最新版2019-2020年浙教版七年级数学上册知识点汇总-精编试题

合集下载

浙教版七年级(上册)数学知识点复习资料全

浙教版七年级(上册)数学知识点复习资料全
4.绝对值:
数轴上一点a到原点的距离表示a的绝对值。
绝对值的性质:
(1) 正数的绝对值是其本身, 0的绝对值是0, 负数的绝对值 是它的相反数
(2) 绝对值可表示为:

绝对值的问题经常分类讨论;
(3)
5.有理数大小的概念:
(1)正数的绝对值越大, 这个数越大;
(2)正数永远比0大, 负数永远比0小;
(2)常数项: 多项式中,不含字母的项叫做常数项.
(3)多项式次数: 多项式里,次数最高的项的次数,就是这个多项式的次数.
4.整式:
单项式和多项式统称整式。
5.同类项:
所含字母相同,并且相同字母的次数也相同的项,叫做同类项. 常数项都是同类项。
合并同类项法则: 同类项的系数相加,所得的结果作为系数,字母和字母的指数不变。
(3)整式的加减运算可归结为去括号和合并同类项。
7、常用的关系:
奇数2n-1或2n+1;偶数2n;三个连续的整数一般写作n-1, n, n+1;三个连续的偶数一般写作2n-2, 2n, 2n+2;三个连续的奇数一般写作2n-1, 2n+1, 2n+3
练习题
1.已知

是同类项, 则
A. 4 B. 37 C. 2或4 D. 2
A
B
4、下列说法,正确是( ) A、零是最小的自然数 B、零是最小的正整数 C、零是最小的有理数 D.零既是负数又是正数
A
1、下列各对数中,互为相反数是( ) A.2和
C.
和2 D.

D
5、火车上的车次号有两个意义,一是数字越小表示车速越快,1∽98次为特快列车,101∽198次为直快列车,301∽398次为普快列车,401∽498次为普客列车;二是单数与双数表示不同的行驶方向,其中单数表示从北京开出,双数表示开往北京方向.根据以上规定,杭州开往北京的某一直快列车的车次号可能是( ) A、20 B、119 C、120 D.319

浙教版七年级上册2019-2020学年数学期末复习疑难压轴大题含答案

浙教版七年级上册2019-2020学年数学期末复习疑难压轴大题含答案

浙教版2019年七年级数学期末复习专题--压轴题培优1.已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.2.如图,已知两条射线OM∥CN,动线段AB的两个端点A.B分别在射线OM、CN上,且∠C=∠OAB=108°,F在线段CB上,OB平分∠AOF,OE平分∠COF.(1)请在图中找出与∠AOC相等的角,并说明理由;(2)若平行移动AB,那么∠OBC与∠OFC的度数比是否随着AB位置的变化而发生变化?若变化,找出变化规律;若不变,求出这个比值;(3)在平行移动AB的过程中,是否存在某种情况,使∠OEC=2∠OBA?若存在,请求出∠OBA度数;若不存在,说明理由.3.已知AB∥CD,线段EF分别与AB、CD相交于点E、F.(1)如图①,当∠A=25°,∠APC=70°时,求∠C的度数;(2)如图②,当点P在线段EF上运动时(不包括E、F两点),∠A.∠APC与∠C之间有什么确定的相等关系?试证明你的结论.(3)如图③,当点P在线段FE的延长线上运动时,(2)中的结论还成立吗?如果成立,说明理由;如果不成立,试探究它们之间新的相等关系并证明.4.如图1,在平面直角坐标系中,A(a,0)是x轴正半轴上一点,C是第四象限一点,CB⊥y轴,交=16.y轴负半轴于B(0,b),且(a-3)2+|b+4|=0,S四边形AOBC(1)求C点坐标;(2)如图2,设D为线段OB上一动点,当AD⊥AC时,∠ODA的角平分线与∠CAE的角平分线的反向延长线交于点P,求∠APD的度数.(3)如图3,当D点在线段OB上运动时,作DM⊥AD交BC于M点,∠BMD、∠DAO的平分线交于N点,则D点在运动过程中,∠N的大小是否变化?若不变,求出其值,若变化,说明理由.5.已知BC∥OA,∠B=∠A=100°.试回答下列问题:(1)如图1所示,求证:OB∥AC;(2)如图2,若点E、F在BC上,且满足∠FOC=∠AOC,并且OE平分∠BOF.试求∠EOC的度数;(3)在(2)的条件下,若平行移动AC,如图3,那么∠OCB:∠OFB的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值。

最新2019-2020年度浙教版七年级数学上册《近似数》同步训练题及答案解析-精品试题

最新2019-2020年度浙教版七年级数学上册《近似数》同步训练题及答案解析-精品试题

2.7 近似数同步训练一.选择题(共8小题)1.近似数4.73和()最接近.A.4.69 B.4.699 C.4.728 D.4.7312.已知圆周率π=3.1415926…,将π精确到干分位的结果是()A.3.1 B.3.14 C.3.141 D.3.1423.32980保留三个有效数字,结果正确的是()A.3.30×104B.330×102C.3.3×104D.3304.去年我省规划重建校舍约3876000平方米,这个数精确到十万位并用科学记数法表示为()A.3.8×106平方米B.3.8×107平方米C.3.9×106平方米D.3.9×107平方米5.下列说法正确的是()A.0.720有两个有效数字B.3.6万精确到个位C.5.078精确到千分位D.3000有一个有效数字6.对于近似数0.7048,下列说法中正确的是()A.它的准确值x的范围是0.70475<x<0.70485B.它有三个有效数字C.对它四舍五入精确到百分位为0.71D.用科学记数法表示它为7.048×10﹣17.近似数3.0的准确值a的取值范围是()A.2.5<a<3.4 B.2.95≤a≤3.05 C.2.95≤a<3.05 D.2.95<a<3.058.如图所示,体育课上,小丽的铅球成绩为6.4m,她投出的铅球落在()A.区域①B.区域②C.区域③D.区域④二.填空题(共4小题)9.2.40万精确到位,有效数字有个.10.近似数1.02×105精确到了位.11.据国家考试中心发布的信息,我国今年参加高考的考生数达11 600 000人,这个数据用科学记数法且保留两个有效数字可表示为人.12.我国第六次人口普查公布全国人口数约为137054万,将这个数精确到亿位,结果为.三.解答题(共3小题)13.用四舍五入法按括号中的要求对下列各数取近似数:(1)0.057 1(精确到0.01);(2)5.456 9(精确到千分位)(3)9 840 080(保留两个有效数字);(4)3 849 600(精确到千位)14.2003年,地球人制造的机器人成功登上火星,对火星进行科学探索,你知道火星有多大吗?火星半径是地球半径的一半,质量是地球质量的.若地球半径为6370千米,质量是6×1027克,请你求出:(1)火星的体积(体积公式为πR2,取π的近似值为3);(2)火星的质量(小数点后取两位).15.世界上最大的沙漠──非洲的撒哈拉沙漠可以粗略地看成是一个长方形,撒哈拉沙漠的长度大约是5 149 900m,沙层的深度大约是366cm.已知撒哈拉沙漠中沙的体积约为33 345km3.请分别按下列要求取近似数.(1)将撒哈拉沙漠的长度用科学记数法表示;(2)将撒哈拉沙漠中沙层的深度四舍五入到10cm;(3)将撒哈拉沙漠中沙的体积保留2个有效数字.2.7 近似数同步训练参考答案与试题解析一.选择题(共8小题)1.近似数4.73和()最接近.A.4.69 B.4.699 C.4.728 D.4.731【分析】分别用4.73和4.69,4.699,4.728,4.731比较看谁的差最小,谁就是最接近的.2.已知圆周率π=3.1415926…,将π精确到干分位的结果是()A.3.1 B.3.14 C.3.141 D.3.142【分析】根据近似数的精确度求解.【解答】解:π≈3.142(精确到干分位).故选D.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数为近似数;从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等.3.32980保留三个有效数字,结果正确的是()A.3.30×104B.330×102 C.3.3×104 D.330【分析】较大的数保留有效数字需要用科学记数法来表示.用科学记数法保留有效数字,要在标准形式a×10n中a的部分保留,从左边第一个不为0的数字数起,需要保留几位就数几位,然后根据4舍5入的原理进行取舍.【解答】解:32980=3.298×104≈3.30×104.故选:A.【点评】此题考查的知识点是近似数和有效数字,关键明确从左边第一个不是0的数开始数起,到精确到的数位为止,所有的数字都叫做这个数的有效数字.4.去年我省规划重建校舍约3876000平方米,这个数精确到十万位并用科学记数法表示为()A.3.8×106平方米B.3.8×107平方米C.3.9×106平方米D.3.9×107平方米【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,且比原数的整数位少一位;取精确度时,需要精确到哪位就数到哪位,然后根据四舍五入的原理进行取舍.【解答】解:3876000≈3.9×106,故选C.【点评】此题考查了科学记数法的表示方法,注意对一个数进行四舍五入时,若要求近似到个位以前的数位时,首先要对这个数用科学记数法表示.5.下列说法正确的是()A.0.720有两个有效数字B.3.6万精确到个位C.5.078精确到千分位D.3000有一个有效数字【分析】一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字.利用有关近似数的确定方法求解即可.【解答】解:A、错误,有3个有效数字;B、错误,精确到千位;C、正确,精确到千分位;D、错误,有4个有效数字,故选C.【点评】本题考查有效数字的概念和精确度,属于基础题,比较简单.6.对于近似数0.7048,下列说法中正确的是()A.它的准确值x的范围是0.70475<x<0.70485B.它有三个有效数字C.对它四舍五入精确到百分位为0.71D.用科学记数法表示它为7.048×10﹣1【分析】根据近似数、有效数字的定义和科学记数法的表示方法分别对每一项进行判断.【解答】解:A、近似数0.7048的准确值x的范围是0.70475≤x<0.70485,故本选项错误;B、它有四个有效数字,故本选项错误;C、对它四舍五入精确到百分位为0.70,故本选项错误;D、用科学记数法表示它为7.048×10﹣1,故本选项正确;故选D.【点评】此题考查了近似数和有效数字,掌握近似数、有效数字的定义和科学记数法的表示方法是本题的关键;近似数精确到哪一位,应当看末位数字实际在哪一位.7.近似数3.0的准确值a的取值范围是()A.2.5<a<3.4 B.2.95≤a≤3.05 C.2.95≤a<3.05 D.2.95<a<3.05【分析】根据近似数的精确度得到a在2.95≤a<3.05取值时,经过四舍五入可得到3.0.【解答】解:近似数3.0的准确值a的取值范围为2.95≤a<3.05.故选C.【点评】本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起到这个数完为止,所有数字都叫这个数的有效数字.【分析】根据小丽的铅球成绩为6.4m,得出其所在的范围,即可得出答案.【解答】解:∵6<6.4<7,∴她投出的铅球落在区域④;故选:D.【点评】此题考查了近似数,关键是根据6.4求出其所在的范围,用到的知识点是近似数.二.填空题(共4小题)9.2.40万精确到百位,有效数字有 3 个.【分析】根据24 000确定精确度,从左边第一个不是0的数开始数起,到精确到的数位为止共有3个有效数字.【解答】解:2.40万=24 000,精确到百位,有效数字有3个,分别是2,4,0.【点评】从左边第一个不是0的数开始数起,到精确到的数位为止,所有的数字都叫做这个数的有效数字;注意后面的单位不算入有效数字.10.近似数1.02×105精确到了千位.【分析】根据近似数的精确度求解.【解答】解:近似数1.02×105精确到了千位.故答案为千.【点评】本题考查了近似数与有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.11.据国家考试中心发布的信息,我国今年参加高考的考生数达11 600 000人,这个数据用科学记数法且保留两个有效数字可表示为 1.2×107人.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值是易错点,由于11 600 000有8位,所以可以确定n=8﹣1=7.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.【解答】解:11 600 000≈1.2×107.【点评】较大的数保留有效数字需要用科学记数法来表示.用科学记数法保留有效数字,要在标准形式a×10n中a的部分保留,从左边第一个不为0的数字数起,需要保留几位就数几位,然后根据四舍五入的原理进行取舍.12.我国第六次人口普查公布全国人口数约为137054万,将这个数精确到亿位,结果为1.3×109.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值是易错点,由于137054万有10位,所以可以确定n=10﹣1=9.【解答】解:我国第六次人口普查公布全国人口数约为137054万,将这个数精确到亿位,结果为1.3×109,故答案为:1.3×109.【点评】此题考查科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.三.解答题(共3小题)13.用四舍五入法按括号中的要求对下列各数取近似数:(1)0.057 1(精确到0.01)0.06 ;(2)5.456 9(精确到千分位) 5.457(3)9 840 080(保留两个有效数字)9.8×106;(4)3 849 600(精确到千位)3.850×106【分析】一个近似数的有效数字是从左边第一个不是0的数字起,后面所有的数字都是这个数的有效数字;精确到十位或十位以前的数位时,要先用科学记数法表示出这个数,再进行四舍五入.【解答】解:(1)0.057 1≈0.06;(2)5.456 9≈5.457;(3)9 840 080≈9.8×106;(4)3 849 600≈3.850×106.【点评】本题主要考查了如何根据要求进行四舍五入,是需要识记的内容.14.2003年,地球人制造的机器人成功登上火星,对火星进行科学探索,你知道火星有多大吗?火星半径是地球半径的一半,质量是地球质量的.若地球半径为6370千米,质量是6×1027克,请你求出:(1)火星的体积(体积公式为πR2,取π的近似值为3);(2)火星的质量(小数点后取两位).【分析】(1)先根据火星半径是地球半径的一半,地球半径为6370千米,可求火星半径,再根据体积公式πR2,可求火星的体积;(2)根据火星质量是地球质量的,地球质量是6×1027克,根据乘法的意义列式可求火星的质量.【解答】解:(1)πR2=×3×63702=162307600(立方千米).故火星的体积是162307600立方千米;15.世界上最大的沙漠──非洲的撒哈拉沙漠可以粗略地看成是一个长方形,撒哈拉沙漠的长度大约是5 149 900m,沙层的深度大约是366cm.已知撒哈拉沙漠中沙的体积约为33 345km3.请分别按下列要求取近似数.(1)将撒哈拉沙漠的长度用科学记数法表示;(2)将撒哈拉沙漠中沙层的深度四舍五入到10cm;(3)将撒哈拉沙漠中沙的体积保留2个有效数字.【分析】在实际生活中,许多比较大的数,我们习惯上都用科学记数法表示,使书写、计算简便.同时根据四舍五入以及有效数字的定义,运用科学记数法表示较大的数.【解答】解:(1)撒哈拉沙漠的长度大约是5 149 900m=5.1499×106m;。

(完整版)浙教新版数学七年级上知识点总结,推荐文档

(完整版)浙教新版数学七年级上知识点总结,推荐文档

注意: 3 a 3 a ,如
3 8 3 8 一个正数有一个正的立方根;
一个负数有一个负的立方根;
零的立方根是零。
四、实数大小的比较 (1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。
(2)求差比较: a b 0 a b,
a b 0 a b,
ab0 பைடு நூலகம்b
(3)求商比较法:设 a、b 是两正实数, a 1 a b; a 1 a b; a 1 a b;
-3 -2 -1 0 1 2 3
(1)只有符号不同的两个数,我们说其中一个是另一个的相反数; a和- a 互为相反数,0 的相反数 0;
(2)注意: a-b+c 的相反数是-a+b-c;a+b 的相反数是-a-b;
4.绝对值:
(1) 数轴上一个数所对应的点与原点的距离叫做该数的绝对值,用“| |”表示。
x
11.同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。常数也是同类项
12.合并同类项:把多项式中的同类项合成一项,叫做合并同类项。
注意:最后结果一定要合并到不再含有同类项为止。
13.去括号时符号变化规律:
如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号不变;
如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反。
2 /5
2、无理数
无理数抓住“无限不循环”,归纳起来主要有三类: (1)开不尽方的数,如 7, 3 2 等;(2)化简后含有 π 的数,如 8 等;(3)有特定结构的无限
3 不循
环小数,如 0.1010010001…等;
二、建平方根议、算收数平方藏根和下立方根载本文,以便随时学习!

浙教版七年级上册初一数学(基础版)(全册知识点考点梳理、重点题型分类巩固练习)(家教、补习、复习用)

浙教版七年级上册初一数学(基础版)(全册知识点考点梳理、重点题型分类巩固练习)(家教、补习、复习用)

浙教版七年级上册初中数学全册知识点梳理及重点题型巩固练习有理数的意义【学习目标】1.掌握用正负数表示实际问题中具有相反意义的量;2.理解正数、负数、有理数的概念;3. 掌握有理数的分类方法,初步建立分类讨论的思想.【要点梳理】要点一、正数与负数像+3、+1.5、12+、+584等大于0的数,叫做正数;像-3、-1.5、12-、-584等在正数前面加“-”号的数,叫做负数.要点诠释:(1)一个数前面的“+”“-”是这个数的性质符号,“+”常省略,但“-”不能省略. (2)用正数和负数表示具有相反意义的量时,哪种为正可任意选择,但习惯把“前进、上升”等规定为正,而把“后退、下降”等规定为负.(3)0既不是正数也不是负数,它是正数和负数的分界线.要点二、有理数的分类(1)按整数、分数的关系分类:(2)按正数、负数与0的关系分类:要点诠释:(1)有理数都可以写成分数的形式,整数也可以看作是分母为1的数.(2)分数与有限小数、无限循环小数可以互化,所以有限小数和无限循环小数可看作分数,但无限不循环小数不是分数,例如π.(3)正数和零统称为非负数;负数和零统称为非正数;正整数、0、负整数统称整数.【典型例题】类型一、正数与负数1.(2016•广州)中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数.如果收入100元记作+100元.那么﹣80元表示()A.支出20元 B.收入20元C.支出80元 D.收入80元【思路点拨】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【答案】C【解析】解:根据题意,收入100元记作+100元,则﹣80表示支出80元.故选:C.【总结升华】本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.举一反三:【:有理数的意义 356786概念的应用例3(1)】【变式1】(2015•太仓市模拟)一种大米的质量标识为“(50±0.5)千克”,则下列各袋大米中质量不合格的是()A.50.0千克 B.50.3千克 C.49.7千克 D.49.1千克【答案】D.解:“50±0.5千克”表示最多为50.5千克,最少为49.5千克.【变式2】(1)如果收入300元记作+300元,那么支出500元用___________ 表示,0元表示__________ .(2)若购进50本书,用-50本表示,则盈利30元如何表示?【答案】(1)-500元;既没有收入也没有支出. (2)不是一对具有相反意义的量,不能表示. 【变式3】如果60m表示“向北走60m”,那么“向南走40m”可以表示为().A.-20m B.-40m C.20m D.40m【答案】B2.体育课上,华英学校对九年级男生进行了引体向上测试,以能做7个为标准,超过的次数记为正数,不足的次数记为负数,其中8名男生的成绩如下:2,-1,0,3,-2,-3,1,0(1)这8名男生有百分之几达到标准?(2)他们共做了多少引体向上?【答案与解析】(1)由题意可知:正数或0表示达标,而正数或0的个数共有5个,所以百分率为:5100%62.5% 8⨯=;答:这8名男生有62.5%达到标准.(2)(7+2)+(7-1)+7+(7+3)+(7-2)+(7-3)+(7+1)+7=56(个)答:他们共做了引体向上56个.【总结升华】一定要先弄清“基准”是什么.类型二、有理数的分类【:有理数的意义 356786 概念的应用例2】3.下面说法中正确的是( ).A.非负数一定是正数.B.有最小的正整数,有最小的正有理数.C.a-一定是负数.D .正整数和正分数统称正有理数.【答案】D【解析】(A)不对,因为非负数还包括0;(B) 最小的正整数为1,但没有最小的正有理数;(C)不对,当a为负数或0时,则a-为正数或0,而不是负数;(D)对【总结升华】一个有理数既有性质符号,又有除性质符号外的数值部分,两者合在一起才表示这个有理数.举一反三:【变式1】判断题:(1)0是自然数,也是偶数.()(2)0既可以看作是正数,也可以看成是负数.()(3)整数又叫自然数.()(4)非负数就是正数,非正数就是负数.()【答案】√,⨯,⨯,⨯【变式2】下列四种说法,正确的是( ).(A)所有的正数都是整数(B)不是正数的数一定是负数(C)正有理数包括整数和分数 (D)0不是最小的有理数【答案】D4.请把下列各数填入它所属于的集合的大括号里.1, 0.0708, -700, -3.88, 0, 3.14159265,723-,.正整数集合:{ …},负整数集合:{ …},整数集合:{ …},正分数集合:{ …},负分数集合:{ …},分数集合:{ …},非负数集合:{ …},非正数集合:{ …}.【答案】正整数: 1;负整数:-700;整数:1,0,-700;正分数:0.0708,3.14159265,;负分数: -3.88,7 23 -;分数:0.0708,3.14159265,,-3.88,723-; 非负数: 1,0.0708, 3.14159265,0,;非正数:-700, -3.88, 0, 723- 【解析】 【总结升华】填数的方法有两种:一种是逐个考察,一一进行填写;二是逐个填写相关的集合,从给出的数中找出属于这个集合的数.此外注意几个概念:非负数包括0和正数;非正数包括0和负数. 举一反三:【变式】(2014秋•惠安县期末)在有理数、﹣5、3.14中,属于分数的个数共有 个.【答案】2.类型三、探索规律5.某校生物教师李老师在生物实验室做实验时,将水稻种子分组进行发芽试验:第1组取3粒,第2组取5粒,第3组取7粒,第4组取9粒,.按此规律,那么请你推测第n 组应该有种子是 粒. 【答案】(12+n )【解析】第1组取3粒,第2组取5粒,第3组取7粒,第4组取9粒,,由此我们观察到的粒数与组数之间有一定关系:1123+⨯=,1225+⨯=,1327+⨯=,1429+⨯=,,按此规律,第n 组应该有种子数(12+n )粒.【总结升华】研究一列数的排列规律时,其中的数与符号往往都与序数有关. 举一反三:【变式1】有一组数列:2,-3,2,-3,2,-3,,根据这个规律,那么第2010个数是:【答案】-3【变式2】观察下列有规律的数:,,301,201,121,61,21 根据其规律可知第9个数是: 【答案】901 【巩固练习】一、选择题1. (2014•甘肃模拟)下列语句正确的( )个 (1)带“﹣”号的数是负数;(2)如果a 为正数,则﹣a 一定是负数; (3)不存在既不是正数又不是负数的数; (4)0℃表示没有温度.A. 0B. 1C. 2D. 3 2.关于数“0”,以下各种说法中,错误的是 ( ) A .0是整数 B .0是偶数C .0是正整数D .0既不是正数也不是负数3.如果规定前进、收入、盈利、公元后为正,那么下列各语句中错误的是 ( ) A .前进-18米的意义是后退18米 B .收入-4万元的意义是减少4万元 C .盈利的相反意义是亏损D .公元-300年的意义是公元后300年 4.一辆汽车从甲站出发向东行驶50千米,然后再向西行驶20千米,此时汽车的位置是 ( ) A .甲站的东边70千米处 B .甲站的西边20千米处 C .甲站的东边30千米处 D .甲站的西边30千米处 5.在有理数中,下面说法正确的是( )A .身高增长cm 2.1和体重减轻kg 2.1是一对具有相反意义的量B .有最大的数C .没有最小的数,也没有最大的数D .以上答案都不对6.下列各数是正整数的是 ( )A .-1B .2C .0.5D . 2二、填空题 1.(2014秋•朝阳区期末)如果用+4米表示高出海平面4米,那么低于海平面5米可记作 . 2.在数中,非负数是______________;非正数是 __________.3.把公元2008年记作+2008,那么-2008年表示 . 4.既不是正数,也不是负数的有理数是 . 5.(2016春•温州校级期中)如果向东行驶10米,记作+10米,那么向西行驶20米,记作 _________米.6.是整数而不是正数的有理数是 .7.既不是整数,也不是正数的有理数是 .8.一种零件的长度在图纸上是(03.002.010+-)毫米,表示这种零件的标准尺寸是 毫米,加工要求最大不超过 毫米,最小不小于 毫米. 三、解答题1.说出下列语句的实际意义.(1)输出-12t (2)运进-5t (3)浪费-14元 (4)上升-2m (5)向南走-7m2.(2014秋•晋江市期末)下面两个圈分别表示负数集和分数集,请把下列6个数填入这两个圈中合适的位置. ﹣28%,,﹣2014,3.14,﹣(+5),﹣0.3.(2015秋•赣州校级期末)随着人们的生活水平的提高,家用轿车越来越多地进入普通家庭.小明家买了一辆小轿车,他连续记录了7天中每天行驶的路程,以50km 为标准,多于50km 的记为“+”,不足50km 的记为“﹣”,刚好50km 的记为“0”,记录数据如下表:时间 第一天 第二天 第三天 第四天 第五天 第六天 第七天 路程(km ) ﹣8 ﹣11 ﹣14 0 ﹣16 +41 +8 (1)请你估计小明家的小轿车一月(按30天计)要行驶多少千米?(2)若每行驶100km 需用汽油8L ,汽油每升7.14元,试求小明家一年(按12个月计)的汽油费用是多少元?4.观察下面依次排列的一列数,它的排列有什么规律?请接着写出后面的两个数,你能说出第2011个数是什么吗?(1)1,-2,3,-4,5,-6,7,-8, , ,... ,...(2)-1,21,-31,41,51-,61,71-, , ,... ,... 【答案与解析】一、选择题1.【答案】B【解析】(1)带“﹣”号的数不一定是负数,如﹣(﹣2),错误;(2)如果a 为正数,则﹣a 一定是负数,正确; (3)0既不是正数也不是负数,故不存在既不是正数又不是负数的数此表述错误; (4)0℃表示没有温度,错误. 综上,正确的有(2),共一个.2.【答案】C【解析】0既不是正数也不是负数,但0是整数,是偶数,是自然数. 3. 【答案】D【解析】D 错误,公元-300年的意义应该是公元前300年. 4. 【答案】 C【解析】画个图形有利于问题分析,向东50千米然后再向西20千米后显然此时汽车在甲站的东边30千米处. 5.【答案】C【解析】A 错误,因为身高与体重不是具有相反意义的量;B 错误,没有最大的数也没有最小数;C 对. 6. 【答案】B 二、填空题1.【答案】﹣5米2.【答案】0.5,100,0,112;122-,0,-45 【解析】正数和零统称为非负数,负数和零统称为非正数,零既不是正数也不是负数. 3.【答案】公元前2008年【解析】正负数表示具有相反意义的量. 4.【答案】0【解析】既不是正数也不是负数的数只有零. 5.【答案】-20.【解析】解:∵向东行驶10米,记作+10米,∴向西行驶20米,记作﹣20米, 故答案为:﹣20.6.【答案】负整数和0【解析】整数包括正整数和负整数,又因为不是正数,所以只能是负整数和0. 7.【答案】负分数【解析】不是整数,则只能是分数,又不是正数,所以只能是负分数. 8.【答案】10,10.03,9.98【解析】03.002.010+-表示的数的范围为:大于-(100.02),而小于(10+0.03),即大于9.98而小于10.03.三、解答题1. 【解析】(1)输出-12t 表示输入12t ;(2)运进-5t 表示运出5t ; (3)浪费-14元表示节约14元; (4)上升-2m 表示下降2m ; (5)向南走-7m 表示向北走7m.提示:“-”表示相反意义的量. 2.【解析】3.【解析】 解:(1)=50,50×30=1500(km).答:小明家的小轿车一月要行驶1500千米;(2)×8×7.14×12=10281.6(元),答:小明家一年的汽油费用是10281.6元.4.【解析】(1)9,-10,…,2011,…(2)111 ,,...,,... 892011 --数轴与相反数(基础)【学习目标】1.理解数轴的概念及三要素;2.理解有理数与数轴上的点的关系,并会借助数轴比较两个数的大小;3.会求一个数的相反数,并能借助数轴理解相反数的概念及几何意义;4. 掌握多重符号的化简.【要点梳理】要点一、数轴1.定义:规定了原点、正方向和单位长度的直线叫做数轴.要点诠释:(1)原点、正方向和单位长度是数轴的三要素,三者缺一不可.(2)长度单位与单位长度是不同的,单位长度是根据需要选取的代表“1”的线段,而长度单位是为度量线段的长度而制定的单位.有km、m、dm、cm等.(3)原点、正方向、单位长度可以根据实际灵活选定,但一经选定就不能改动.2. 数轴与有理数的关系:任何一个有理数都可以用数轴上的点来表示,但数轴上的点不都表示有理数,还可以表示其他数,比如 .要点诠释:(1)一般地,数轴上原点右边的点表示正数,左边的点表示负数;反过来也对,即正数用数轴上原点右边的点表示,负数用原点左边的点表示,零用原点表示.(2)在数轴上表示的两个数,右边的数总比左边的数大.要点二、相反数1.定义:只有符号不同的两个数互为相反数;0的相反数是0.要点诠释:(1)“只”字是说仅仅是符号不同,其它部分完全相同.(2)“0的相反数是0”是相反数定义的一部分,不能漏掉.(3)相反数是成对出现的,单独一个数不能说是相反数.(4)求一个数的相反数,只要在它的前面添上“-”号即可.2.性质:(1)互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等(这两个点关于原点对称).(2)互为相反数的两数和为0.要点三、多重符号的化简多重符号的化简,由数字前面“-”号的个数来确定,若有偶数个时,化简结果为正,如-{-[-(-4)]}=4 ;若有奇数个时,化简结果为负,如-{+[-(-4)]}=-4 .要点诠释:(1)在一个数的前面添上一个“+”,仍然与原数相同,如+5=5,+(-5)=-5. (2)在一个数的前面添上一个“-”,就成为原数的相反数.如-(-3)就是-3的相反数,因此,-(-3)=3.【典型例题】类型一、数轴的概念1.如图所示是几位同学所画的数轴,其中正确的是 ( )A.(1)(2)(3) B.(2)(3)(4) C.只有(2) D.(1)(2)(3)(4)【答案】C【解析】对数轴的三要素掌握不清.(1)中忽略了单位长度,相邻两整点之间的距离不一致;(3)中负有理数的标记有错误;(4)图中漏画了表示方向的箭头.【总结升华】数轴是一条直线,可以向两端无限延伸;数轴的三要素:原点、正方向、单位长度缺一不可.类型二、相反数的概念2.(2015•宜宾)﹣的相反数是()A.5 B. C.﹣ D.-5【思路点拨】解决这类问题的关键是抓住互为相反数的特征“只有符号不同”,所以只要将原数的符号变为相反的符号,即可求出其相反数.【答案】B【总结升华】求一个数的相反数,只改变这个数的符号,其他部分都不变.举一反三:【:数轴和相反数例1(1)~(7)】【变式1】填空:(1) -(-2.5)的相反数是;(2) 是-100的相反数;(3)155-是的相反数;(4) 的相反数是-1.1;(5)8.2和互为相反数.(6)a和互为相反数 . (7)______的相反数比它本身大, ______的相反数等于它本身.【答案】(1)-2.5;(2)100;(3)155;(4)1.1;(5)-8.2;(6)-a;(7)负数, 0 .【:数轴和相反数例2】【变式2】下列说法中正确的有( )①-3和+3互为相反数;②符号不同的两个数互为相反数;③互为相反数的两个数必定一个是正数,一个是负数;④π的相反数是-3.14;⑤一个数和它的相反数不可能相等.A. 0个B.1个C.2个D.3个或更多【答案】B3.(2016•泰安模拟)如图,数轴上有A,B,C,D四个点,其中表示2的相反数的点是()A.点A B.点B C.点C D.点D【思路点拨】考查相反数的定义:只有符号不同的两个数互为相反数.根据定义,结合数轴进行分析.【答案】A【解析】解:∵表示2的相反数的点,到原点的距离与2这点到原点的距离相等,并且与2分别位于原点的左右两侧,∴在A,B,C,D这四个点中满足以上条件的是A.故选A.【总结升华】本题考查了互为相反数的两个数在数轴上的位置特点:分别位于原点的左右两侧,并且到原点的距离相等.类型三、多重符号的化简4.化简下列各数中的符号.(1)123⎛⎫-- ⎪⎝⎭(2)-(+5) (3)-(-0.25) (4)12⎛⎫+- ⎪⎝⎭(5)-[-(+1)] (6)-(-a)【答案】 (1)112233⎛⎫--=⎪⎝⎭(2)-(+5)=-5 (3)-(-0.25)=0.25(4)1122⎛⎫+-=-⎪⎝⎭(5)-[-(+1)]=-(-1)=1 (6)-(-a)=a【解析】(1)123⎛⎫-- ⎪⎝⎭表示123-的相反数,而123-的相反数是123,所以112233⎛⎫--=⎪⎝⎭;(2)-(+5)表示+5的相反数,即-5,所以-(+5)=-5;(3)-(-0.25)表示-0.25的相反数,而-0.25的相反数是0.25,所以-(-0.25)=0.25;(4)负数前面的“+”号可以省略,所以1122⎛⎫+-=-⎪⎝⎭;(5)先看中括号内-(+1)表示1的相反数,即-1,因此-[-(+1)]=-(-1)而-(-1)表示-1的相反数,即1,所以-[-(+1)]=-(-1)=1;(6)-(-a)表示-a的相反数,即a.所以-(-a)= a【总结升华】运用多重符号化简的规律解决这类问题较为简单.即数一下数字前面有多少个负号.若有偶数个,则结果为正;若有奇数个,则结果为负.类型四、利用数轴比较大小5.在数轴上表示2.5,0,34-,-1,-2.5,114,3有理数,并用“<”把它连接起来.【答案与解析】如图所示,点A 、B 、C 、D 、E 、F 、G 分别表示有理数2.5,0,34-,-1,-2.5,114,3.由上图可得:∴312.5101 2.5344-<-<-<<<< 【总结升华】根据数轴的三要素先画好数轴,表示数的字母要依次对应有理数,然后根据在数轴上表示的两个数,右边的数总比左边的数大,比较大小. 举一反三:【变式1】(2014秋•埇桥区校级期中)有理数a 、b 在数轴上的位置如图所示,下列各式不成立的是( )A .b ﹣a >0B .﹣b <0C .﹣a >﹣bD .﹣ab <0 【答案】D【:数轴和相反数 例4(2)】 【变式2】填空: 大于763-且小于767的整数有______个; 比533小的非负整数是____________. 【答案】11;0,1,2,3类型五、数轴与相反数的综合应用(数形结合的应用)6.已知数轴上点A 和点B 分别表示互为相反数的两个数a ,b(a <b)并且A 、B 两点间的距离是144,求a 、b 两数. 【思路点拨】因为a 、b 两数互为相反数(a <b),所以表示a ,b 的两点A 、B 离原点的距离相等,而A 、B 两点间的距离是144,所以A 、B 两点到原点的距离就是1142248÷=. 【答案与解析】解:由题意A 、B 两点到原点的距离都是:1142248÷=而a <b ,所以128a =-,128b =.【总结升华】(1)理解相反数的几何意义. (2)从相反数的意义入手,明确互为相反数的两数关于原点对称.举一反三:【变式】填空:(1)数轴上离原点5个单位长度的点表示的数是________;(2)从数轴上观察,-3与3之间的整数有________个.【答案】(1)±5,提示:要注意两种情况,原点左右各一个点;(2)5,提示:画出数轴,容易看出-3和3之间的整数是-2,-1,0,1,2共5个.【巩固练习】一、选择题1.(2015•江阴市模拟)﹣5的相反数是( ) A .5 B .-5 C .±5 D .﹣2.下列说法正确的是( )A .数轴上一个点可以表示两个不同的有理数B .数轴上的两个不同的点表示同一个有理数C .有的有理数不能在数轴上表示出来D .任何一个有理数都可以在数轴上找到与它对应的唯一点 3.(2016•呼和浩特)互为相反数的两个数的和为( ) A .0 B .﹣1 C .1 D .24.如图,有理数a ,b 在数轴上对应的点如下,则有( ).(A)a >0>b (B)a >b >0 (C)a <0<b (D)a <b <0 5. 一个数比它的相反数小,这个数是( ) A.正数 B.负数 C.非正数 D.非负数 6. 如果0a b +=,那么,a b 两个数一定是 ( )A.都等于0B.一正一负C.互为相反数D.互为倒数 二、填空题1.________________的两个数,叫做互为相反数;零的相反数是________.2.(2015春•岳池县期中)若3a ﹣4b 与7a ﹣6b 互为相反数,则a 与b 的关系为 .3.(2016•岳阳)如图所示,数轴上点A 所表示的数的相反数是 .4.数轴上离原点5个单位长度的点有______个,它们表示的数是 ,它们之间的关系是 . 5.化简下列各数: (1)23⎛⎫--= ⎪⎝⎭________ ;(2)45⎛⎫-+= ⎪⎝⎭________ ;(3){[(3)]}-+-+=________. 【:数轴和相反数 例4(5)】6.已知-1<a <0<1<b ,请按从小到大的顺序排列-1,-a ,0,1,-b 为__________. 三、解答题1.小敏的家、学校、邮局、图书馆坐落在一条东西走向的大街上,依次记为A 、B 、C 、D ,学校位于小敏家西150米,邮局位于小敏家东100米,图书馆位于小敏家西400米. (1)用数轴表示A 、B 、C 、D 的位置(建议以小敏家为原点).(2)一天小敏从家里先去邮局寄信后.以每分钟50米的速度往图书馆方向走了约8分钟.试问这时小敏约在什么位置?距图书馆和学校各约多少米?2.(2014秋•孟津县期中)已知:a 是﹣(﹣5)的相反数,b 比最小的正整数大4,c 是最大的负整数.计算:3a+3b+c 的值是多少?3.化简下列各数,再用“<”连接.(1)-(-54) (2)-(+3.6) (3)53⎛⎫-+ ⎪⎝⎭ (4)245⎛⎫-- ⎪⎝⎭4.已知3m-2与-7互为相反数,求m 的值.【答案与解析】一、选择题 1.【答案】A 2.【答案】D【解析】A 、B 、C 都错误,因为所有的有理数都能在数轴上表示出来,但数轴上的点不都表示有理数;一个有理数在数轴上只有一个表示它的点.数轴上表示有理数的点一个点对应一个有理数.3.【答案】A【解析】解:互为相反数的两个数的和为0.故选:A .4. 【答案】C5. 【答案】B【解析】因为一个负数的相反数是一个正数,负数小于正数,所以选B 6. 【答案】C【解析】若0a b +=,则,a b 一定互为相反数;反之,若,a b 互为相反数,则0a b +=. 二、填空题1. 【答案】只有符号不同,零 【解析】相反数的定义2.【答案】a=b.【解析】∵3a ﹣4b 与7a ﹣6b 互为相反数,∴3a ﹣4b+7a ﹣6b=0,∴a=b. 3.【答案】2.【解析】解:数轴上点A 所表示的数是﹣2,﹣2的相反数是2,故答案为:2.4. 【答案】两个,±5,互为相反数5. 【答案】24;;335-【解析】多重符号的化简是由“-”的个数来定,若“-”个数为偶数个时,化简结果为正,;若“-”个数为奇数个时,化简结果为负.6. 【答案】- b <-1<0<-a<1.三、解答题1. 【解析】(1)如图所示(2)小敏从邮局出发,以每分钟50米的速度往图书馆方向走了约8分钟,其路程为50×8=400(米),由上图知,此时小敏位于家西300米处,所以小敏在学校与图书馆之间,且距图书馆100米,距学校150米.2. 【解析】∵a是﹣(﹣5)的相反数,∴a=﹣5,∵b比最小的正整数大4,∴b=1+4=5,∵c是最大的负整数,∴c=﹣1,∴3a+3b+c=3×(﹣5)+3×5﹣1,=﹣15+15﹣1,=﹣1.3.【解析】(1)-(-54)=54(2)-(+3.6)=-3.6(3)5533⎛⎫-+=- ⎪⎝⎭(4)224455⎛⎫--=⎪⎝⎭,将化简后的数表示在数轴上,由图可得: -(+3.6) <53⎛⎫-+ ⎪⎝⎭<245⎛⎫-- ⎪⎝⎭<-(-54).4.【解析】依题意:3m-2=7,故m=3.绝对值及有理数的大小比较(基础)【学习目标】1.借助数轴理解绝对值的概念,知道|a|的绝对值的含义; 2.会求一个数的绝对值,并会用绝对值比较有理数的大小; 3.通过应用绝对值解决实际问题,体会绝对值的意义和作用. 【要点梳理】 要点一、绝对值1.定义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作|a|. 要点诠释:(1)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即对于任何有理数a 都有:(2)绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小. (3)一个有理数是由符号和绝对值两个方面来确定的. 2.性质:(1)0除外,绝对值为一正数的数有两个,它们互为相反数. (2)互为相反数的两个数的绝对值相等.(3)绝对值具有非负性,即任何一个数的绝对值总是正数或0. 要点二、有理数的大小比较1.数轴法:在数轴上表示出两个有理数,左边的数总比右边的数小. 如:a 与b 在数轴上的位置如图所示,则a <b . 2.法则比较法:两个数比较大小,按数的性质符号分类,情况如下:两数同号 同为正号:绝对值大的数大 同为负号:绝对值大的反而小 两数异号 正数大于负数 -数为0正数与0:正数大于0 负数与0:负数小于0要点诠释:利用绝对值比较两个负数的大小的步骤:(1)分别计算两数的绝对值;(2)比较绝对值的大小;(3)判定两数的大小.3. 作差法:设a 、b 为任意数,若a-b >0,则a >b ;若a-b =0,则a =b ;若a-b <0,a <b ;反之成立.4. 求商法:设a 、b 为任意正数,若1a b >,则a b >;若1a b =,则a b =;若1ab<,则a b <;反之也成立.若a 、b 为任意负数,则与上述结论相反.5. 倒数比较法:如果两个数都大于零,那么倒数大的反而小.【典型例题】类型一、绝对值的概念1.求下列各数的绝对值. 112-,-0.3,0,132⎛⎫-- ⎪⎝⎭【思路点拨】112,-0.3,0,132⎛⎫-- ⎪⎝⎭在数轴上位置距原点有多少个单位长度,这个数字就是各数的绝对值.还可以用绝对值法则来求解. 【答案与解析】 解:方法1:因为112-到原点距离是112个单位长度,所以111122-=.因为-0.3到原点距离是0.3个单位长度,所以|-0.3|=0.3.因为0到原点距离为0个单位长度,所以|0|=0. 因为132⎛⎫-- ⎪⎝⎭到原点的距离是132个单位长度,所以113322⎛⎫--= ⎪⎝⎭.方法2:因为1102-<,所以111111222⎛⎫-=--= ⎪⎝⎭.因为-0.3<0,所以|-0.3|=-(-0.3)=0.3.因为0的绝对值是它本身,所以|0|=0 因为1302⎛⎫--> ⎪⎝⎭,所以113322⎛⎫--= ⎪⎝⎭【总结升华】求一个数的绝对值有两种方法:一种是利用绝对值的几何意义求解(如方法1),一种是利用绝对值的代数意义求解(如方法2),后种方法的具体做法为:首先判断这个数是正数、负数还是零.再根据绝对值的意义,确定去掉绝对值符号的结果是它本身,是它的相反数,还是零.从而求出该数的绝对值.2.已知一个数的绝对值等于2009,则这个数是________.【思路点拨】若一个数的绝对值是正数,则此数有两个,且互为相反数. 【答案】2009或-2009.【解析】根据绝对值的定义,到原点的距离是2009的点有两个,从原点向左侧移动2009个单位长度,得到表示数-2009的点;从原点向右侧移动2009个单位长度,得到表示数2009的点.【总结升华】已知绝对值求原数的方法:(1)利用概念;(2)利用数形结合法在数轴上表示出来. 举一反三:【变式1】(2015•镇江)已知一个数的绝对值是4,则这个数是 . 【答案】±4.【:绝对值比大小 356845 典型例题3】【变式2】如果|x |=2,那么x =_____ _ ; 如果|-x |=2,那么x =______. 如果|x -2|=1,那么x = ; 如果|x |>3,那么x 的范围是 . 【答案】2-2+或;2-2+或;1或3;x>3或x<-3.类型二、绝对值非负性的应用3.(2015•乐山期末)若|x ﹣2|与|y+3|互为相反数,则x+y= .【思路点拨】由|a |≥0即绝对值的非负性可知,|x ﹣2|≥0,|y+3|≥0,而它们的和为0.所以|x ﹣2|=0,|y+3|=0.由此算出结果. 【答案】-1.【解析】∵|x﹣2|与|y+3|互为相反数, ∴|x﹣2|+|y+3|=0, ∴x﹣2=0,y+3=0, 解得x=2,y=﹣3,∴x+y=2+(﹣3)=﹣1. 故答案为:﹣1.【总结升华】若几个数的绝对值的和为0,则每个数都等于0,即|a|+|b|+…+|m|=0时,则a =b =…=m =0.类型三、有理数的大小比较4.(2016春•上海校级月考)比较大小: ﹣(﹣1.8)(填“>”、“<”或“=”).【思路点拨】先化简,再比较大小,即可解答. 【答案】<.【解析】解:|﹣1|=1=1.75,﹣(﹣1.8)=1.8, ∵1.75<1.8,∴|﹣1|<﹣(﹣1.8),故答案为:<. 【总结升华】本题考查了有理数大小比较,解决本题的关键是掌握绝对值的化简以及多重复号的化简方法.举一反三:【:绝对值比大小 356845 典型例题2】 【变式】比大小: 653-______763- ; -|-3.2|______-(+3.2); 0.0001______-1000;1.38______-1.384;-π______-3.14.【答案】>;=;>;>;<.【巩固练习】 一、选择题 1.(2015.常州)-3的绝对值是( ). A . 3 B .-3 C .13 D .13- 2.下列判断中,正确的是( ).A. 如果两个数的绝对值相等,那么这两个数相等;B. 如果两个数相等,那么这两个数的绝对值相等;C.任何数的绝对值都是正数;D.如果一个数的绝对值是它本身,那么这个数是正数.3.下列各式错误的是( ).A .115533+=B .|8.1|8.1-=C .2233-=-D .1122--=- 4.(2016•娄底)已知点M 、N 、P 、Q 在数轴上的位置如图,则其中对应的数的绝对值最大的点是( )A .MB .NC .PD .Q5.若两个有理数a 、b 在数轴上表示的点如图所示,则下列各式中正确的是( ).A .a >bB .|a|>|b|C .-a <-bD .-a <|b|6.若|a | + a =0,则a 是( ).A. 正数B. 负数C.正数或0D.负数或0二、填空题7.若m ,n 互为相反数,则| m |________| n |;| m |=| n |,则m ,n 的关系是________.8.已知| x |=2,| y |=5,且x >y ,则x =________,y =________.9.满足3.5≤| x | <6的x 的整数值是___________.10.(2015•大邑县模拟)在﹣2.1,﹣2,0,1这四个数中,最小的数是 .11.数a 在数轴上的位置如图所示.则|a-2|= .12.已知4334x x -=-,则x 的取值范围是________.三、解答题13.(2014秋•娄底期末)若有理数x 、y 满足|x|=5,|y|=2,且|x+y|=x+y ,求x ﹣y 的值.14.(2016春•桐柏县期末)若|a+1.2|+|b ﹣1|=0,那么a+(﹣1)+(﹣1.8)+b 等于多少?15.比较3a-2与2a+1的大小.【答案与解析】一、选择题。

最新2019-2020年度浙教版七年级数学上册《代数式》习题精讲练习及答案-精品试题

最新2019-2020年度浙教版七年级数学上册《代数式》习题精讲练习及答案-精品试题

第四章 代数式习题精讲一、选择题(每小题3分,共27分) 1.下列各式中,写法正确的是( )A .3∙bB .a 212C.c 45D .2)2(-d 2.在代数式23a -,-2ab ,b c ,xy 31,ba +5,4,ax -bx 中,整式的个数是( )A .5个B .4个C .3个D .2个 3.代数式2ab π-的系数与次数分别是( ) A.21,4 B .21-,4 C.π21,3 D .π21-,3 4.下列说法中,错误的是( ) A .22y x +的意义是x ,y 的平方和 B .5(x +y)的意义是5与x +y 的积C .x 的5倍与y 的和的一半,用代数式表示为y x 215+ D .x 的21与y 的31的差,用代数式表示为y x 3121- 5.下列各组中,是同类项的是( )①:t p 22-与2tp ;②bcd a 2-与acd b 23;③n m b a -与nm b a ;④3242a b 与22)2(ab -.A .①②④B .②③④C .①②③D .①③④ 6.下列去括号正确的是( )A .x -2(y -z)=x -2y +zB .-(3x -z)=-3x -zC .2a -(2a -1)=2a -2a -1 D .-(a +b)=-a -b7.如图,用18 m 长的铝合金做成一个长方形的窗框,设长方形窗框横条的长度为x(m),则长方形窗框的面积为( )A .2)18(m x x -B .2)9(m x x - C .2)239(m x x -D .2)329(m x x - 8.要使多项式222)25(23mx x x x +-+-化简后不含x 的二次项,则m 等于( ) A .0 B .1 C .-1 D .-79.实数a ,b 在数轴上的位置如图所示,化简|a +b|+|a -b|+|b -a|的结果为( )A .-3a +bB .a +bC .-a +3bD .-a -b 二、填空题(每小题3分,共30分) 10.若43+-n xy与21y xm -可以合并,则式子2m -3n 的值是____.11.若关于x 的多项式b x x x a b-+--3)4(是二次三项式,则a =____,b =____. 12.a 与b 的差的立方可表示为.13.某产品的价格为a 元,其中成本比其价格少10%,则此产品的成本是元. 14.如果a -3b =-3,则代数式5-a +3b 的值是____.15.如图,是一个计算程序,当输入x =-2时,输出的结果是____.16.已知0)2(32=-+-n x ,那么代数式)331(313312-+-+-n n nx x x x 的值为____. 17.如果苹果的单价是每千克7元,那么14m 元可以理解为.18.已知式子2a -,34a ,56a -,78a ……则第n 个式子是 .19.一个多项式减去12334-+-x x x 得1273524+-+x x x ,则这个多项式是.三、解答题(共43分) 20.(6分)化简:(1)2(3x +4)-3(2x -3)+x ;(2)]2)5(2[)3(2222mn m mn n n mn ++----.21.(8分)已知A =x x 52-,B =5102+-x x .(1)求A -2B ; (2)求当32-=x 时,2A -B 的值.22.(8分)小明计划三天看完一本书,于是预计第一天看x 页,第二天看的页数比第一天看的页数多50页,第三天看的页数比第二天看的页数的51还少5页. (1)用含x 的式子表示这本书的页数; (2)若x =100,则这本书共有多少页?23.(12分)某汽车行驶时油箱中余油量Q(L)与行驶时间t(h)的关系如下表: (1)用含时间t 的式子表示余油量Q ; (2)当t = h 时,求余油量Q 的值;(3)根据所列式子回答,汽车行驶之前油箱中有多少升汽油? (4)油箱中原有汽油可以供汽车行驶多少小时?24.(9分)将连续的偶数2,4,6,8,10……排成如下的数表. (1)十字框的五个数的和与中间的数26有什么关系? (2)设中间的数为m ,用代数式表示十字框中的五个数之和;(3)十字框中的五个数之和能等于2 060吗?若能,请写出这五个数;若不能,请说明理由.行驶时间t(h) 余油量Q(L) 1 48 2 48-6 348-12448-18548-24参考答案:1~5:CADCD 6~9:DCDA10、10 11、4 2 12、3)(b a - 13、0.9a 14、8 15、3816、9 17、2m 千克苹果的总价 18、1212-n a nn 19、11538234+-+-x x x x 20、(1)x +17 (2)mn m n ++224 21、(1)10152-+-x x (2)954- 22、解:(1)第二天看的页数(x +50)页;第三天看的页数(x +50)-5=51x +5(页),这本书的总页数:x +(x +50)+(51x +5)=511x +55 (2)当x =100时,511x +55=275(页),则这本书共有275页23、解:(1)由表中数据可知Q =48-6(t -1)=-6t +54 (2)将t =27代入Q =-6t +54得Q =33(升) (3)汽车行驶前,行驶时间为0,代入Q =-6t +54得Q =54(升)(4)由表中数据可知,每行驶1 h 耗油量为6 kg ,则行驶时时间为54÷6=9(h) 24、解:(1)十字框中的五个数的和为26的5倍(2)5m (3)设5m =2 060,则m =412,因为412在第1列,而十字框中的中间数不可能在第1列,所以这五个数之和不能等于2 060。

一元一次方程 浙教版2019-2020学年度七年级数学上册讲义+分层训练(含答案)

一元一次方程 浙教版2019-2020学年度七年级数学上册讲义+分层训练(含答案)

浙江版2019-2020学年度七年级数学上册第5章一元一次方程 5.1 一元一次方程【知识清单】 一、一元一次方程:1.方程:含有未知数的等式叫做方程.2.方程的解:使方程左右两边的值都相等的未知数的值叫做方程的解3.一元一次方程:只含有一个未知数,未知数的次数是1,这样的方程叫做一元一次方程. 二、方程的判定方法归纳:1.判断一个式子是不是方程必须看两点:一是等式,二是含有未知数,二者缺一不可;2.判定一个方程是不是一元一次方程,要看方程是否只含一个未知数并且未知数的指数都是1,而且是整式方程. 【经典例题】例题1、下列方程中,是一元一次方程的是( )A .x 2-2x =1B .-5x =0C .3x +2y =5D .x =x1【考点】一元一次方程的定义.【分析】根据一元一次方程的定义判断即可.【解答】A 、方程的次数是2次,即不是一元一次方程,故本选项错误;B 、是一元一次方程,故本选项正确;C 、含有两个未知数,即不是一元一次方程,故本选项错误;D 、不是整式方程,即不是一元一次方程,故本选项错误; 故选B .【点评】本题考查了对一元一次方程的定义的应用,熟练掌握一元一次方程的定义是解决问题的关键.例题2、如果方程(m -2)1-m x+26=0是关于x 的一元一次方程,那么m 的取值是______.【考点】一元一次方程的定义.【分析】只含有一个未知数(元),并且未知数的指数是1(次)的方程叫做一元一次方程,高于一次的项系数是0.据此可得出关于m 的方程,继而可求出m 的值. 【解答】由一元一次方程的定义,得⎩⎨⎧=-≠-1102m m ,解得m =-2.故填:-2.【点评】本题主要考查了一元一次方程的定义,只含有一个未知数,未知数的指数是1,一次项系数不是0,这是这类题目考查的重点.【夯实基础】1.下列方程中,是一元一次方程的是( )A .2x =3y B.y 1+1=0 C .2x 2+3x =2 D. )2(31-x =1 2.下列说法正确的是( )A .x =-2是方程2x +5=0的解B .y =0是方程0.5(5-2y )=2.5的解C .方程3x -4=)3(31-x )的解是x =3D .方程43-x =2的解是x =383.一件高于成本50%标价的上衣,按8折销售仍可获利40元.设这件上衣的成本价为x 元,根据题意,下面所列方程正确的是( )A .x (1+50%)×0.8-x =30B . ( x +50%)×0.8-x =30C .x (1+50%)×0.8=30-xD .( x +50%)×0.8=30-x 4.关于|x -2|=2的说法正确的是 ( )A .不是方程B .是方程其解为0C .是方程其解为4D .是方程其解为0或45.若关于x 的方程(3k -2)x 2- (3k +2)x +5=0是一元一次方程,则k 的值为 .6.如图,两边都放着物体的天平处于平衡状态,用等式表示天平两边所放物体的质量关系为__ __________.7.下列不是方程的是__________.(填序号)① 1+2=3; ② 2x +1; ③ 2m +15=3; ④ x 2-6=0; ⑤ 3x +2y =9; ⑥ 3a +9>15.8.已知关于x 的方程5a -2x =9的解为x =3,求代数式(-a )2-2a +1的值.9.有甲、乙两支同样长的蜡烛,甲蜡烛可使用12 h ,乙蜡烛可使用10 h .两蜡烛同时点燃,几小时后乙蜡烛的长度是甲蜡烛长度的三分之一?(列出方程,不必求解)【提优特训】10.若5x -6与2x -8是一个正数两个平方根,则可列方程来表示为( )A .5x -6=2x -8B .5x -6+2x -8=0C .5x +6+2x +8=0D .5x +6+2x -8=0 11.若方程(3a -2)x 2+bx +c =0是关于x 的一元一次方程,则字母系数a ,b ,c 的值满足( )A .a =32,b =0,c 为任意数 B .a ≠32,b ≠0,c =0 C .a =32,b ≠0,c 为任意数 D .a =32,b ≠0,c ≠0 12.下列方程中,解为x =-2的方程是( )A .21x +3=x B . x -2=0 C .2x =4 D .321)63(31-=-x x 13.已知单项式-ma 3b m -1与单项式4a 3b 2是同类项,则关于m 的方程一定正确的是( )A .-m +4=0B .-m -4=0C .m -1+2=0D . m -1=2 14.已知53-m x-1=m 是关于x 的一元一次方程,则这个方程的解 .15.对于有理数a ,b ,c ,d ,规定一种运算bc ad dbc a -=,如43525342⨯-⨯==-2. 若32331=----x x ,则所得到的方程为 .16.根据下列条件列出方程. 1.设某数为x : (1)某数的65与-5的和是6; (2)某数的5倍等于该数的2倍与18的差; (3)某数减少20%后比该数的60%小5; (4)比某数的3倍大6的数是12”用方程表示为.2.(1)某长方形的周长是64,长与宽之比为5∶3,则长和宽各是多少?设长方形的长为5x . (2)爸爸今年38岁,比儿子年龄的3倍少4岁,则小明今年几岁?设小明今年x 岁.17.已知关于x 的方程ax 2+x b -3-2=0是一元一次方程,试求x a +b 的值.18.数学课上老师出示了四张卡片,上面分别写着不同的代数式,要求同学们解决下面的问题:用等号将这四张卡片的任意两张卡片上的数或式子连接起来,就会得到等式或方程. (1)你一共能写出几个等式?(2)在这些等式中,有几个一元一次方程?请写出这几个一元一次方程.19.汽车的油箱内储油40kg,已知工作时的耗油以及油箱内的剩油量的关系如表所示工作时间t(h) 耗油量p(kg) 剩油量m(kg)1 2.5 40-2.5=37.52 5 40-5=353 7.5 40-7.5=32.54 10 40-10=30………(1)写出工作10h后,油箱内的剩油量;(2)写出工作t h后,油箱内的剩油量为7.5kg,请你列出关于t的方程(不解方程).20.如图用火柴棒搭正方形,用n表示所搭正方形的个数,从而计算火柴棒的根数,当n=1,所需火柴棒为4根,当n=2,所需火柴棒为7根,当n=3,所需火柴棒为10根,…,请问:(1)第5个图形中火柴棒有多少根?(2)第n个图形中火柴棒有多少根?(3)若有一个图形由781根火柴棒组成,那么这个图形由几个正方形组成?【中考链接】21.(2018•临安)(3分)中央电视台2套“开心辞典”栏目中,有一期的题目如图所示,两个天平都平衡,则三个球体的重量等于()个正方体的重量.A.2 B.3 C.4 D.522.(2018•临沂)任何一个无限循环小数都可以写成分数的形式,应该怎样写呢?我们以无限循环小数7.0 为例进行说明:设7.0 =x ,由7.0 =0.7777…可知,l0x =7.7777…,所以l0x -x =7,解方程,得x =97,于是.得7.0 =97.将63.0 写成分数的形式是 .参考答案1、D2、B3、A4、D5、326、x+4=107、①②⑥ 10、B 11、C 12、D 13、D 14、-1或3 15、-(x -2)+3(3-x )=3 21、D 22、114 8.已知关于x 的方程5a -2x =9的解为x =3,求代数式(-a )2-2a +1的值. 解:∵方程5a -2x =9的解为x =3,∴5a -2×3=9, ∴a =3.∴(-a )2-2a +1 =(-3)2-2×3+1=4.9.有甲、乙两支同样长的蜡烛,甲蜡烛可使用12 h ,乙蜡烛可使用10 h .两蜡烛同时点燃,几小时后乙蜡烛的长度是甲蜡烛长度的三分之一?(列出方程,不必求解) 解:设x 小时后乙蜡烛的长度是甲蜡烛长度的一半,则1-101x =31(1-121x ). 16.根据下列条件列出方程. 1.设某数为x : (1)某数的65与-5的和是6; (2)某数的5倍等于该数的2倍与18的差; (3)某数减少20%后比该数的60%小5; (4)比某数的3倍大6的数是12”用方程表示为.2.(1)某长方形的周长是64,长与宽之比为5∶3,则长和宽各是多少?设长方形的长为5x . (2)爸爸今年38岁,比儿子年龄的3倍少4岁,则小明今年几岁?设小明今年x 岁. 16.解:1.(1)65x -5=6; (2) 5x =2x -18;(3) (1-20%)x =60%x -5; (4) 3x +6=12;2.解:(1)由长方形的长为3x ,得宽为2x ,则2(5x +3x )=64.(2)根据题意,得3x -4=38.17.已知关于x 的方程ax 2+x b -3-2=0是一元一次方程,试求x a +b 的值. 解:∵ax 2+x b-3-2=0是关于x 的一元一次方程,∴a =0,b -3=1, ∴a =0,b =4, ∴x -2=0, ∴x =2. ∴x a +b =24=16.18.数学课上老师出示了四张卡片,上面分别写着不同的代数式,要求同学们解决下面的问题:用等号将这四张卡片的任意两张卡片上的数或式子连接起来,就会得到等式或方程. (1)你一共能写出几个等式?(2)在这些等式中,有几个一元一次方程?请写出这几个一元一次方程. 18. 解:(1)6个.(2)有3个一元一次方程,它们分别是5x -3=-6,6261-=-x ,5x -3=261-x . 19.汽车的油箱内储油40kg ,已知工作时的耗油以及油箱内的剩油量的关系如表所示工作时间t (h) 耗油量p (kg) 剩油量m (kg) 1 2.5 40-2.5=37.5 2 5 40-5=35 3 7.5 40-7.5=32.5 4 10 40-10=30 ………(1)写出工作10h 后,油箱内的剩油量;(2)写出工作t h 后,油箱内的剩油量为7.5kg ,请你列出关于t 的方程(不解方程). 解: (1)40-10×2.5=15;工作10h 后,油箱内的剩油量为15 kg ; (2)根据题意,得40-2.5t =7.5.20.如图用火柴棒搭正方形,用n 表示所搭正方形的个数,从而计算火柴棒的根数,当n =1,所需火柴棒为4根,当n =2, 所需火柴棒为7根,当n =3, 所需火柴棒为10根,…,请问:(1)第5个图形中火柴棒有多少根?(2)第n个图形中火柴棒有多少根?(3)若有一个图形由781根火柴棒组成,那么这个图形由几个正方形组成?解:根据图形特点和题意可得:第1个图形n=1,火柴棒为3×1+1=4根,第2个图形n=2,火柴棒为3×2+1=7根,第3个图形n=3,火柴棒为3×3+1=10根,…(1)第5个图形中火柴棒有3×5+1=16根,(2)第n个图形中火柴棒有3×n+1=(3n+1)根,(3)3n+1=781,解得n=260,答:这个图形由260个正方形组成.。

浙教版2019-2020学年七年级数学上册第6章图形的初步知识6.7角的和差学案(有答案)

浙教版2019-2020学年七年级数学上册第6章图形的初步知识6.7角的和差学案(有答案)

浙教版2019-2020学年度七年级数学上册第6章图形的初步知识6.7 角的和差【知识清单】1.两个角的和:一般地,如果一个角的度数是另两个角的度数的和,那么这个角就叫做另两个角的和;2.两个角的差:一般地,如果一个角的度数是另两个角的度数的差,那么这个角就叫做另两个角的差.3.角的平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.4.角的三等分线:从一个角的顶点出发的两条射线,如果把这个角分成三个相等的角,这两条射线就叫这个角的三等分线.5.角的四等分线:从一个角的顶点引出三两条射线,把这个角分成四个相等的角,这些射线叫做这个角的四等分线.6.同样也可以定义角的五等分线,角的六等分线,角的n等分线.【经典例题】例题1、下列说法中正确的是A.两个锐角相加一定是直角B.比锐角大的角一定钝角C.钝角与锐角的差一定小于直角D.钝角与直角的差一定是锐角【考点】角的和差与角的大小比较.【分析】根据钝角、直角、锐角的定义:锐角是大于0°小于90°的角;钝角是大于90°小于180°的角;直角是等于90°的角;据此解答即可.【解答】A、两个都大于45°的角相加大于直角,故A错;B、比锐角大的角也可能还是锐角,故B错;C、如175°的角与1°的角的差一定大于直角,故C错;D、钝角与直角的差一定小于直角,故D正确.故选D.【点评】此题主要考查钝角、直角和锐角的定义,理解和掌握钝角、直角、锐角的定义是解决此题的关键.例题2、将长方形ABCD沿DE折叠,使点C恰好落在AB边上一点F,若∠ADF=58°,则∠FDE 的度数为.【考点】角的计算;翻折变换(折叠问题).【分析】先根据四边形ABCD是长方形得出∠ADC=90°,再由∠ADF=58°求出∠FDC的度数,由图形翻折变换的性质即可得出结论.【解答】∵四边形ABCD是长方形,∴∠ADC=90°,∵∠ADF=58°,∴∠FDC=90°-58°=32°,例题2图∵由折叠可知DE 是∠FDC 的平分线, ∴∠FDE =21∠FDC =16°. 故答案是∠FDE =16°.【点评】本题考查的是角的和差以及角的计算,熟知角平分线的定义和图形翻折不变性的性质是解答此题的关键. 【夯实基础】1.如图所示,下列结论错误是是( )A .∠AOB +∠COB =∠AOD -∠DOC B .∠DOB +∠AOC =∠DOA +∠COB C .∠DOB +∠AOC -2∠COB =∠AOD D .∠AOD -∠DOB =∠AOC -∠COB 2.如图,下列表示不正确的是( )A .∠B =∠ABD =∠C B A B .∠C =36° C .∠ADB +∠ADC =180°D .∠α+∠β=∠A3.已知∠AOB =56°,从∠AOB 的顶点O 引一条射线OC ,使∠AOC =18°,则∠BOC 的度数 为( )A .38°B .74°C .38°或74°D .无法确定4.如图所示,点A ,O ,B 在同一直线上,OD 平分∠AOC ,OE 平分∠BOC ,则∠DOE 为( )A .锐角B .直角C .钝角D .平角 5.(1)如图,∠BOD =∠COE =Rt ∠,则∠1______∠2(填“>”“<”或“=”) . (2)已知OC 是∠AOB 的三等分线,若∠AOC =32°,则∠AOB 的大小为 .6.(1)如图,已知∠AOC 直角, ∠COB=38°, ,则∠BOD =_______°. (2)如图所示,OC 是∠AOD 的平分线,OB 平分∠AOC ,且∠COB =23°,则∠AOD 的度数为 .第1题图第4题图第2题图第5题图(1)7.如图,已知∠AOD =120°,∠AOC 是直角,OB 为∠AOD 的平分线,根据图形填空:解:(1)∵∠AOD =120°,∠AOC = °, ∴∠DOC =∠AOD - = ∵OB 平分∠AOD ,8.已知∠α,∠β,∠γ,用量角器作一个角∠AOB ,使∠AOB =29.如图∠BOC =4∠AOC ,OD 平分∠AOB ,(1)若∠COD =33°,求∠AOB 的度数.(2)请画出∠BOD 的角平分线OE ,∠DOC 的角平分线OF , 试猜想∠EOF 与∠AOC 的数量关系,并说明理由.【提优特训】10.如图,∠AOB =3∠BOC ,∠AOD =8∠BOC ,若∠DOC =60°,则∠BOC 的度数为( )A .10°B .15°C .20°D .25°11.若∠AOB 是平角,射线OC 将∠AOB 分为∠AOC 与∠COB 两个角,若∠∠AOC ,射第12题图 第10题图第7题图第6题图(2)第8题图第9题图线OD 是∠AOC 的平分线,则∠COD 的度数为( ).A .67.5°B .72.5°C .78.75°D .79.5°12.如图所示,射线OB 、OC 、OD 在∠AOE 的内部,若∠AOE =75°,∠BOD =28° ,则图中所 有角的和为( )A .300°B .356°C .360°D .无法求出13. 如图所示,OD ,OC 是∠AOB 的任意两条射线,OP 平分∠AOC ,OQ 平分∠BOD ,若∠POQ =α,∠DOC =β,则表示∠AOB 的代数式是( )A .2α-βB .α-βC .α+βD .以上都不正确14.(1)已知∠AOB =90°,射线OC 平分∠AOB ,射线OD 平分∠BOC ,射线OE 平分∠AOD ,则∠COE 的度数等于 .(2)若∠AOC =∠BOD =90°,∠AOD =130°,则∠BOC 的度数为 .15.(1) 如图,将长方形纸片的角A 、E 分别沿着BC 、BD 折叠,则∠CBD = . (2) 如图是3×3网格图,每个小正方形的边长为1,则∠1+∠2+∠3+…+∠7+∠8+∠9的和16.射线OE 在∠AOB 的内部,下列四个式子中:① ∠AOE =∠EOB ;②∠AOE +∠EOB =∠AOB ;③∠AOB =2∠BOE ;④∠AOE =12∠AOB ;⑤∠BOE :∠AOB =1:2.能判断OE 是∠AOB 的平分线的是 (填序号). 17.已知∠AOB 是Rt ∠.请回答下列问题:(1) 如图(1),OD 平分∠BOC ,OE 平分∠AOC ,直接写出∠DOE 的度数为 . (2) 如图(2) OD 平分∠BOC ,OE 平分∠AOC ,若∠BOC =40°,猜想∠DOE 的度数为 .(3)试问在(2)的条件下,如果将题目中∠BOC =40°改成∠BOC =α(锐角),其他条件不变,你能求出∠DOE 的度数吗?若能,请你写出求解过程;若不能,请说明理由.18.如图(1)所示,将一副三角尺的直角顶点重合在点O 处.(1)①∠AOD 和∠BOC 相等吗?说明理由.②∠AOC 和∠BOD 在数量上有何关系?说明理由.(2)若将三角尺AOB 绕点O 旋转到第13题图第15题图(2)第15题图(1)第17题图(1)第17题图(2)如图(2)的位置.①∠AOD 和∠BOC 相等吗?说明理由.②∠AOC 和∠BOD 的以上关系还成立吗?说明理由.19.已知∠AOB =42°20.已知∠AOB =(n +1)°,在∠AOB 的内部引n 条射线分别为OA 1,OA 2,OA 3,…,OA n -1,OA n ,依据要求回答问题: (1)°. (2)°. (3)°. ……(4) °.【中考链接】21.(2019•模拟) 把一副三角尺按如图2所示拼在一起,则∠ACB 等于( ) A .70° B .90° C .105° D .120°22.(2019•模拟)如图所示,将长方形ABCD 沿AE 折叠,点D 落在长方形ABCD 的内部点F 处,若∠CEF =76°,则∠AED 的大小是 .第18题图(1)第18题图(2)第20题图第21题图第22题图23.(2019•模拟) 如图,已知∠AOB=m度,OA1平分∠AOB,OA2平分∠AOA1,OA3平分∠AOA2,OA4平分∠AOA3,…,OA n平分∠AOA n-1,则∠AOA n的度数为___度.第23题图参考答案1、C2、D3、C4、B5、(1) = (2) 96°或48°6、(1) 26 (2) 92°10、C 11、C 12、B 13、A 14、(1) 11.25°(2) 50°或130°14、(1) 90°(2) 405°、9×45°15、(1) 不变 (2) < 16、①③④⑤ 21、D 22、52° 23、n 21m 7.如图,已知∠AOD =120°,∠AOC 是直角,OB 为∠AOD 的平分线,根据图形填空:解:(1)∵∠AOD =120°,∠AOC = 90 °, ∴∠DOC =∠AOD -∠∵OB 平分∠AOD ,8.已知∠α,∠β,∠γ,用量角器作一个角∠AOB ,使∠AOB =2作法1:如图(1)①用量角器量得∠α=25°,∠β=40°,∠γ=120°,所以2∠α=50° ②作射线OA .③用量角器作射线OB ,使∠AOB =50°.④用量角器在∠AOB 的外部以射线OC 为边作射线OC ,使∠BOC =20°. ⑤用量角器在∠AOC 的内部以射线OA 为边作射线OD ,使∠AOD =40°.∠DOC =30°23.作法2①用量角器量得∠α=25°=40°,∠γ=120°, 所以. 第8题图(2)第8题图②作射线OA .③用量角器作射线OB ,使∠AOB =30°.∠AOB =30°. 9.如图∠BOC =4∠AOC ,OD 平分∠AOB ,(1)若∠COD =33°,求∠AOB 的度数.(2)请画出∠BOD 的角平分线OE ,∠DOC 的角平分线OF ,试猜想∠EOF 与∠AOC 的数量关系,并说明理由. 解:(1)∵OD 平分∠AOB ,∴∠BOD =∠AOD =∠AOB , 设∠AOB =x , 则∠BOD =∠AOD =∠AOB =∵∠BOC =4∠AOC , ∴∠AOC =∵∠AOD -∠AOC =∠COD =33°. . 解得x =110°,∴∠AOB =110°. (2)结论:∠EOF =2∠AOC . 理由:设∠AOC =y , 则∠AOB =5y ,∠BOC =∠AOB -∠AOC =4y , ∵OE 平分∠BOD , ∴∠EOD =∠BOD . ∵OF 平分∠DOC , ∴∠DOF =∠DOC . ∴∠EOF =∠EOD +∠DOF =∠BOD +∠DOC ) ∠BOC =2y ∴∠EOF =2∠AOC . 17.解:第9题图第9题图(1)∵OD 平分∠BOC ,OE 平分∠AOC ,∠AOB =90°, ∴∠DOC =21∠COB , ∠COE =21∠COA , ∴∠DOE =∠DOC +∠COE =21∠BOC +21∠COA =21(∠BOC +∠COA ) =21∠AOB =45°; (2)∵∠AOB =90°,∠BOC =40°,∴∠AOC =∠AOB +∠BOC =90°+40°=130°. ∵OD 平分∠BOC ,OE 平分∠AOC , ∴∠COD =∠DOB =21∠BOC =20°,∠COE =21∠AOC =65°, ∴∠DOE =∠COE -∠COD =65°-20°=45°. (3)∵∠AOB =90°,∠BOC =α, ∴∠AOC =90°+α,∵OD 、OE 分别是∠BOC 、∠AOC 平分线, ∴∠COD =∠DOB =21∠BOC =2α,∠COE =21∠AOC =45°+2α, ∴∠DOE =∠COE -∠COD =45°+2α-2α=45°. 18.解:(1)①∠AOD =90°+∠AOC∠BOC =90°+∠AOC , ∴∠AOD 和∠BOC 相等.②∵∠AOC +∠AOB +∠BOD +∠DOC =1个周角, ∴∠AOC +90 +∠BOD +90 =360°. ∴∠AOC +∠BOD =180°; (2)①∵∠AOD =90°-∠BOD ,∠BOC =90°-∠BOD , ∴∠AOD 和∠BOC 相等. ②成立.第18题图(1)∵∠AOC +∠BOD =∠AOB +∠BOC +∠BOD =∠AOB +∠DOC =90°+90°=180°, ∴∠AOC +∠BOD =180°.19.已知∠AOB =42°解:根据题意可以作出图(1)与图(2)的两种图形. 由图(1)设∠BOC =x °, ∵∠AOB =42°=∠AOC +∠COB ,+x =42, 解得,x =12°.由图(2)设∠BOC =x °,则∠AOC =(x +42) °, ∴x =, 解得,x =28°.∴∠BOC 的度数的为12°或28°.20.已知∠AOB =(n +1)°,在∠AOB 的内部引n 条射线分别为OA 1,OA 2,OA 3,…,OA n -1,OA n ,依据要求回答问题: (1))°. (2))°. (3) 第19题图(2)第19题图(1)第20题图浙教版2019-2020学年七年级数学上册第6章图形的初步知识6.7角的和差学案(有答案) 11 / 11 ……(4)23.(2019•模拟) 如图,已知∠AOB =m 度,OA 1平分∠AOB ,OA 2平分∠AOA 1,OA 3平分∠AOA 2,OA 4平分∠AOA 3,…,OA n 平分∠AOA n -1,则∠AOA n 的度数为 度. 解:∵∠AOB = m ,OA 1平分∠AOB ,∴∠AOA 1=21∠AOB = ∵OA 2平分∠AOA 1,∴∠AOA 2=21∠AOA 1m ,同理∠AOA 3=81m =∠AOA 4……∴∠AOA n第23题图。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级(上册)1. 有理数1.1. 从自然数到有理数分数都可以化为小数。

分数在化成小数时,结果可能是有限小数,也可能是无限循环小数。

大于0的数,叫正数;小于0的数,叫负数;0既不是正数也不是负数。

整数和分数统称为有理数。

⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧⎭⎬⎫负分数正分数分数负整数自然数零正整数整数有理数⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧负分数负整数负有理数零正分数正整数正有理数有理数 1.2. 数轴像这样规定了原点、单位长度和正方向的直线叫做数轴。

任何一个有理数都可以用数轴上的点表示。

如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。

0的相反数是0。

在数轴上,表示互为相反数(0除外)的两个点,位于原点的两侧,并且到原点的距离相等。

1.3. 绝对值我们把一个数在数轴上对应的点到原点的距离叫做这个数的绝对值。

一个数a 的绝对值表示为|a|。

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

互为相反数的两个数的绝对值相等。

1.4. 有理数的大小比较在数轴上表示的两个数,右边的数总比左边的数大。

正数都大于0,负数都小于0,正数大于负数。

两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小。

2. 有理数的运算2.1. 有理数的加法同号两数相加,取与加数相同的符号,并把绝对值相加。

异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加得0;一个数同0相加,仍得这个数。

加法交换律:两个数相加,交换加数的位置,和不变。

a +b = b + a加法结合律:三个数相加,先把前面两个数相加,或者先把后两个数相加,和不变。

( a + b ) + c = a + ( b + c )2.2.有理数的减法减去一个数,等于加上这个数的相反数。

有理数加减混合运算的一般步骤是先利用减法法则,将减法转换成加法,再运用加法交换律和结合律,使计算简便。

2.3.有理数的乘法两数相乘,同号得正,异号得负,并把绝对值相乘。

任何数与零相乘,积为零。

( 多数相乘,偶数个负数相乘为正,奇数个负数相乘为负。

)有多个不为0的有理数相乘时,可以先确定积的符号,再将绝对值相乘。

若其中一个乘数为0,则积为0。

若两个有理数的乘积为1,就称这两个有理数互为倒数。

0不论乘以任何数都等于0,不等于1,所以0没有倒数。

乘法交换律:两个数相乘,交换因数的位置,积不变。

a ×b = b × a乘法结合律:三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变。

( a × b ) × c = a × ( b × c )分配律:一个数与两个数的和相乘,等于把这个数分别与这两个数相乘,再把积相加。

a × (b +c )= a × b + a × c2.4.有理数的除法两数相除,同号得正,异号得负,并把绝对值相除;0除以任何一个不为0的数都得0。

除以一个数(不等于0),等于乘以这个数的倒数。

2.5.有理数的乘方一般地,在数学上我们把n个相同的因数a相乘的积记做a n,即a × a × ...... × a × a = a n求几个相同因数的积的运算叫做乘方,乘方的结果叫做幂。

在a n中,a叫做底数,n叫做指数,读作“a的n次方”或“a的n次幂”。

2.6.有理数的混合运算一般地,有理数混合运算的法则是:先算乘方,再算乘除,最后算加减,如有括号,先进行括号里的运算。

2.7.近似数与实际完全符合的数称为准确数。

与实际接近的数称为近似数。

对近似数,需要知道它的精确度,一个近似数的精确度可用四舍五入法表述。

3. 实数3.1. 平方根一般地,如果一个数的平方等于a ,那么这个数叫做a 的平方根,也叫做a 的二次方根。

一个正数有正、负两个平方根,它们互为相反数;0的平方根是0;负数没有平方根。

一个正数a 的平方根可以用“±√a ”表示 ( 读做“正、负根号a ”),其中a 叫做被开方数。

求一个数的平方根的运算叫做开平方。

开平方是平方运算的逆运算,可以运用平方运算求一个数的平方根。

正数的正平方根称为算术平方根,0的算术平方根是0。

3.2. 实数2 = 1.414 213 562 373 095 048......它既不是有限小数,也不是无限循环小数 (不能化为分数) 像2这种无限不循环小数叫做无理数。

如:π,3......如果我们把整数看做小数部分为零的有限小数,那么有理数便是有限小数和无限循环小数的统称。

和有理数一样,无理数也可分为正无理数和负无理数。

有理数和无理数统称为实数。

在实数范围内,每一个实数都可以用数轴上的点来表示;反过来,数轴上的每一个点都表示一个实数。

所以,实数和数轴上的点一一对应。

在数轴上表示的两个实数,右边的数总是大于左边的数。

⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧无限不循环小数负无理数正无理数无理数数有限小数和无限循环小负有理数正有理数有理数实数03.3. 立方根一般地,一个数的立方等于a ,这个数就叫做a 的立方根,也叫做a 的三次方根,记做3a 。

其中a 是被开方数,3是根指数,符号“3”读做“三次根号”。

求一个数的立方根的运算,叫做开立方。

一个正数有一个正的立方根,一个负数有一个负得立方根,0的立方根是0。

3.4. 实数的运算实数运算的顺序是:先算乘方和开方,再算乘除,最后算加减,如果遇到括号,则先进行括号里面的运算。

4. 代数式4.1.用字母表示数若a≥ 0,则|a| = a ;若a < 0,则|a| = -a 。

即()()⎩⎨⎧<-≥=aaaaa4.2.代数式如:10a+2b,2a2这样,由数、表示数的字母和运算符号组成的数学表达式称为代数式。

这里的运算是指加、减、乘、除、乘方和开方,单独一个数或者一个字母也称代数式。

4.3.代数式的值一般地,用数值代替代数式里的字母,计算后所得的结果叫做代数式的值。

4.4.整式由数与字母或字母与字母相乘组成的代数式叫做单项式。

单独一个数或一个字母也叫单项式,如0,-1,a......单项式中的数字因数叫做这个单项式的系数。

如:-3x的系数是-3。

一个单项式中,所有字母的指数的和叫做这个单项式的次数。

如:ab的次数是2,-3x的次数是1。

由几个单项式相加组成的代数式叫做多项式。

在多项式中,每个单项式叫做多项式的项,不含字母的项叫做常数项,次数最高的项的次数就是这个多项式的次数。

如:a2 + 3a - 2的项有:a2、3a、- 2,常数项是- 2,次数最高的项a2的次数是2,a2 + 3a - 2称为二次多项式。

单项式和多项式统称为整式。

4.5.合并同类型多项式中,所含字母相同,并且相同字母的指数也相同的项,叫做同类项。

所有常数项也看做同类项。

把多项式中的同类项合并成一项,叫做合并同类项。

合并同类项的法则是:把同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

4.6.整式的加减代数式运算的去括号法则:括号前是“+”号,把括号和它前面的“+”号去掉,括号里各项都不变号;括号前是“-”号,把括号和它前面的“-”号去掉,括号里各项都变号。

5.一元一次方程5.1.一元一次方程如:2x+12=14,两边都是整式,只含有一个未知数,并且未知数的指数是一次,这样的方程叫做一元一次方程。

使一元一次方程左右两边的值相等的未知数的值叫做一元一次方程的解。

5.2.等式的基本性质等式的性质1:等式的两边都加上(或都减去)同一个数或式,所得的结果仍是等式。

如果 a = b,那么a ±c = b ± c等式的性质2:等式的两边都乘或都除以同一个数或式(除数不能为0),所得的结果仍是等式。

如果 a = b,那么ac = bc,或a/c = b/c (c≠0)5.3.一元一次方程的解法一般地,把方程中的项改变符号后,从方程的一边移到另一边,这种变形叫做移项。

移项时,通常把含有未知数的项移到等号的左边,把常数项移到等号的右边。

移项时应注意改变项的符号。

方程变形的常用方法:去分母、去括号、移项、合并同类项......(去分母和移项的依据是等式的性质,去括号和合并同类项的依据是代数式的运算法则)一般地,解一元一次方程的基本程序是:去分母→去括号→移项→合并同类项→两边同除以未知数的系数5.4.一元一次方程的应用运用方程解决实际问题的一般过程:1.审题2.设元3.列方程4.解方程5.检验问题解决的基本步骤:1.理解问题2.制定计划3.执行计划4.回顾6.图形的初步知识6.1.几何图形点、线、面、体称为几何图形。

平面图形:图形所表示的各个部分都在同一个平面内。

立体图形:图形所表示的各个部分不在同一个平面内。

6.2.线段、射线和直线线段可以用表示它的两个端点的大写字母表示,也可以用一个小写字母表示,如:“线段AB”或“线段BA”或“线段a”。

直线可以用它上面任意两个点的大写字母表示,也可以用一个小写字母表示,如:“直线AB”或“直线BA”或“直线a”。

射线用表示它的端点和射线上另外任意一点的两个字母表示,表示端点的字母要写在前面,不能颠倒。

直线有下面的基本事实:经过两点有一条而且只有一条直线。

(即:两点确定一条直线)6.3.线段的长短比较线段有下面的基本事实:在所有连结两点的线中,线段最短。

(即:两点之间线段最短)连结两点的线段的长度叫做这两点间的距离。

6.4.线段的和差一般地,如果一条线段的长度是另两条线段的长度的和,那么这条线段叫做另两条线段的和;如果一条线段的长度是另两条线段的长度的差,那么这条线段就叫做另两条线段的差。

6.5.角与角的度量角是由两公条公共端点的射线所组成的图形,这个公共端点叫做这个角的顶点。

角也可以看成是由一条射线绕着它的端点旋转而成的图形,起始位置的射线叫做角的始边,终止位置的射线叫做角的终边。

度、分、秒是角的基本度量单位。

1度=60分,1分=60秒6.6.角的大小比较等于90。

的角是直角,小于90。

的角是锐角,大于直角而小于平角的角是钝角。

6.7.角的和差一般地,如果一个角的度数是另两个角的度数的和,那么这个角就叫做另两个角的和;如果一个角的度数是另两个角的度数的差,那么这个角就叫做另两个角的差。

从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线。

6.8.余角和补角如果两个锐角的和是一个直角,我们就说这两个角互为余角,简称互余,也可以说其中一个角是另一个角的余角。

如果两个角的和是一个平角,我们就说这两个角互为补角,简称互补,也可以说其中一个角是另一个角的补角。

相关文档
最新文档