizes the regional planning in cities and residential areas, it is composed and managed by the local Governments [5], and it is realized via three core plans (Fig. 1): • The master plan for the metropolis. • The general urban plan for the residential and for the suburban organization of the cities and towns. It consists of various studies such as the urban study, the implementation act, the rehabilitation studies etc. • The space and residential organization plan for rural areas. Urban planning controls the development and the organization of a city, by determining the urbanization zones and the land uses, the location of various public networks and communal spaces, the anticipation of the residential areas and the rules for building constructions, and of the authorization of the monitoring and of the intervention procedures. Campbell [6] described the triangle of conflicts (property, development and resource) that exist between economic development, environmental protection, equity, and social justice, and which the urban planning aim to manipulate.Fig. 1. The hierarchical organization diagram of regional and urban planning’s framework3smart cities: Key attributes and characteristicsAccording to [8] the term smart city is not used in a holistic way describing a city with certain attributes, but is used for various aspects which range from smart city as an IT-district to a smart city regarding the education (or smartness) of its inhabitants. In this context, the smart city is analyzed in intelligent dimension [8], [13], which concern “smart people”, “smart environment”, “smart economy”, “smart governance”, “smart mobility” and at a total “smart living”. The term was originally met in Australian cases of Brisbane and Blacksbourg [4] where the ICT supported the social participation, the close of the digital divide, and the accessibility to public information and services. The smart city was later evolved to (a) an urban space for business opportunities, which was followed by the network of Malta, Dubai and Kochi (India) (www.smartcity.ae); and to (b) ubiquitous technologies installed across the city, which are integrated into everyday objects and activities. The notion of smart city has been also approached as part of the broader term of Digital City by [2], where a generic multi-tier common architecture for digital cities was introduced, and assigned smart city to the software and services layer. This generic architecture (Fig. 2) contains the following layers: • User layer that concerns all e-service end-users and the stakeholders of a smart city. This layer appears both at the top and at the bottom of the genericarchitecture because it concerns both the local stakeholders –who supervise the smart city, and design and offer e-services- and the end-users –who “consume” the smart city’s services and participate in dialoguing and in decision making-. • Service layer, which incorporates all the particular e-services being offered by the smart city. • Infrastructure layer that contains network, information systems and other facilities, which contribute to e-Service deployment. • Data layer that presents all the information, which is required, produced and collected in the smart city. This generic architecture can describe all the different types of attributes needed to support the smart city context, and which typically include: • Web or Virtual Cities, i.e. the America-On-Line cities, the digital city of Kyoto (Japan) and the digital city of Amsterdam: they concern web environments that offer local information, chatting and meeting rooms, and city’s virtual simulation. • Knowledge Based Cities, i.e. the Copenhagen Base and the Craigmillar Community Information Service (Edinburgh, Scotland): they are public databases of common interest that are updated via crowd-sourcing, and accompanied by the appropriate software management mechanisms for public access. • Broadband City/Broadband Metropolis, i.e. Seoul, Beijing, Antwerp, Geneva, and Amsterdam: they are cities where fiber optic backbones -called “Metropolitan Area Networks (MAN)”- are installed, and enable the interconnection of households and of local enterprises to ultra-high speed networks. • Mobile or Ambient cities, i.e. New York, San Francisco installed wireless broadband networks in the city, which were accessible (free-of-charge) by the habitants. • Digital Cities i.e. Hull (UK), Cape Town and Trikala (Greece) extension of the previous resources to “mesh” metropolitan environments that interconnect virtual and physical spaces in order to treat local challenges. • Smart or Intelligent Cities, i.e. Brisbane and Blacksbourg (Australia), Malta, Dubai and Kochi (India), Helsinki, Barcelona, Austin and others of smartcities networks (http://smart-cities.eu, ): they are particular approaches that encourage participation and deliberation, while they attract investments from the private sector with cost-effective ICT platforms. Today, smart cities evolve with mesh broadband networks that offer e-services to the entire urban space. Various ICT vendors [10] have implemented and offer commercial solutions for the smart cities.Fig. 2. The multi-tier architecture of a digital city [2]Ubiquitous Cities, i.e. New Songdo (South Korea), Manhattan Harbour (Kentucky, USA), Masdar (Abu Dhabi) and Osaka (Japan): they arose as the implication of broadband cost minimization, of the commercialization of complex information systems, of the deployment of cloud services, and of the ubiquitous computing. They offer e-services from everywhere to anyone across the city via pervasive computing technologies. Eco-cities, i.e. Dongtan and Tianjin (China), Masdar (Abu Dhabi): they capitalize the ICT for sustainable growth and for environmental protection. Some indicative applications concern the contribution of ICT sensors for environmental measurement and for buildings’ energy capacity’s evaluation; smart grids deployment for energy production and delivery in the city; encouragement of smart solutions for renewable energy production.Virtual Cities Knowl edge bases User Infrastructure Service Data 5 1 2 5 5 1 1 5 Broad band Cities 2 5 1 1 1 5 1 1 5 3 5 5 5 3 5 5 Mobile Cities smart cities Digital Cities Ubiquitous Cities 5 5 5 5 5 3 5 5 EcoCitiesTable 1. Measuring smart city’s sophisticationThe above smart city classification could be evaluated for its sophistication in the following (Table 1), according to the matching of each approach to the generic multi-tier architecture of (Fig. 2). The values of the above table are self-calculated according to empirical findings [2], and they represent the contribution of each architecture layer to the particular smart city approach. The rows of (Table 1) concern the architecture layers, while the columns refer to the abovementioned smart city approaches. The value entries are based on Likert scale (values from 1 to 5) [7] and they reflect how important each layer is considered for each particular approach. On the basis of this measurement: • User layer accounts significantly in all approaches except in Broadband and Mobile cities, where users mostly consume telecommunication services, while the networks extend to most populated areas. • The Infrastructure layer does not contribute in Virtual and in Knowledge Based cities, while Smart, Digital and Eco-Cities can mostly focus on e-services that can be deployed either via alternative infrastructure providers. • The service layer has significant contribution to the approaches beyond the smart city approach, while only a few services are offered in the other approaches. in Virtual City approach the existence of various ICT infrastructure is not necessary, while data and user layers are crucial for city virtualization. • Finally, the Data layer is the basis for service delivery and thus contributes significantly to all the approaches except from the Broadband and the Mobile Cities, which offer telecommunication services. These estimated values can support researchers and supervisors in selecting the appropriate approach for their city [3] and to design and predict their city’s future “character”.4Urban planning and smart city interrelationsOn the above attributes, various e-service portfolios can be offered in a modern smart city [4]: • E-Government services concern public complaints, administrative procedures at local and at national level, job searches and public procurement. • E-democracy services perform dialogue, consultation, polling and voting about issues of common interests in the city area. • E-Business services mainly support business installation, while they enable digital marketplaces and tourist guides. • E-health and tele-care services offer distant support to particular groups of citizens such as the elderly, civilians with diseases etc. • E-learning services offer distant learning opportunities and training material to the habitants. • E-Security services support public safety via amber-alert notifications, school monitoring, natural hazard management etc. • Environmental services contain public information about recycling, while they support households and enterprises in waste/energy/water management. Moreover, they deliver data to the State for monitoring and for decision making on environ-mental conditions such as for microclimate, pollution, noise, traffic etc. (in Ubiquitous and Eco-city approaches). • Intelligent Transportation supports the improvement of the quality of life in the city, while it offers tools for traffic monitoring, measurement and optimization. • Communication services such as broadband connectivity, digital TV etc. The smart city addresses the supranational planning policies - such as the European Cohesion Policy [7] - that influence national planning policies and prioritize transportation networks and accessibility, entrepreneurship, education and training, and sustainable growth. These priorities affect all the four planning dimensions, while the smart city with the intelligent transportation services, the e-business services, the elearning services, and the environmental services aligns to each of them respectively. The following subsections highlight in detail this relation. 4.1 Smart city to urban planning alignmentsBoth end-users and stakeholders of the smart city’s User layer are obliged to follow the planning rules and to consult in cases of framework’s construction. Thus, the User layer is influenced by all planning dimensions.Fig. 3. The smart city’s layers align to urban planning dimensionsMoreover, the smart city’s infrastructures have to conform to planning rules and not to charge the local environment or the local protected areas, while planning has to uniformly develop smart cities across the regions for coherent development. In this context, the Infrastructure layer meets all planning dimensions.Concerning the Service layer, the environmental and the intelligent transportation services align directly to the Quality and to the Viability Timeline planning dimensions. Moreover, the e-Democracy services align to the Capacity dimension, since public consultations and open dialogue can influence planning and express local requirements; planning on the other hand aims to establish resource capitalization for local development that meets local needs. Finally, the e-Business portfolio aligns to the planning dimensions of Capacity and of History and Landscape, since tourist guides demonstrate and can protect traditional settlements, archaeological areas, forests and parks; while business installation services oblige enterprises to install in business centers and in areas that do not influence sustainability. Finally, the smart city’s data layer must be kept up to date with accurate planning information, in order to deliver efficient and effective e-services to the local community. This one way relation between smart city and urban planning is displayed on (Fig. 3) and shows that the development of a smart city has to align to planning dimensions. 4.2 Urban planning tracks to Smart city layeringA vice versa relation exists too (Fig. 4), via which urban planning has to account the existence of a smart city: the environmental data that is collected from ubiquitous sensors has to contribute to Quality and to the History and Landscape dimensions, and useful directions can be considered for land and for residential uses. Furthermore, the smart city infrastructure layer consists of significant ICT facilities -e.g. broadband networks, computer rooms and inductive intelligent transportation loops-, which influence the Viability Timeline and the Capacity planning dimensions.Fig. 4. Urban planning dimensions tracks to smart city layersAll these findings result in a bidirectional relation between planning and smart city (Fig. 3), (Fig. 4), which shows that the smart city aligns to urban planning dimen-sions, while the urban planning has to capitalize and to respect the existence of a smart city. Furthermore, an important outcome would consider the rate of influence between each urban planning’s dimension and each smart city’s layer. According to the previous description, the interrelation would be measured with the meeting points between dimensions and layers (Table 2). The rows in (Table 2) represent the smart city architecture layers, and the columns the urban planning dimensions. The calculated entries in table cells reflect the meeting points that previously discussed. The Service layer for instance, meets the four urban planning dimensions; three kinds of e-services address the Viability Timeline dimension, meaning three meeting points (the value of 3) for this cell etc. The Users layer meets all urban planning dimensions, since stakeholders can participate in planning, while planning affects stakeholders. The Infrastructure layer concerns resources and therefore Capacity in Urban Planning, while the Data layer (e.g. environmental data collection via ubiquitous sensors) contributes and must be accounted by the Quality and by the Viability Timeline planning dimensions. On the other hand, the Viability Timeline and the Quality dimensions are mostly affected by the existence of a smart city.QUALITY User Infrastructure Service Data 1 1 3 1 HISTORY & LANDSCAPE 1 1 1 1 CAPACITY 1 1 1 1 VIABILITY TIMELINE 1 1 3 1Table 2. Measuring the interrelation between planning dimensions and smart city’s layers5Conclusions and future outlookSmart cities are “booming” and various important cases can be faced worldwide, which can be classified in various approaches and can be evaluated according to their sophistication. All alternative approaches deliver emerging types of services to the local communities with the use of physical and of virtual resources. This chapter considered this co-existence of the smart city and the Urban Space and in this context it investigated the interrelation between smart city and urban planning. Urban planning supports sustainable local growth, it consists of four dimensions that were recognized according to the European Regional Policy Framework, and their context was described. A smart city on the other hand can follow a multi-tier architecture, which can be considered generic for all particular approaches. The analysis of the planning’s dimensions and of the smart city’s architecture layers shows various meeting points, via which these two notions interact. More specifically, smart city’s service layer aligns and contributes to all the urban planning’s dimensions and various e-Services support sustainable local growth. On the other hand, planning’sdimensions can be affected by smart city’s stakeholders via participatory policy mak-ing, while the smart city’s infrastructure has to be recognized and capitalized.This chapter tried to interrelate the physical and the digital space of a smart city with tangible measurement means in order to support Future Internet application are-as. Relative efforts have been performed in the South Korean ubiquitous cities, where the smart city moved towards the environmental protection. This chapter’s resulted meeting points between smart city’s layers and planning’s dimensions can provide Future Internet research with details concerning where the developed applications and the deployed infrastructure have to account the physical space and the environment.General suggestions that require further investigation concern that the smart city has to be accounted in the regional and the urban planning frameworks, with means that the ICT resources are capitalized for information retrieval and analysis for policy making; while the environmental charge of a smart city has to be measured and eval-uated during regional and urban planning.AcknowledgmentsThis chapter uses findings concerning the urban planning in Europe from the dis-sertation developed by Tsopanis Dimitrios, which was supervised by the authors un-der the MSc Program in Construction Management of the Hellenic Open University (Greece), during the academic year 2010-2011. Moreover, this chapter is supported by the “Enterprise Architecture for Digital Cities (EADIC)” research project, which is being developed between 2012 and 2014, and funded by the Greek General Secretary for Research and Development (ARCHIMEDES III program).References1.Ahern J.: Planning for an extensive open space system: linking landscape structure andfunction. Landscape Urban Plann., 21 (1991), pp. 131–145, ElSevier (1991).2.Anthopoulos, L., Tsoukalas, I. A.: The implementation model of a Digital City. The casestudy of the first Digital City in Greece: e-Trikala. Journal of e-Government (Haworth Press, Inc.), Vol.2, Issue 2, (2006).3.Anthopoulos, L., Gerogiannis, V., Fitsilis, P.: Supporting the solution selection for a digi-tal city with a fuzzy-based approach. In: International Conference on Knowledge Man-agement and Information Sharing (KMIS) (2011).4.Anthopoulos, L., Tougoutzoglou, T.: A Viability Model for Digital Cities: Economic andAcceptability Factors. In Reddick Ch. and Aikins St. (Ed) Web 2.0 Technologies and Democratic Governance: Political, Policy and Management Implications, Springer, Forth-coming (2012).5.Aravantinos, A.: Urban planning for sustainable growth (in Greek). Symmetria Publishing(1997).6.Campbell, S.: Green Cities, Growing Cities, Just Cities? Urban planningand the Contradic-tions of Sustainable Development. Journal of the American Planning Association (1996). 7.European Committee: Regional Policy: Bridging the prosperity gap (2012).http://europa.eu/pol/reg/index_en.htm8.Giffinger, R., Fertner, C., Kramar, H., Meijers, e. & Pichler-Milanovic, N.: smart cities:Ranking of European medium-sized cities (2007).9.Handy, S. L., Boarnet, M. G., Ewing, R., & Killingsworth, R. E.: How the Built Environ-ment Affects Physical Activity: Views from Urban Planning. American Journal of Preven-tive Medicine, 2002;23(2S), ElSevier (2002).10.IBM: How Smart is your city? Helping cities measure progress (2009) http://www-/services/us/gbs/bus/html/ibv-smarter-cities-assessment.html11.Irene van Kampb, Kees Leidelmeijer a, Gooitske Marsmana, Augustinus de Hollander:Urban environmental quality and human well-being Towards a conceptual framework and demarcation of concepts; a literature study. Landscape and Urban planning65 5–18, El Se-vier (2003).12.Kiernan, M. J.: Ideology, politics, and planning: reflections on the theory and practice ofurban planning. Environment and Planning B: Planning and Design , 10 (1), 71-87 (1983).13.Komninos, N.: Intelligent Cities: Innovation, Knowledge Systems and Digital Spaces, 1st.ed. London: Routledge (2002).14.Koutsopoulos, K., Siolas, A.: Urban Geography – The European City (in Greek). GreekNational Technical University publishing (1998).15.Lee, S., Oh, K., Jung, S.: The Carrying Capacity Assessment Framework for Ubiquitous-Ecological Cities in Korea. In: 2nd International Urban Design Conference, Gold Coast 2009, Australia (2009).16.Trochim William M.: Likert Scaling. Research Methods Knowledge Base, 2nd Edition(2006) /kb/scallik.php。

相关文档
最新文档