加减消元法解二元一次方程组教案
人教版数学七年级下册 8.2.3 加减消元法解二元一次方程组 教案

比较上述两种方法,共性都是依据等式的性质对方程变形,构造相同的系数后作差消元,不同之处在于方法一只对一个方程变形,但是出现分数系数运算较麻烦,而方法二要对两个方程都变形,但是整系数运算比较简便。
进一步看方法三:如果选择y构造相反的系数。
由于4和6的最小公倍数是12,所以方程1的两边同时乘以3,得到9x+12y=48,记为方程3,方程2的两边同时乘以10x-12y=66,记为方程4,则方程3和方程4中y的系数互为相反数,就可以相加消去未知数y,进一步即可求解方程组。
比较方法二和方法三,都是利用系数的最小公倍数构造相同或相反的系数,然后加减消元。这样的构造方法一是能够保证整数系数的运算,二是能够保证系数不会过大从而带来计算量的增大。对比两个方法,为减小运算量,选择系数公倍数较小的未知数消元。
教 案
教学基本信息
课题
加减消元法解二元一次方程组
学科
数学
学段:初中
年级
初一
教学目标及教学重点、难点
学习目标:
1.理解加减消元的依据;
2.利用加减消元法解二元一次方程组.
重点:
1.加减消元的依据;
2.加减消元法解二元一次方程组的步骤.
难点:
根据二元一次方程组的未知数系数特征选择消元的方式.
教学过程(表格描述)
进一步,当方程出现分母、括号或同类项时需要先整理,再判断加减消元的方式。
提升练习
提升训练1:
北师大版数学八年级上册5.2加减消元法解二元一次方程组教案

1 / 7求解二元一次方程组(2)————加减消元法一、教学目标(一)教学知识点1.用加减消元法解二元一次方程组.(二)能力训练要求1.会用加减消元法解二元一次方程组.2.根据不同方程的特点,进一步体会解二元一次方程组的基本思路——消元.(三)情感与价值观要求1.进一步体会解二元一次方程组的消元思想,在化“未知为已知”的过程中,体验学习的快乐.2.根据方程组的特点,培养学生学习教学的创新、开拓的意识.二、教学重点1.掌握加减消元法解二元一次方程组的原理及一般步骤.2.能熟练地运用加减消元法解二元一次方程组.三、教学难点1.解二元一次方程组的基本思路消元即化“二元”为“一元”的思想.四、教学过程第一阶段、回顾复习[师]用代入法解二元一次方程组的基本思想是什么?[生]消元[师]用代入法解下列方程组并检验所得结果是否正确。
[生1]解:把②变形,得x=2115 y ③1 / 7把③代入①,得3×2115-y +5y=21, 解得y=-3.把y=3代入②,得x=2.所以方程组的解为⎩⎨⎧=-=3,2y x [生2]解:由②得5y=2x+11 ③把5y 当做整体将③代入①,得3x+(2x+11)=21解得x=2把x=2代入③,得5y=2×2+11y=3所以原方程的解为⎩⎨⎧==32y x [师]我们可以发现第二种解法比第一种解法简单.有没有更好的解法呢?也就是说,我们上一节课学习了用代入的方法可以消元,从而使“二元”变为“一元”.那么有没有别的消元办法也可以使“二元”变为“一元”.[生]我发现了方程①和②中的5y 和-5y 互为相反数,根据互为相反数的和为零,如果能将方程①和②的左右两边相加,根据等式的性质我们可以得到一个含有x 的等式,即一元一次方程,而5y+(-5y)=0消去了y .[师]很好.这正是我们这节课要学习的二元一次方程组的解法中的第二种方法——加减消元法.第二阶段、讲授新课[师]下面我们就用刚才这位同学的方法解上面的二元一次方程组.解:由①+②,得1 / 7(3x+5y)+(2x -5y)=21+(-11),即3x+2x=10,x=2,把x=2代入②中,得y=3.所以原方程组的解为⎩⎨⎧==3,2y x 一个方程组我们用了三种方法,从中可以发现,恰当地选择解法可以起到事半功倍的效果.回忆上一节的练习和习题,看哪些题用代入消元法解起来比较简单?哪些题我们用加减消元法简单?我们分组讨论,并派一个代表阐述自己的意见.第三阶段、自主学习1.用加减消元法求解下面的方程组:257(1)231(2)x y x y -=⎧⎨+=-⎩[师]什么是加减消元法,并用自己的语言来概括它。
《二元一次方程组的解法――加减消元法》教案

《二元一次方程组的解法——加减消元法》一、教学目标(1)知识目标:进一步了解加减消元法,并能够熟练地运用这种方法解较为复杂的二元一次方程组。
(2)能力目标:经历探索用“加减消元法”解二元一次方程组的过程,培养学生分析问题、解决问题的能力和创新意识。
(3)情感目标:在自由探索与合作交流的过程中,不断让学生体验获得成功的喜悦,培养学生的合作精神,激发学生的学习热情,增强学生的自信心。
二、教学重点难点(1)教学重点:利用加减法解二元一次方程组(2)教学难点:二元一次方程组加减消元法的灵活应用三、教学方法启发引导法、演示法四、教学准备:小黑板五、教学过程(一)复习旧知解二元一次方程组的基本思想是什么?(消元)(二)探究新知1、情境导入(利用小黑板)王老师昨天在水果批发市场买了2千克苹果和4千克梨共花了14元,李老师以同样的价格买了2千克苹果和3千克梨共花了12元,问:梨每千克的售价是多少元?凭借学生的经验估计他们会在列出二元一次方程组后马上想到用代入法解方程组,进而解决问题。
这时教师出示两种算法让学生加以比较,通过比较学生不难发现第二种算法是解决这个问题更简单的方法。
师:算法一是代入消元法,算法二就是今天我们将要学习的加减消元法。
复习加减消元法的定义:利用等式的性质使方程组中两个方程中的某一个未知数前的系数的绝对值相等,然后把两个方程相加或相减,以消去这个未知数,使方程只含有一个未知数而得以求解。
这种解二元一次方程组的方法叫作加减消元法,简称加减法2、例题讲评例①解方程组:⎩⎨⎧=+=+⑵y x ⑴y x 6231225 解:⑴-⑵,得2x=6x =3把x =3代入⑴得12235=+⨯y 解这个方程得y =23-∴原方程组的解为⎪⎩⎪⎨⎧==23-3y x 练习:指出下列方程组求解过程中有错误步骤,并给予订正。
练习1.解方程组: ⎩⎨⎧-=-=-⑵y x ⑴y x 445447 解:⑴-⑵,得2x =4-4,x =0把x =0代入⑴得4407=-⨯y 解这个方程得1-=y∴原方程组的解为⎩⎨⎧-==1y 0x 例②解方程组:⎩⎨⎧-=-=+⑵y x ⑴y x 11522153 解:⑴﹢⑵,得5x =10x =2把x =2代入⑴得3×2+5y=21解这个方程得y=3∴原方程组的解为⎩⎨⎧==32y x 练习:指出下列方程组求解过程中有错误步骤,并给予订正。
加减消元法

中小学教师教学(学案)设计模板消去这个未数。
练习一:1.指出下列方程组求解过程中是否有错误步骤,并给予订正:7x -4y =45x -4y =-4解:①-②,得 解 ①-②,得2x =4-4 -2x=12 x=0, x=-62.用加减法解二元一次方程组:(1)(2)(四)例题分析用加减法解方程组(想一想:怎样用加减法解下面的方程组?)解:点悟:找最小公倍数,变成某未知数系数的绝对值相等的新的方程组,从而为加减消元法解方程组创造条件. 练习二:用加减法解下列方程组。
点悟: 先化简:去分母、去括号、约分等, 然后在用加减法进行消元,可以简便计算。
(五).应用与拓展1. 是关于x 、y 的二元一次方程,求a 、b 的值。
3414542x y x y -=+=7239219x y x y -=+=-653615m n m n -=+=-⎩⎨⎧=+=+17431232y x y x 23(1)4311x y x y +=⎧⎨-=⎩21(2)329x y x y =+⎧⎨-=⎩3(1)(2)3(3)1136x y x y --+=⎧⎪⎨-+=⎪⎩812781(4)3004001500x y x y +=⎧⎨+=⎩23231358a b a b x y ++-++=+=-x y23 1.⎩出问题,探索新知除了用代入法,还有别的方法吗?想一想应怎样解方程组①②由①+②得: 5x=10由②-①得:8y=-8消去x,得 5y=5”中隐含了那些步骤?(三).归纳总结,获得新知两个二元一次方程中同一未知数的系数相反或相等时,把两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程。
这种方法叫做加减消元法,简称加减法。
归纳:利用加减消元法解方程组时,若同一个未知数的系数互为相反数,则可以直接消去这个未知数。
若同一个未知数系数相等,则可以直接消去这个未数。
练习一:1.指出下列方程组求解过程中是否有错误步骤,并给予订正:7x-4y=45x-4y=-4解:①-②,得2x=4- 4-2x=12x=0,x=-6(四)例题分析用加减法解方程组(想一想:怎样用加减法解下面的方程组?)解:练习二:用加减法解下列方程组。
《用加减消元法解二元一次方程组》word教案 (公开课获奖)2022北师大版

学科数学班级任课教师课题解二元一次方程组课型新授日期学习重点运用加减消元法解二元一次方程组学习难点领会加减消元法表达的化未知为的化归思想。
教具学具多媒体教学方法探究法、讨论法教学过程一、复习、诊测、引入1、口述代入消元法的一般步骤:3x+2y=12、用代入消元法解方程组x-2y=3想一想:观察上面方程组的结构特点,想一想,除了可以用代入法解方程组外,是否有更简捷的解法。
二、学习新知:教学过程通过观察我们发现,这个方程组的两个方程中分别有2y和-2y的项,它们互为相反数,因此他们的和为零,所以,我们还可以用下面的方法解这个方程组。
3x+2y=1x-2y=3x+3y=1例1:解方程组2x+3y=5议一议:1、分析上面的解题过程,请你总结一下这类方程组具有什么特点?可以运用怎样的方法求解。
2、如果一个二元一次方程组中,两个方程的某个未知数的系数相同或互为相反数时,又可以运用什么样的方法求解?归纳结论〔解法〕:当二元一次方程组中,两个方程的某个未知数的系数相同或互为相反数时,可以把方程的两边分别相加〔当某个未知数的系数互为相反数时〕或相减〔当某个未知数的系数相等时〕来消去这个未知数,得到一个一元一次方程,从而求得二元一次方程组的解。
像上面这种解二元一次方程组的方法叫做加减消元法,简称加减法。
想一想:如果二元一次方程组的两个方程中,不含有系数互为相反数〔或向等〕的两项,我们是否可以对方程变形,把它化归为可以运用加减消元法求解的二元一次方程组呢?教例2:用加减消元法解以下方程组3x+2y=141〕5x-y=62x-3y=3这两个方程中含y的项的系数互为相反数,把两个方程相加就可消去y,进而求解这两个方程中含y的项的系数相等,把两个方程相减就可消去y,进而求解思考:怎样创造条件,运用加减消元法求解?学过程2)3x-2y=7解:略议一议:怎样根据方程组的特点选择恰当的方法,是求解的过程比拟简捷?请举出两例加以说明。
用加减消元法解二元一次方程组教案

⽤加减消元法解⼆元⼀次⽅程组教案⽤加减消元法解⼆元⼀次⽅程组教案⼀、教学⽬标【知识与技能】在代⼊消元的基础上掌握加减消元法去解⽅程组的思想,并能正确运⽤加减消元法解⽅程组。
【过程与⽅法】通过⼩组合作、讨论的过程,学⽣的交流表达能⼒,归纳总结能⼒,以⾃学能⼒可以得到提升。
【情感态度与价值观】在主动参与数学活动的过程中,感受数学思考过程的条理性和数学结论的确定性,并乐于与⼈交流。
⼆、教学重难点【重点】掌握加减消元法解⽅程组。
【难点】正确的运⽤加减消元法解⽅程组。
三、教学过程(⼀)导⼊新课师:同学们,前⾯我们学习了解⽅程组,⼤家还记得是什么⽅法吗? ⽣:代⼊消元法x+y=10{2x+y=16师:⾮常正确,下⾯同学们看看⿊板上这道题如何做?师:我看同学们都做出来了,你们都是⽤什么⽅法做出来的啊?哦,是前⾯的代⼊消元法,其实这道题他有⼀个⾮常简单的⽅法,⼀下⼦就可以计算出来,下⾯我们就⼀起来探讨下⼀种新的解⽅程组的⽅法-加减法消元解⽅程组(⼆)⽣成新知出⽰例题{x+y=102x+y=16师:刚才我们解题的时候⽤的代⼊消元,那同学们你们观察观察这组⽅程他们的的y的系数有什么特点,你能不能想出什么好的解题⽅法呢?请⼤家先⾃⼰独⽴思考,然后前后4⼈为⼀⼩组,给⼤家5分钟的时间,⼤家相互讨论交流下。
学⽣独⽴思考,尝试练习、解答,初步形成⾃⼰的解决⽅案。
教师巡视,了解学⽣的学习情况,并及时指导;完成的同学,同学之间交流⼀下⾃⼰的解决问题的⽅法。
然后⼩组内展⽰各⾃解决问题的⽅案。
⽐⼀⽐谁的想法简洁,形成⼩组意见。
通过讨论学⽣可以得出如下结论:上式中y的系数相同,当⽤②-①时,可以发现变量y刚好可以消除师:⼤家都总结的⾮常到位,像这样在解⽅程组时,当x或者y的系数相同或者相反时,我们可以⽤两式相减或者相加的⽅式来消除其中⼀项,我们把这种⽅法叫做加减消元法。
师:那这个规律是不是适合于所有的题呢?下⾯我们就来拿到题来练练3x+4y=16{5x+6y=33师:请⼤家先⾃⼰在草稿本上演算⼀下,然后同桌之间相互讨论下,看看这道题应该如何解呢?我看⼤家结果已经出来了,谁来分享⼀下你的答案呢?⽣:有两种⽅法,⼀种是⽤带⼊消元,⼀种是⽤加减消元,加减消元的时候要把x或者y的系数变成⼀样的,所以①需要乘以3,②需要乘以2,这样①②的y的系数就刚还是相反数,①+②就可以消去y。
数学《加减消元法-解二元一次方程组》教案

数学《加减消元法-解二元一次方程组》教案课时安排:第一课时:引入加减消元法第二课时:解决简单的二元一次方程组第三课时:引入倍加消元法第四课时:解决复杂的二元一次方程组课堂活动:第一课时:1.引入问题:小明有 6 条红色的绳子, 8 条绿色的绳子和 10 条蓝色的绳子,共计有多少条绳子?同学们快速作答并验证答案。
2.老师通过上述问题引导学生理解加减消元法。
3.教师给出一个简单的二元一次方程组,让学生通过加减消元法来解决。
4.让学生自己找到一些二元一次方程组,让同桌分别用加减消元法来解决。
第二课时:1.老师总结昨天加减消元法的解决方法,引入倍加消元法,告诉学生在某些情况下倍加消元法可能更适合。
2.老师给出一个适合倍加消元法的问题,让同学们快速求解。
3.让一些同学将他们在昨天找到的二元一次方程组用倍加消元法来解决。
第三课时:1.老师对昨天学过的知识进行复习。
2.展示一些更复杂的二元一次方程组,让同学们思考如何用加减消元法或倍加消元法来解决,让同学们互相讨论。
3.让一些同学来解决这些问题,记录下解题过程。
第四课时:1.老师对昨天学习的内容进行总结,让同学们回顾、检验自己的学习成果。
2.老师给出几道复杂的二元一次方程组,让同学们通过加减消元法或倍加消元法来解决,让同学们互相讨论。
3.让一些同学来解决这些问题,记录下解题过程并与同学分享。
作业安排:1.课后练习,让同学们运用加减消元法和倍加消元法来解决一些二元一次方程组。
2.让同学们自己编写一些二元一次方程组,让同桌来解决。
加减消元法解二元一次方程组--教案

4、回代——把求得的值代回方程中,求另一个未知数的值;
5、联——用“﹛”把两个未知数的值联立起来。
提示强调:①当某一个未知数的系数的绝对值相等时,若符号不同,用加法消元,若符号相同,用减法消元;
②当某一个未知数的系数成倍数关系时,将系数较小的方程两边都乘这个倍数,把该未知数变为相等或互为相反数,再用加减法解方程组;
③当相同的未知数的系数都不相同时,找出某一个未知数的系数的最小公倍数,同时对两个方程进行变形,把该未知数的系数化为绝对值相等的数,再用加减消元法求解。
(五)课堂练习
用加减法解下列方程组
(六)课堂小结
1、本节课主要学习了用加减法解二元一次方程组,到现在我们学习了那些解二元一次方程组的方法?
(四)牛刀小试
1、填空题
⑴已知方程组 两个方程,只要两边就可以消去未知数。
⑵已知方程组 两个方程,只要两边就可以消去未知数。
2.选择题
⑴用加减法解方程组 应用()
A①-②消去yB ①-②消去xC ②-①消去常数项
D 以上都不对
⑵方程组 消去y后所得的方程是()
A6x=8B6x=18C6x=5Dx=18
8.2.2加减消元-----解二元一次方程组
教学目标:
1、知识技能目标
掌握加减消元法的基本步骤,熟练运用加减消元法解简单的二元一次方程组
2、能力目标:
能够熟练运用加减消元法解二元一次方程组,训练学生的运算技巧,养成检验的习惯。
3、情感态度及价值目标:
通过研究解决问题的方法,培养学生合作交流意识和探究精神,进而体会数学的独特魅力。
问题7:例3用加减法解方程组
提问:同学们,观察这个方程组,能直接进行加减消元吗?那这个方程组怎么来解,我们分成小组来讨论研究学习。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
8.2.2消元-----二元一次方程组的解法
(第二课时)
油召中学孙丽棉
教学目标:
1、知识技能目标
掌握加减消元法的基本步骤,熟练运用加减消元法解简单的二元一次方程组
2、能力目标:
能够熟练运用加减消元法解二元一次方程组,训练学生的运算技巧,养成检验的习惯。
3、情感态度及价值目标:
通过研究解决问题的方法,培养学生合作交流意识和探究精神,进而体会数学的独特魅力。
教学重点:
用加减法解二元一次方程组。
教学难点:
灵活运用加减消元法的技巧,把“二元”转化为“一元”
教学过程
(一)复习与准备
问题1 :前面我们学习了用代入法解二元一次方程组,同学们,回想一下,用代入法解二元一次方程组的基本思路是什么?其一般步骤有哪些?
学生回顾回答:
基本思路:消元,把二元转化为一元
一般步骤:<1>变——用含有一个未知数的代数式表示另一个未知数,写成y=ax+b或x=ay+b;
<2>代——把变形后的方程代入到另一个方程中,消去一个未知数;
<3>解——解得出的一元一次方程,求出一个未知数的值;
<4>回代——把求出的未知数的值代回方程,求出另一个未知数的值;
<5>联——用“﹛”把求出的未知数的值括起来。
设计意图:通过此活动,即复习巩固了前面所学知识,又为本节课的学习做了必要的铺垫。
(二)引入新课
问题2:前面我们用代入法求出了方程组 x+y=10
2x+y=16
的解,这个方程组的两个方程中,y的系数有什么关系,利用这种关系你能发现新的消元方法吗?
引导学生观察未知数的系数,找出其中的特点。
(未知数y的系数相等)根据系数的特点,让学生思考发现新的解方程组的方法:利用等式的性质把两个方程的左右两边分别相加。
通过相加以后,学生会发现未知数y被消去了,从而实现了消元的目的,最终解出这个方程组。
通过分析,让学生明了这种方法后,教师规范解题格式,学生对比演习格式。
让学生初步掌握加减消元法解方程组的基本过程。
X+y=10 (1)
2x+y=16 (2)
解:(2)-(1) 得X=6
把x=6代入(1)得y=4
所以这个方程组的解是
X=6
Y=4
问题3:怎样解方程组 3x+10y=2.8
15x-10y=8
分析:观察方程组中的两个方程,未知数的y系数相反,都是10,把这两个方程两边分别相加,就可以消去未知数y,同样得到一个一元一次方程。
设计意图:通过简单的两个例题,学生能够直接从题目当中观察后,找出未知数的系数的特点,然后判断用加减法当中的加法还是减法。
让学生能够很直接的就得出用加减消元法的情况。
也为后面总结归纳加减消元法的基本方法做准
备。
问题4:由前面的两个例题,你能说出什么是加减消元法吗?
学生思考回答后,教师总结归纳,得出加减消元法的一般方法:
两个二元一次方程中同一未知数的系数互为相反数或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法,简称加减法。
师生一起分析什么时候用加减法?何时用加法?何时用减法?(某一个未知数的系数相等或互为相反数时,用加减消元法;某个未知数的系数互为相反数时用加法,系数相等时用减法)
设计意图:师生共同总结,鼓励学生积极地投入到课堂中来,并留给学生独立思考和自主探索的时间与空间,有利于学生形成自己的知识,教师总结补充,能够让学生发现遗漏,完整知识。
(四)牛刀小试
1、填空题
⑴已知方程组⎩⎨⎧=-=+6
32173y x y x 两个方程,只要两边 就可以消去未知数 。
⑵已知方程组⎩
⎨⎧=+=-1062516725y x y x 两个方程,只要两边 就可以消去未知数 。
2指出下列方程组求解过程中有错误步骤,并给予订正
7x-4y=4 3x-4y=14
5x-4y=-4 5x+4y=2
设计意图:通过简单的加减判断,训练学生对加减消元法的理解和认识,同时让学生明白,什么时候用加法消元,什么时候用减法消元。
问题5:用加减法解方程组 3x+4y=16 (1) 5x-6y=33 (2)
提问:同学们,观察这个方程组,能直接进行加减消元吗?那这个方程组怎么来解,
分析:应把同一个未知数的系数变成相反或相等,让学生讨论,最后总结出具体方法是:求同一个未知数系数的最小公倍数。
学生在求解时,有可能消去未知数X ,也有可能消去未知数y ,只要计算正确,都对。
然后强调,不管先消去哪一个未知数,得出的结果都相同,
设计意图:该问题比前面的方程组复杂了很多,不过由于有前面的探究做准备,学生能想到设法将此方程组的形式转化为前面的形式来解决,这样即训练了学生的知识迁移能力,又为归纳总结用加减消元法解二元一次方程组的一般步骤做了准备。
问题6:通过这些过程,你能总结归纳出用加减法解二元一次方程组的一般步骤吗?
学生思考回答,教师总结,板书:
1、乘——使同一个未知数的系数相同或互为相反数;
2、加减——把两个方程的两边分别相加或相减,消去一个未知数;
3、解——解这个一元一次方程,得到一个未知数的值;
提示强调:①当某一个未知数的系数的绝对值相等时,若符号不同,用加法消元,若符号相同,用减法消元;
②当相同的未知数的系数都不相同时,找出某一个未知数的系数的最小公倍数,同时对两个方程进行变形,把该未知数的系数化为绝对值相等的数,再用加减消元法求解。
(五)课堂练习
用加减法解下列方程组
⎩⎨⎧=+=+523752)1(y x y x ⎩⎨⎧=-=+2
231032)2(y x y x
答案:(1)⎩⎨⎧==11y x (2)⎩⎨⎧==13
/2213/6y x (六)课堂小结
1、本节课主要学习了用加减法解二元一次方程组,到现在我们学习了那些解二元一次方程组的方法?
2、用加减法解二元一次方程组的思路是什么?你学到了那些数学思想?
3、具体是如何用加减法解二元一次方程组的?在解题的过程中需要注意些什么?
(七)作业布置
完成课本P103习题8.2第3题、
学生思考:代入消元法与加减消元法有什么区别与联系。
教学思考
1、从简单的问题开始学习加减法解方程组,积累一定的经验之后归纳出加减法解方程组的意义、做法,在进一步探究较复杂方程组的一般解法,并利用它解决新的问题。
在这样的过程中,学生对知识方法的理解逐步深入,运算技能得到锻炼,应用新知分析、解决问题的能力得到提高。
2、把加减消元法与代入消元法进行比较,在比较当中学习新知,既加深对已有知识的理解,又有利于对新知识的掌握。