最优控制 动态规划法
最优控制-第七章-动态规划法

当∆t很小时,有
t t
t
Lx, u, t d t Lx, u, t t
J x, t min
*
min
uU
uU
tf
t0
Lx, u, t d t Φ xt f
tf t t
t t
t
Lx, u, t d t
Lx, u, t d t Φ xt f
P1 11
7
P2 4 2
P3 4 4
12 A 4 8 Q1
4 3 2 2 Q3 B
5 Q2
第一段:P1、Q1的前站是始发站A。显见从
A到B的最优值为12,故得最优路线为AQ1P2Q3B。
综上可见,动态规划法的特点是: 1) 与穷举算法相比,可使计算量大大减少。如
上述最优路线问题,用动态规划法只须做10次
J x, t min Lx, u, t t J xt t , t t
* * uU
(8)
* J x , t J x, t * * J x x, t t J x, t t (12) x t x * T
A城出发到B城的行车时间最短。
P1 3 A 4 Q1 1
7
P2
2
P3 4
4
6 8 2 Q2
3 3 3
2 Q3 4
2
B
现将A到B分成四段,每一段都要作一最优决 策,使总过程时间为最短。所以这是一个多段最 优决策问题。 由图2可知,所有可能的行车路线共有8条。 如果将各条路线所需的时间都一一计算出来,并 作一比较,便可求得最优路线是AQ1P2Q3B,历时 12。这种一一计算的方法称为穷举算法。这种方 法计算量大,如本例就要做3×23=24次加法和7次 比较。如果决策一个n段过程,则共需(n-1)2n-1次 加法和(2n-1-1)次比较。可见随着段数的增多,计 算量将急剧增加。
hjb 方程

HJB方程1. 简介HJB(Hamilton-Jacobi-Bellman)方程是一种偏微分方程,描述了最优控制问题中的动态规划原理。
它由William Rowan Hamilton、Carl Gustav Jacob Jacobi和Richard E. Bellman等人独立提出,被广泛应用于经济学、数学、物理学等领域。
HJB方程在最优控制理论中起着重要的作用。
它用于求解动态系统中的最优策略,帮助决策者在给定约束条件下实现最大化效益。
HJB方程是一个非线性偏微分方程,其解表示最优策略和相应的效用函数。
2. 基本形式HJB方程的基本形式可以表示为:ρ+minu∈U {f(x,u)+∇V(x)⋅F(x,u)+12Tr(G(x,u)∇2V(x)G T(x,u))}=0其中, - ρ表示时间变量 - x表示状态变量 - u表示控制变量 - f是一个标量函数,表示控制和状态之间的耦合关系 - V是值函数(value function),表示系统的效用函数 - F是一个矢量函数,表示状态变量和控制变量的关系 - G是一个矩阵函数,表示系统中的噪声项HJB方程可以看作是一个动态规划问题的最优性条件。
它通过最小化控制变量u来确定系统的最优策略,并求解值函数V(x)。
3. 求解方法由于HJB方程是一个非线性偏微分方程,其求解并不容易。
通常采用以下两种方法进行求解:3.1 动态规划法动态规划法是HJB方程求解的经典方法之一。
该方法将问题分解为一系列子问题,并通过递归地求解这些子问题来获得最优策略和值函数。
具体步骤如下: 1. 将状态空间离散化,得到有限个状态点。
2. 从终止时间开始,逆向递推计算值函数V(x)。
3. 对每个状态点x i,枚举所有可能的控制变量u j,计算f(x i,u j)+∇V(x i)⋅F(x i,u j)+12Tr(G(x i,u j)∇2V(x i)G T(x i,u j))。
4. 选择使上述表达式最小的控制变量u j,更新值函数V(x i)和最优策略。
最优控制全部PPT课件

J
(x(t f ),t f)
tf t0
F(x(t),u(t),t)dt
为最小。
这就是最优控制问题。
如果问题有解,记为u*(t), t∈ [t0,tf],则u*(t)叫做最优控制(极值控制),相应的轨 线X*(t)称为最优轨线(极值轨线),而性能指标J*=J(u*(·))则称为最优性能指标。
第11页/共184页
目标质心的位置矢量和速度矢量为: xM xM
F(t)为拦截器的推力
x xL xM v xL xM
则拦截器与目标的相对运动方程为:
x v v a(t) F (t)
m(t)
m F (t) c
其中a(t)是除控制加速度外的固有相对加速度,是已知的。
初始条件为: x(t0 ) x0 v(t0 ) v0 m(t0 ) m0 终端条件为: x(t f ) 0 v(t f )任意 m(t f ) me
至于末态时刻,可以事先规定,也可以是未知的。 有时初态也没有完全给定,这时,初态集合可以类似地用初态约束来表示。
第9页/共184页
3:容许控制 在实际控制问题中,大多数控制量受客观条件的限制,只能在一定范围内取 值,这种限制通常可以用如下不等式约束来表示:
0 u(t) umax 或ui i 1,2p
给定一个线性系统,其平衡状态X(0)=0,设计的目的是保持系统处于平衡状态,即 这个系统应能从任何初始状态返回平衡状态。这种系统称为线性调节器。
线性调节器的性能指标为:
J
tf t0
n
xi 2 (t)dt
i 1
加权后的性能指标为:
J
tf t0
n
qi xi 2 (t)dt
i1
对u(t)有约束的性能指标为: J t f 1 [ X T (t)QX (t) uT (t)Ru(t)]dt
最优控制问题介绍

最优控制问题介绍最优控制问题是现代控制理论的核心内容之一,它研究的主要问题是如何在满足一定约束条件下,使得某一性能指标达到最优。
这类问题广泛存在于各个领域,如航天工程、经济管理、生态系统等。
通过对最优控制问题的研究,我们可以更加科学、合理地进行决策,实现资源的优化配置,提高系统的运行效率。
一、最优控制问题的基本概念最优控制问题通常可以描述为一个动态系统的优化问题。
在这个问题中,我们需要找到一个控制策略,使得系统从初始状态出发,在给定的时间内,通过控制输入,使得系统的某一性能指标达到最优。
这个性能指标可以是时间最短、能量消耗最小、误差最小等。
为了解决这个问题,我们首先需要建立系统的数学模型。
这个模型应该能够准确地描述系统的动态行为,包括状态方程、输出方程以及约束条件等。
然后,我们需要定义一个性能指标函数,这个函数描述了我们希望优化的目标。
最后,我们通过求解一个优化问题,找到使得性能指标函数达到最优的控制策略。
二、最优控制问题的分类根据系统的动态特性和性能指标函数的不同,最优控制问题可以分为多种类型。
其中,最常见的包括线性二次型最优控制问题、最小时间控制问题、最小能量控制问题等。
1. 线性二次型最优控制问题:这类问题中,系统的动态特性是线性的,性能指标函数是状态变量和控制输入的二次型函数。
这类问题在实际应用中非常广泛,因为许多实际系统都可以近似为线性系统,而二次型性能指标函数可以方便地描述许多实际优化目标。
2. 最小时间控制问题:在这类问题中,我们的目标是使得系统从初始状态到达目标状态的时间最短。
这类问题通常出现在对时间要求非常严格的场合,如火箭发射、紧急制动等。
3. 最小能量控制问题:这类问题的目标是使得系统在完成指定任务的过程中消耗的能量最小。
这类问题在能源有限的系统中尤为重要,如无人机、电动汽车等。
三、最优控制问题的求解方法求解最优控制问题的方法主要有两种:解析法和数值法。
1. 解析法:解析法是通过求解系统的动态方程和性能指标函数的极值条件,得到最优控制策略的解析表达式。
现代控制理论_第9章_动态规划法

(9-3)
式中,x k 为n 维状态向量,u k 为 m 维控制向量,设J x k ,u k 为每一步转移中的性能指标。
第一步,系统初始状态 x 0 在 u 0 作用下转移至 x 1 ,即
x 1 f x 0 ,u 0
w x 1 如果我们用 wN x 0 表示 N 级过程的性能指标的极小值, N 1 表示 N 1 级过程性能指标的极小值,则我们就可以列写出级决策过 程的函数方程为:
w J x 0 ,u 0 wN 1 f x 0 ,u 0 x 0 min u 0
三者进行比较,由此作出第一级决策为u4,1 即应选 B2 C1路线。这 时 B2 F 最小路程为 w4 B2 9 。 函数方程是一个递推方程,一般说来,难于获得解析解,需要用 数 字计算机求解。
第二节 动态规划法解离散系统的 最优控制问题
设系统状态方程为
x k 1 f x k ,u k k 0,1,, N 1
最优性原理是动态规划法的基础和核心。动态规划法就是对一个 多级过程,应用最优性原理,进行分级决策,求出最优控制的一种 数学方法。
3、 多级决策过程的函数方程
应用动态规划法求解过程的最优决策时,首先要根据最优性原 理将多级决策过程表示成如下数学表达式:
wk xk min d xk , xk 1,i wk 1 xk 1,i
⑸ 在最后一级开始倒向逐级分析中,我们发现,由于各站的起 始点并未确定,因此需要把各中间站的所有通过点作为出发点进 行计算,并将所有对应的最佳决策存进计算机,建立起一个完整 的“档案库”,因此要求计算机有相当大的容量。 (6)第一级起始条件(地)是确定的,因此只有逐级倒向分析到第 一级时,才能作出确定的第一级决策,然后再根据第一级决策顺向 确定各级的起始条件(各站的通过点),这时由于“档案库”中存 有全部“资料”,因此用“查档”的方法就可逐级确定决策。由此 可见,一般情况下,多级决策过程包括两个过程:倒向“建档”及 顺向“查档”,而大量的计算工作是花费在建立“档案库”上。
最优控制问题的动态规划法

最优控制问题的动态规划法动态规划法是一种常用的最优控制问题求解方法。
它通过将问题分解为子问题,并保存子问题的最优解,最终得到整体问题的最优解。
本文将介绍最优控制问题的动态规划法及其应用。
一、概述最优控制问题是指在给定控制目标和约束条件下,通过选择一组最优控制策略来实现最优控制目标。
动态规划法通过将问题分解为若干个阶段,并定义状态和决策变量,来描述问题的动态过程。
并且,动态规划法在求解过程中通过存储子问题的最优解,避免了重复计算,提高了计算效率。
二、最优控制问题的数学模型最优控制问题通常可以表示为一个关于状态和控制的动态系统。
假设系统的状态为$x(t)$,控制输入为$u(t)$,动态系统可以表示为:$$\dot{x}(t) = f(x(t), u(t))$$其中,$\dot{x}(t)$表示状态$x(t)$的变化率,$f$为状态方程。
此外,系统还有一个终止时间$T$,以及初始状态$x(0)$。
最优控制问题的目标是找到一个控制策略$u(t)$,使得系统在给定时间$T$内,从初始状态$x(0)$演化到最终状态$x(T)$,同时使得性能指标$J(x,u)$最小化。
性能指标通常表示为一个积分的形式:$$J(x,u) = \int_0^T L(x(t), u(t)) dt + \Phi(x(T))$$其中,$L$表示运动代价函数,$\Phi$表示终端代价函数。
三、最优控制问题的动态规划求解最优控制问题的动态规划求解包括两个主要步骤:状态方程的离散化和动态规划递推。
1. 状态方程的离散化将状态方程离散化可以得到状态转移方程。
一般来说,可以使用数值方法(如欧拉方法、龙格-库塔方法)对状态方程进行离散化。
通过选择适当的时间步长,可以平衡计算精度和计算效率。
2. 动态规划递推动态规划递推是最优控制问题的关键步骤。
假设状态函数$V(t,x)$表示从时刻$t$起,状态为$x$时的最优性能指标。
动态规划递推过程通常可以描述为以下几个步骤:(1)递推起点:确定最终时刻$T$时的值函数$V(T,x)$,通常可以根据终端代价函数$\Phi$直接得到。
最优控制——最大值原理

最优控制——最大值原理最优控制问题是数学中的一个重要问题,研究如何在给定约束条件下使一个系统达到最优状态。
在数学的最优控制理论中,最大值原理是一种重要的工具和方法,被广泛应用于很多最优控制问题的求解中。
本文将详细介绍最优控制中的最大值原理及其应用。
最大值原理也称为哈密顿-雅可比-贝尔曼方程(hamilton-jacobi-bellman equation),它是最优控制问题的一个基本性质。
最大值原理给出了在给定约束条件下系统状态的最优演化方程。
最大值原理的基本形式是哈密顿-雅可比-贝尔曼方程。
对于一个给定的最优控制问题,假设系统的演化满足一个偏微分方程,此方程将由状态变量、控制变量、时间变量以及一个哈密顿函数构成,具体形式如下:∂V/∂t + min(u) {H(x,u,t)+ ∇V⋅f(x,u,t)} = 0其中,V(x,t)是值函数(value function),表示从状态x在时间t开始时,系统必须选择的最佳控制来最大化性能指标的期望值。
f(x,u,t)是状态方程(state equation),描述系统状态的演化。
H(x,u,t)是哈密顿函数(Hamiltonian),是一个将值函数、控制变量和状态方程综合起来的函数,它的作用是描述系统的动力学性质。
最大值原理的关键在于通过逐步迭代的方式求解值函数V(x,t),找到使系统达到最优状态的最佳控制变量。
这一过程通常称为最优控制问题的动态规划(dynamic programming)。
最大值原理的主要应用涉及很多不同领域,例如经济学、工程学、生物学等。
在经济学中,最大值原理被广泛应用于决策理论、资产定价、宏观经济模型等领域。
在工程学中,最大值原理常用于控制系统设计、路径规划、优化问题等。
在生物学中,最大值原理被用于神经科学、生态学、生物系统动力学建模等。
最大值原理的应用还包括优化问题、最短路径问题、最优控制问题、反问题等。
它不仅可以用于求解连续问题,也可以用于离散问题。
最优控制课后习题答案

最优控制课后习题答案最优控制课后习题答案最优控制是现代控制理论中的重要分支,它研究如何在给定约束条件下,使系统的性能指标达到最优。
在最优控制的学习过程中,课后习题是巩固理论知识、培养解决问题能力的重要环节。
本文将为大家提供一些最优控制课后习题的答案,希望能对大家的学习有所帮助。
1. 线性二次型最优控制问题考虑一个线性时不变系统,其状态方程和性能指标分别为:$$\begin{align*}\dot{x}(t) &= Ax(t) + Bu(t) \\J(u) &= \int_{0}^{T} (x^T(t)Qx(t) + u^T(t)Ru(t))dt\end{align*}$$其中,$x(t)$为系统的状态向量,$u(t)$为控制输入向量,$A$和$B$为系统矩阵,$Q$和$R$为正定矩阵,$T$为最优控制的时间段。
求解该问题的最优控制输入$u^*(t)$。
答案:根据最优控制的原理,最优控制输入$u^*(t)$满足以下的最优性条件:$$\begin{align*}\frac{\partial J}{\partial u}(u^*(t)) &= 2R u^*(t) + 2B^T P(t)x(t) = 0 \\\dot{P}(t) &= -PA - A^T P - Q + PBR^{-1}B^T P\end{align*}$$其中,$P(t)$为状态向量的共轭变量矩阵。
通过求解上述的代数方程和微分方程,可以得到最优控制输入$u^*(t)$和状态向量的共轭变量矩阵$P(t)$。
2. 非线性最优控制问题考虑一个非线性系统,其状态方程和性能指标分别为:$$\begin{align*}\dot{x}(t) &= f(x(t), u(t)) \\J(u) &= \int_{0}^{T} g(x(t), u(t)) dt\end{align*}$$其中,$f(x(t), u(t))$为非线性函数,$g(x(t), u(t))$为性能指标函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应用动态规划法可使计算量减少许多。动态规 划法遵循一个最优化原则:即所选择的最优路线必 须保证其后部子路线是最优的。
例如在图2中,如果AQ1P2Q3B是最优路线,那么 从这条路线上任一中间点到终点之间的一段路线必 定也是最优的。否则AQ1P2Q3B就不能是最优路线 了。
根据这一原则,求解最优路线问题,最好的办 法就是从终点开始,按时间最短为目标,逐段向前 逆推。依次计算出各站至终点之间的时间最优值, 并据此决策出每一站的最优路线。如在图2中,从终 点B开始逆推。
第七章 动态规划法
动态规划是贝尔曼在50年代作为多段决策过程 研究出来的,现已在许多技术领域中获得广泛应 用。动态规划是一种分段最优化方法,它既可用来 求解约束条件下的函数极值问题,也可用于求解约 束条件下的泛函极值问题。它与极小值原理一样, 是处理控制矢量被限制在一定闭集内,求解最优控 制问题的有效数学方法之一。
P1 7
P2 2
P3
3
4
A
4 6 32
B
4
2
Q1
8
Q2
3
Q3
1
2
3
4
最后一段(第四段):终点B的前站是P3或Q3,不 论汽车先从哪一站始发,行驶路线如何,在这最后 一段,总不外乎是从P3到B,历时为4,或从Q3到B, 历时为2,将其标明在图3中相应的圆圈内。比较P3与 Q3这一最后一段最优决策为Q3B。
P1
P2
P3
7
11
4
4
12
4
A
4
8 Q1
2
3
5
2
Q2
Q3
4 2B
最后一段(第四段):终点B的前站是P3或Q3,不 论汽车先从哪一站始发,行驶路线如何,在这最后 一段,总不外乎是从P3到B,历时为4,或从Q3到B, 历时为2,将其标明在图3中相应的圆圈内。比较P3与 Q3这一最后一段最优决策为Q3B。
下面以最优路线问题为例,来讨论动态规划求 解多段决策问题。
设汽车从A城出发到B城,途中需穿越三条河 流,它们各有两座桥P、Q可供选择通过,如图2所 示。各段间的行车时间(或里程、费用等)已标注在 相应段旁。问题是要确定一条最优行驶路线,使从 A城出发到B城的行车时间最短。
P1 7
P2 2
P3
3
4
如图1所示,对于中间的任意一段,例如第k+1
段作出相应的“决策”(或控制)uk后,才能确定该段 输
入状态与输出状态间的关系,即从xk变化到xk+1的状 态转移规律。在选择好每一段的“决策”(或控制) uk 以后,那么整个过程的状态转移规律从x0经xk一直到 xN也就被完全确定。全部“决策”的总体,称为 “策
略”。
u0
u1
x0
1 x1
2 x2
uk
xk
k+1 xk+1
uN-1
xN-1
N
xN
图1 多段决策过程示意图 当然,如果对每一段的决策都是按照使某种性 能指标为最优的原则作出的,那么这就是一个多段 最优决策过程。
容易理解,在多段决策过程中,每一段(如第 k+1段)的输出状态(xk+1)都仅仅与该段的决策(uk)及 该段的初始状态(xk)有关。而与其前面各段的决策 及状态的转移规律无关。这种性质称为无后效性。
动态最优的核心是最优性原理,它首先将一个 多段决策问题转化为一系列单段决策问题,然后从 最后一段状态开始逆向递推到初始段状态为止的一 套求解最优策略的完整方法。
下面先介绍动态规划的基本概念,然后讨论连 续型动态规划。
一、多段决策问题
动态规划是解决多段决策过程优化问题的一 种强有力的工具。所谓多段决策过程,是指把一 个过程按时间或空间顺序分为若干段,然后给每 一步作出“决策”(或控制),以使整个过程取得最 优 的效果。
A
4 6 32
B
4
2
Q1
8
Q2
3
Q3
1
2
3
4
现将A到B分成四段,每一段都要作一最优决 策,使总过程时间为最短。所以这是一个多段最 优决策问题。
由图2可知,所有可能的行车路线共有8条。 如果将各条路线所需的时间都一一计算出来,并 作一比较,便可求得最优路线是AQ1P2Q3B,历时 12。这种一一计算的方法称为穷举算法。这种方 法计算量大,如本例就要做3×23=24次加法和7次 比较。如果决策一个n段过程,则共需(n-1)2n-1次 加法和(2n-1-1)次比较。可见随着段数的增多,计 算量将急剧增加。
P1
P2
P3
7
11
4
4
12
A
4
4 8
2
3
5
2
4 2B
Q1
Q2
Q3
第二段: P2、Q2的前站是P1、Q1。同样不管 汽车是如何到达的P1、Q1,重要的是保证从P1或 Q1到B要构成最优路线。从P1到B的两条路线中, P1P2Q3B,历时为11;P1Q2Q3B,历时为11,取最
短历时11,标注在P1旁。从Q1到B的也有两条路 线中,Q1P2Q3B,历时为8;Q1Q2Q3B,历时为 13,取最短历时8,标注在Q1旁。比较P1与Q1的 最优值,可知这一段的最优路线是Q1P2Q3B。
P1
P2
P3
7
11
4
4
12
A
4
4 8
2
3
5
2
4 2B
Q1
Q2
Q3
第三段:P3、Q3的前站是P2、Q2。在这一段也
不论其先后的情况如何,只需对从P2或Q2到B进行最 优决策。从P2到B有两条路线:P2P3B,历时为6; P2Q3B,历时为4,取最短历时4,标注在P2旁。从Q2 到B也有两条路线:Q2P3B,历时为7;Q2Q3B,历时 为5,取最短历时5,标注在Q2旁。比较P2与Q2的最 优值,可知这一段的最优路线是P2Q3B。
2) 最优路线的整体决策是从终点开始,采用逆推方 法,通过计算、比较各段性能指标,逐段决策逐步延 伸完成的。
全部最优路线的形成过程已充分表达在图3中。 从最后一段开始,通过比较P3、Q3,得到Q3B; 倒数第二段,通过比较P2、Q2,得到P2Q3B; 倒数第三段,通过比较P1、Q1,得到最优决策为 Q1P2Q3B; 直至最后形成最优路线AQ1P2Q3B。
P1
P2
P3
7
11
4
4
12
4
A
4
8 Q1
2
3
5
2
Q2
Q3
4 2B
第一段:P1、Q1的前站是始发站A。显见从
A到B的最优值为12,故得最优路线为AQ1P2Q3B。
Hale Waihona Puke 综上可见,动态规划法的特点是: 1) 与穷举算法相比,可使计算量大大减少。如 上述最优路线问题,用动态规划法只须做10次 加法和6次比较。如果过程为n段,则需做加 法。以上例为例,用穷举法需作4608次加法, 而后者只需做34次加法。