基于MATLAB的机床主轴结构优化设计

合集下载

关于数控机床主轴结构的改进设计

关于数控机床主轴结构的改进设计

关于数控机床主轴结构的改进设计数控机床作为现代制造业中的重要设备,其主轴结构的设计对于机床性能和加工质量具有非常重要的影响。

随着制造技术的不断发展,传统的数控机床主轴结构已经不能满足现代制造业对高精度、高效率、高稳定性的需求。

对数控机床主轴结构进行改进设计已成为当今的研究热点之一。

一、数控机床主轴结构的基本形式数控机床主轴结构是由主轴箱、主轴和主轴驱动系统组成的,其中主轴箱起到支撑和导向主轴的作用,主轴承载加工刀具和承受切削负载,主轴驱动系统则负责驱动主轴旋转。

传统的数控机床主轴结构通常采用滚动轴承或滑动轴承支撑主轴,由电机通过皮带传动或直接连接方式驱动主轴旋转。

由于滚动轴承和滑动轴承在高速、高负载工况下易产生磨损和热变形,从而影响机床的加工精度和稳定性。

二、数控机床主轴结构的改进设计方向针对传统数控机床主轴结构存在的问题,现代研究者提出了一系列的改进设计方案,主要包括以下几个方向:采用高速轴承技术、使用直接驱动技术、应用新材料和新工艺等。

这些改进设计方案旨在提高数控机床主轴的转速、承载能力和稳定性,从而提高机床的加工精度和效率。

1. 采用高速轴承技术传统数控机床主轴结构采用的滚动轴承或滑动轴承在高速工况下容易出现磨损和热变形,限制了主轴的转速和稳定性。

而采用高速轴承技术可以有效地提高主轴的转速和承载能力,同时减小主轴的振动和磨损,从而改善机床的加工精度和稳定性。

目前,国内外一些制造商已经开始使用陶瓷轴承和陶瓷滚珠轴承等高速轴承技术来改善数控机床主轴结构。

2. 使用直接驱动技术传统数控机床主轴结构通常采用电机通过皮带传动或直接连接方式来驱动主轴旋转,然而这种方式存在传动效率低、振动大、维护成本高等问题。

使用直接驱动技术成为了现代数控机床主轴结构改进的重要方向。

直接驱动技术通过在主轴内部集成电机,利用电磁力直接驱动主轴旋转,不仅可以减小机床的占地面积,提高传动效率,还可以减小振动和噪音,从而提高机床的加工精度和稳定性。

机械优化设计论文(基于MATLAB工具箱的机械优化设计)

机械优化设计论文(基于MATLAB工具箱的机械优化设计)

基于MATLAB工具箱的机械优化设计长江大学机械工程学院机械11005班刘刚摘要:机械优化设计是一种非常重要的现代设计方法,能从众多的设计方案中找出最佳方案,从而大大提高设计效率和质量。

本文系统介绍了机械优化设计的研究内容及常规数学模型建立的方法,同时本文通过应用实例列举出了MATLAB 在工程上的应用。

关键词:机械优化设计;应用实例;MATLAB工具箱;优化目标优化设计是20世纪60年代随计算机技术发展起来的一门新学科, 是构成和推进现代设计方法产生与发展的重要内容。

机械优化设计是综合性和实用性都很强的理论和技术, 为机械设计提供了一种可靠、高效的科学设计方法, 使设计者由被动地分析、校核进入主动设计, 能节约原材料, 降低成本, 缩短设计周期, 提高设计效率和水平, 提升企业竞争力、经济效益与社会效益。

国内外相关学者和科研人员对优化设计理论方法及其应用研究十分重视, 并开展了大量工作, 其基本理论和求解手段已逐渐成熟。

国内优化设计起步较晚, 但在众多学者和科研人员的不懈努力下, 机械优化设计发展迅猛, 在理论上和工程应用中都取得了很大进步和丰硕成果, 但与国外先进优化技术相比还存在一定差距, 在实际工程中发挥效益的优化设计方案或设计结果所占比例不大。

计算机等辅助设备性能的提高、科技与市场的双重驱动, 使得优化技术在机械设计和制造中的应用得到了长足发展, 遗传算法、神经网络、粒子群法等智能优化方法也在优化设计中得到了成功应用。

目前, 优化设计已成为航空航天、汽车制造等很多行业生产过程的一个必须且至关重要的环节。

一、机械优化设计研究内容概述机械优化设计是一种现代、科学的设计方法, 集思考、绘图、计算、实验于一体, 其结果不仅“可行”, 而且“最优”。

该“最优”是相对的, 随着科技的发展以及设计条件的改变, 最优标准也将发生变化。

优化设计反映了人们对客观世界认识的深化, 要求人们根据事物的客观规律, 在一定的物质基和技术条件下充分发挥人的主观能动性, 得出最优的设计方案。

关于数控机床主轴结构的改进设计

关于数控机床主轴结构的改进设计

关于数控机床主轴结构的改进设计数控机床主轴是数控机床的关键部件,其性能直接影响机床加工精度和加工效率。

随着数控技术的不断发展,对数控机床主轴结构的要求也越来越高。

为了满足市场对数控机床加工精度的需求,需要对数控机床主轴结构进行改进设计,以提高其性能和可靠性。

一、数控机床主轴结构存在的问题1. 结构复杂:传统的数控机床主轴结构通常采用多个轴承和润滑系统,结构复杂,加工成本高。

2. 刚性不足:部分数控机床主轴刚性不足,加工时容易产生振动和变形,影响加工精度。

3. 温升大:部分数控机床主轴在高速加工时容易产生较大的温升,影响机床稳定性和使用寿命。

4. 维护困难:传统数控机床主轴结构维护和保养较为繁琐,需要定期更换润滑油和轴承。

以上问题严重影响了数控机床的加工精度和稳定性,需要通过改进设计来解决。

二、改进设计方案针对数控机床主轴结构存在的问题,可以采取以下几点改进设计方案:1. 优化结构:采用轴向预紧轴承和径向预紧轴承的组合方式,降低轴承数量,简化结构,减小主轴体积和重量。

2. 提高刚性:采用高强度材料和优化设计,提高数控机床主轴的刚性,减小振动和变形,提高加工精度。

3. 降低温升:采用先进的冷却系统和材料,减小高速加工时的温升,提高机床稳定性和使用寿命。

4. 简化维护:采用自动润滑系统和可拆卸设计,简化维护和保养,减小维护成本和时间。

上述改进设计方案可以有效解决传统数控机床主轴结构存在的问题,提高数控机床的加工精度和稳定性,提升竞争力。

三、改进设计实施过程改进设计实施过程中,需要参考市场需求和技术发展趋势,充分调研国内外同类产品的主轴结构和性能,进行方案比较和优化设计。

1. 方案比较:对不同的数控机床主轴结构方案进行技术比较和性能测试,寻找最适合产品需求的方案。

2. 优化设计:在方案确定后,对数控机床主轴结构进行进一步的优化设计,满足产品性能指标和质量要求。

3. 样机制造:根据优化设计方案制作数控机床主轴样机,进行性能测试和验证,验证设计方案的可行性和有效性。

数控机床主轴结构的改进和优化设计

数控机床主轴结构的改进和优化设计

数控机床主轴结构的改进和优化设计严鹤飞(天水星火机床有限责任公司技术中心 甘肃 天水 741024) 摘 要: 掌握机床主轴的关键部件,安装方式,轴承的调制环节以及材料、操作维护等,并且各种原因中又包含着多种影响因素互相交叉,因此必须对每个影响因素作具体分析。

而对于优化设计理论的基本思想及其求解方法,将其应用于机床主轴的结构设计,建立了机床主轴结构优化设计的数学模型,并用内点惩罚函数法求解模型,得到了整体最优的结构设计方案,使机床主轴在满足各种约束要求条件下,刚度最好,材料最省。

关键词:机床主轴;轴承;调整;优化设计;数学模型在数控机床中,主轴是最关键的部件,对机床起着至关重要的作用,主轴结构的设计首先考虑的是其需实现的功能,当然加工及装配的工艺性也是考虑的因素。

1. 数控机床主轴结构改进:目前机床主轴设计普遍采用的结构如图1所示。

图中主轴1支承在轴承4、5、8上,轴承的轴向定位通过主轴上的三个压块紧锁螺母3、7、9来实现。

主轴系统的精度取决于主轴及相关零件的加工精度、轴承的精度等级和主轴的装配质量。

在图1中主轴双列圆锥滚子轴承4的内锥孔与主轴1:12外锥配合的好坏将直接影响株洲的工作精度,一般要求其配合接触面积大于75%,为了达到这一要求,除了在购买轴承时注意品牌和等级外,通常在设计时对主轴的要求较高,两端的同轴度为0.005mm,对其相关零件,如螺母3、7、9和隔套6的端面对主轴轴线的跳动要求也较高,其跳动值一般要求在0.008mm以内。

对一般压块螺母的加工是很难保证这么高的精度的,因而经常出现主轴精度在装配时超差,最终不得不反复调整圆螺母的松紧,而勉强达到要求,但这样的结果往往是轴承偏紧,精度稳定性差,安装位置不精确,游隙不均匀,造成工作时温升较高,噪音大,震动厉害,影响工件的加工质量和轴承的寿命。

但对于重型数控机床用圆锥滚子轴承其承载负荷大,运转平稳,精度调整好时,其对机床的精度保持性较好,可对与轻型及高速机床就不十分有力了。

基于matlabr2013b的机床主轴优化设计

基于matlabr2013b的机床主轴优化设计

g x y y0 0 Fa 2 l a 3 EI
4 - 1 4 - 2
在外力给定的情况下,y 是设计变量 x 的函数,其值为:
y I
D 64

4
d4

4 - 3
将式 4 - 2 和 4 - 3 代入式 4 - 1 可得第一个约束条件:
2 x1 x3 y 0 64 Fx3 gx 0 4 3E x2 d4
2. 设计变量
普通车床不要求过高的加工精度, 设计主轴时主要考虑主轴自重和主轴伸出
2
端 C 点的挠度。现选取主轴的自重最轻为目标,外伸端的挠度为约束条件。当主 轴的材料选定时,其设计方案由四个设计变量决定,即内孔孔径 d、外径 D、跨 距 l 、及外伸端长度 a 。由于机床主轴内孔常用于通过待加工的棒料,其大小由 机床的型号决定,通常不作为设计变量。故设计变量取为:
5. 数学模型
由以上分析知约束条件和目标函数为: 1 2 f x x1 x3 x2 d2 min 4


s.t.
2 x1 x3 y 0 64 Fx3 g x 0 4 3E x2 d4 300 x 650 1 60 x2 140 90 x3 150
x x1
x2
x3 l
T
D a
T
3. 目标函数
考虑到优化目标为主轴的重量最轻,故主轴优化设计的目标函数为: 1 2 3 - 1 f x x1 x3 x2 d2 4


4. 约束条件
主轴的刚度是一个重要的性能指标,其外伸端的挠度 y 不得超过规定值 y0, 根据此约束建立约束条件:
机械优化设计结课报告

基于matlab的机床主轴结构优化设计

基于matlab的机床主轴结构优化设计

基于matlab的机床主轴结构优化设计机床主轴是机床的核心部件,其结构设计的好坏直接影响到机床的加工精度和效率。

因此,对机床主轴的结构优化设计具有重要的意义。

本文将介绍基于matlab的机床主轴结构优化设计方法。

一、机床主轴结构分析机床主轴结构一般由主轴箱、主轴轴承、主轴轴颈、主轴电机等组成。

其中,主轴箱是主轴的支撑结构,主轴轴承是主轴的支撑部件,主轴轴颈是主轴的转动部件,主轴电机是主轴的驱动部件。

主轴箱的结构设计应考虑刚度、强度和稳定性等因素,主轴轴承的选型应考虑承载能力、转速和寿命等因素,主轴轴颈的设计应考虑转速、径向载荷和刚度等因素,主轴电机的选型应考虑功率、转速和效率等因素。

二、机床主轴结构优化设计方法1.建立机床主轴有限元模型建立机床主轴有限元模型是机床主轴结构优化设计的基础。

有限元模型应包括主轴箱、主轴轴承、主轴轴颈和主轴电机等部件。

有限元模型应考虑主轴的静态和动态特性,包括主轴的刚度、强度、自然频率和振动模态等。

2.确定机床主轴结构优化目标机床主轴结构优化目标应包括主轴的刚度、强度、自然频率和振动模态等。

优化目标应根据机床主轴的工作条件和加工要求确定。

3.确定机床主轴结构优化设计变量机床主轴结构优化设计变量应包括主轴箱、主轴轴承、主轴轴颈和主轴电机等部件的尺寸、材料和结构参数等。

设计变量应根据机床主轴的工作条件和加工要求确定。

4.建立机床主轴结构优化设计模型机床主轴结构优化设计模型应包括有限元模型、优化目标和设计变量等。

优化模型应考虑主轴的静态和动态特性,包括主轴的刚度、强度、自然频率和振动模态等。

5.进行机床主轴结构优化设计机床主轴结构优化设计应采用优化算法进行求解。

常用的优化算法包括遗传算法、粒子群算法、模拟退火算法等。

优化算法应根据机床主轴的工作条件和加工要求选择。

6.验证机床主轴结构优化设计结果机床主轴结构优化设计结果应进行验证。

验证方法包括有限元分析、试验验证等。

验证结果应与优化设计目标相符合。

某机床主轴的优化设计

某机床主轴的优化设计

某机床主轴的优化设计一、问题来源机床主轴是机床的执行件,它的功用是支承并带动工件或刀具完成表面成形运动,同时还起到传递运动和扭矩、承受切削力和驱动力等载荷的作用,结构复杂,价格昂贵,是机床最重要的部件之一。

主轴的前端安装着卡盘与工件,直接参与切削加工,它的变形和振动对机床的加工精度和表面质量影响最大,直接影响到机床的加工质量和生产率。

因此,机床设计的成功关键取决于主轴设计的优劣。

主轴优化设计是机床设计中主轴设计的有效手段,它可以克服以往设计方法中的盲目性,提高主轴的设计质量、设计效率及设计的科学性和可靠性。

二、已知条件题目中的主轴是一个阶梯轴,支撑采用角接触轴承,机床主轴的输入功率P=1.5kW ,主轴的转速n=940r/min ,主轴的悬臂端受到的切削力F=20kN ,主轴内径d=40mm ,悬臂端许用挠度mm 05.0y 0=,取[]m /121='ϕ,[] 0025.0=θ。

要求主轴两支承跨距(L )为350mm ≤L ≤600mm ,外径(D )为70mm ≤D ≤150mm ,悬臂端长度(a )为80mm ≤a ≤160mm .主轴的材料采用40Cr ,密度3kg/m 7800=ρ。

从机床主轴制造成本和加工精度的要求出发,考虑主轴的自重和外伸段挠度这两个重要因素,选取主轴的质量最轻和最小轴端位移为设计目标,将主轴的刚度作为约束条件。

三、数学建模图1 主轴示意图1设计变量本文设计的机床主轴结构主要由5个参数来确定: (1)主轴悬伸段直径Da ; (2)主轴前后支承间轴径D ; (3)支承跨距L ; (4)主轴悬臂端长度a ; (5)主轴内孔直径d 。

另外,主轴轴端有作用力F 和弯矩M ,设:X=[]Tx x x x 43214321a x x x x a L D D =⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡2 目标函数在满足主轴传动要求下,减轻重量,节约材料,降低成本.以最小自重为追求的目标.机床主轴的质量:()()[]L d D a d D 4W 2222a⨯-+⨯-=πρ式中:(),令为主轴密度3m /kg ρ()=x f ()()[]3222422a X d X X d D 4W ⨯-+⨯-=πρ目标函数()x f x F min )(=3 约束条件(1)刚度约束机床主轴变形对加工质量影响很大,因此,对主轴的要求主要表现为刚度要求,即主轴伸出端的挠度(或位移)Y 尽可能小。

基于MATLAB的轴系优化设计-南京理工泰州科技学院

基于MATLAB的轴系优化设计-南京理工泰州科技学院

南京理工大学泰州科技学院机械设计与制造专业方向综合课程设计说明书设计题目:基于MATLAB的轴系优化设计专业:机械工程及自动化学号: 1001010188 设计者:郭大爷完成时间: 2014 年 1 月 12 日课程设计任务书学号 __1001010188____姓名郭大爷_____碾砂机传动装置1.电动机 2.联轴器 3.减速箱 4.开式伞齿轮传动 5. 碾砂机立轴功率P (kw) ____2.1_______立轴速度n(r/min) _____24_______寿命十年,双班制工作时有轻微振动,多灰尘设计说明书要求设计说明书是全部设计计算的整理和总结,是学生对课程设计的总结,是图样设计的理论依据,而且是审核设计的技术文件之一。

每个学生毕业后都要接触实际的技术工作,都要会写技术报告、可行性论证报告、产品说明书等文件。

因此学生在校期间应受到这方面的训练,掌握这一必须的基本技能。

编写设计说明书的内容包括:1.封面及题目2.设计任务书(包括设计条件和要求)3.原动机的选择,传动系统的运动和动力参数计算(包括计算原动机所需功率、选择原动机、分配各级传动比、计算各轴的转速、功率和转矩)4.轴系部件的计算(确定传动件的主要参数和尺寸,初估轴径、结构设计和强度校核)5.写出自编的主程序、子程序及编程框图(包括自编的全部程序,对程序中的符号、变量做出说明,画出轴的结构、受力、弯矩和转矩图以及轴承组合形式简图等)6.用表格列出计算结果7.绘制主要零件图8.设计小结(说明课程设计的体会,本设计的优缺点及改进意见等)9.列出主要参考文献并编号(标注编号、作者、书名、出版地、出版者、出版年月)10.附件(主要零件图)目录1.电动机的选择 (1)1.1电动机特点 (1)1.2电动机类型的选择 (2)2.确定传动装置的有关的参数 (3)2.1确定传动装置的总传动比和分配传动比 (3)2.2计算传动装置的运动和动力参数。

(4)3.传动零件的设计计算 (5)3.1 高速级齿轮设计 (5)3.2低速级齿轮设计 (10)4基于MATLAB对传动零件的设计计算 (14)4.1使用MATLAB对高速级计算 (14)4.2使用MATLAB对低速级计算 (23)5轴的设计计算 (33)5.1输入轴设计计算 (34)5.2中间轴设计计算 (35)5.3输出轴设计计算 (36)5.4基于MATLAB轴的强度校核计算(以中间轴为例) (37)6.基于MATLAB键的设计(以中间轴为例) (43)7.基于MATLAB轴承的设计(以中间轴为例) (45)8.计算结果 (49)9.MATLAB运行结果 (50)10.课程设计小结 (51)11.参考资料 (52)立轴Ⅰ轴Ⅱ轴Ⅲ轴(2)确定轴的各段直径和长度21d :安装深沟球轴承6006,d 3055D B ⨯⨯=⨯ 212min d 30d mm ==N RlFllFlllRMAHt tAHBH48.3967)()(32323321=⇒=++-++=∑lFllFlllRM)()(=⋅++-++-=∑4)水平面弯矩图C 处弯矩:==1l R M AH CH 52277.67 Nmm 5) 合成弯矩图: 从轴的结构图以及弯矩图可以看出截面c 处为危险截合成强度校核根据式(15-5)计算,轴单向旋转,扭转切应力为脉L=70mm=-l L b。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

机械装备优化设计三级项目题目:基于MATLAB的机床主轴结构优化设计
班级:12级机械装备-1班
设计人员(按贡献大小排序):
张彦亭
邢朝阳
张俊志
一、优化设计问题分析:
对下图所示车床主轴进行优化设计,已知主轴内径d=30mm,
外力F=15000N,许用挠度
00.05mm
y 。

初始数据
二、优化设计方案选择:
首先我们用罚函数法求取最优点
该目标函数在可行域外性质较复杂,因此采用内点法求取最优点。

内点法算法步骤:
针对车床主轴问题,首先构造内点惩罚函数为:
使用迭代法求解如下:
经过21次迭代后,1510k k X X ---≤ ,求得最优解
300.000064.800990.0000x *⎡⎤
⎢⎥=⎢⎥
⎢⎥⎣⎦
()7.9323f x *
= 可见,用数学方法非常复杂,所以我们又采用MATLAB 求取该值。

三、 具体任务分工:
张彦亭 word 制作、问题的分析以及MATLAB 的程序求解 邢朝阳 PPT 制作 张俊志 PPT 答辩
四、优化设计内容与步骤
1、优化设计问题的数学建模
2、所选择的优化方法及MatLab程序
3、优化结果及分析
所以当机床主轴跨距L、外径D和外伸端长度a分别为300.0000,64.8009,90.0000时,机床主轴的重量最轻为7.9323千克。

五、结论
通过建立数学模型,运用MATLAB优化工具箱对机床主轴进行优化设计。

由计算过程和结果发现,使用该MATLAB方法对机床主轴可以较快速的求得最优解,与惩罚函数发相比,在设计效率和使用性方面都大为提高
参考文献
[1].机械与工程优化设计张鄂主编
[2].肖伟,刘忠,曾新勇,等,MATLAB程序设计与应用,北
京;清华大学出版社,2005。

相关文档
最新文档