02.(简)振动波动第二章波动(2003)
振动波动要点ppt课件

3
sin 0
} 3
换个计时起点 ,则初相位随之变化,如t = 0 时, x0= A / 2,且向 x 负向运动,则
3
23
② 初相与时间起点的选择有关,与坐标的取向有 关,而与振动系统的物理性质无关。 ③ 是系统的固有圆频率,由系统自身性质(惯性 与恢复力) 决定,与外界、计时起点、运动状态都无 关—反映谐振动的周期性。
d x F k 2 a 2 x x x dt m m
k m
圆频率 ( 角频率 ) 单位:1/s
2
由系统本身属性决定,与外界无关。
▲3 从运动学的观点给出简谐振动的定义:
如果一个物体的加速度 a∝-x与位移 x 恒成正比且 方向相反,则这个物体一定作简谐振动。
8
▲2 从受力方面给出简谐振动的定义:
物体在弹性力和准弹性力F ∝- q,即力与 对平衡位置的位移或者角位移成正比且反向的 作用下的振动是简谐振动。 作简谐振动的系统统称为谐振子! 注意:机械振动中所指的位移——都是指离
开平衡位置的位移。负号都是对平衡点来说指
向平衡位置。
7
从谐振子的质点 m 的加速度
18
依谐振动的周期性,我们看出:
相位差为 2k ( k = 0,±1,±2 ,… ) 的任意两个
时刻(时间差为T 的整数倍)物体的振动状态相同。
∴
t
——相位决定振动的状态,并能充分反映振动的 周期性。
19
从:
x A cos(t )
v A sin( t ) A cos(t ) 2
29
7. 简谐振动的矢量图示法—旋转矢量描述
02.(简)振动波动 第二章 波动(2003)

第2章波动(Wave)前言:1.振动在空间的传播过程叫做波动。
波动是一种重要的运动形式。
2.常见的波有两大类:(1)机械波:机械振动在媒质中的传播。
(2)电磁波:变化电场和变化磁场在空间中的传播。
·此外,在微观中波动的概念也很重要。
3.各种波的本质不同,传播机理不同,但其基本传播规律相同。
本章讨论:机械波(Mechanical wave)的特征和有关规律,具体为,(1)波动的基本概念;(2)与波的传播特性有关的原理、现象和规律;(3)与波的叠加特性有关的原理、现象和规律。
§1 机械波的产生和传播一、机械波的产生1.产生条件:(1)波源;(2)介质(媒质)2.弹性波:机械振动在弹性介质中的传播(如弹性绳上的波)。
弹性介质的质元之间以弹性力(elastic force) 相联系。
3.简谐波:若媒质中的所有质元均按一定的相位传播规律做简谐振动,此种波称为简谐波(simple harmonic wave)。
以下我们主要讨论简谐波。
二、波的传播1.波是振动状态的传播以弹性绳上的横波为例,由图可见:由图可见:t = T/4t = T/2t = 3T/4t = T弹性绳上的横波(1)媒质中各质元都只在自己的平衡位置附近振动,并未“随波逐流”。
波的传播不是媒质质元的传播。
(2)“上游”的质元依次带动“下游”的质元振动(依靠质元间的弹性力)。
(3)某时刻某质元的振动状态将在较晚时刻于“下游”某处出现,这就是“波是振动状态的传播”的含义。
(4)有些质元的振动状态相同,它们称作同相点。
相邻的同相点间的距离叫做波长(wave- length)λ,它们的相位差是2π。
2.波是相位的传播·由于振动状态是由相位决定的,“振动状态的传播”也可说成是“相位的传播”,即某时刻某点的相位将在较晚时刻重现于“下游”某处。
·于是沿波的传播方向,各质元的相位依次落 后。
图中b 点比a 点的相位落后即a 点在t 时刻的相位(或振动状态)经∆t 的时间传给了与它相距为∆x 的b 点,或b 点 在t +∆t 时刻的相位(或振动状态)与a 点在t时刻的情况相同( 即波的传播速度)。
《振动和波动的关系》课件

波长公式
波长与振动的速度和频率有 关: λ=v/f
单位
振动的单位是赫兹(Hz), 波动的单位是米(m)。
振动和波动的应用领域
1 医学
超声波用于医学成像和治 疗。
2 通信
无线电波和光纤传输用于 信息传输。
3 工程
振动传感器和结构动力学 用于工程设计。
振动和波动的实验和观测方法
1
实验
利用弹簧和质量系统进行振动实验。
2
观测方法
使用光学或电子仪器进行波动的观测。
3
数据分析
通过记录数据并应用相关分析方法来研究振动和波动现象。
振动和波动的未来发展趋势
技术创新
新技术的发展将推动振动和波动在各个领域的应用。
科学研究
对振动和波动现象的深入研究将带来新的发现和理 解。
振动和波动的关系
振动和波动是物理学中重要的概念,它们描述了物体或系统中的能量传播和 振动的特性。本课件将探讨振动和波动的定义、特点、公式和应用领域。
振动和波动的定义
1 振动
物体在时间内往复运动的过程。
2 波动
能量在介质中传输的过程,通常以波的形式呈现。Biblioteka 振动和波动的特点频率
振动的周期或波动的频率是描 述其快慢的特征。
振幅
振动或波动过程中的最大偏离 或变化。
波长
波动中相邻两个相位相同点之 间的距离。
振动和波动的相同点和不同点
相同点
都是描述物体或系统中能量传播和振动的过程。
不同点
振动是指物体自身的周期或往复运动,而波动是能 量在介质中传输的过程。
振动和波动的公式和单位
振动公式
振动的周期和频率可以用以 下公式描述: T=1/f
波动大学物理-PPT文档资料

Y(x,t)的函数形式称为波函数,它也就 是波传播时媒质质元的运动函数。
x 称为行波的波函数。 y (x ,t) f ( t ) u
(二) 简谐波(波函数) 一、一维简谐波的表达式(波函数) 讨论:沿+x方向传播的一维简谐波(u , )
波速u 假设 : 媒质无吸收 参考点 a 任一点p (质元振幅均为A) o ·x d · 已知:参考点a的振动表达式为 x
§1
机械波的产生和传播
一. 机械波的产生 1. 产生条件: 波源 媒质 2. 弹性波: 机械振动在弹性媒质中的传播 • 横波 • 纵波 3. 简谐波: 波源作简谐振动, 在波传到的区域, 媒质中的质元均作简谐振动 。
· · · · · · · ·t = 0 · · · · · ·· · · · · · · · · · · · · · ·· · · · · · · · · · · · · · ·· · · · · ·t = T/4 · · · · · · · · · ·· · · · · · · · · · · · · · t = T/2 · · · · · · · · · · · ·t = 3T/4 · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · t=T · · · · ·· ·
结论:
u
a b 沿波的传播 · · 方向 , 各质元的相 x 位依次落后。 2 图中b点比a点的相位落后 x
传播方向
x
三. 波形曲线(波形图) y u t • 不同时刻对应有 o 不同的波形曲线 • 波形曲线能反映横 波 纵波的位移情况 四. 波的特征量 1.波长 : 两相邻同相点间的距离 2. 波的频率 : 媒质质点(元)的振动频率 即单位时间传过媒质中某点的波的个数 3. 波速u : 单位时间波所传过的距离
大学物理振动和波动第二章波动学基础

x
t
x u
y( x,t )
A cos[ ( t
x u
)
]
9
x ♠ 沿 轴正向传播的简谐波的波函数:
(已知平衡位置在 x 0 处质点振动方程 yx0 Acos(t ) )
y(x,t)
A cos[ ( t
x)]
u
Acos[2 ( t x ) ] T
Acos[(t kx) ]
波数:k 2
2
( c)驻波各点相位由 A' 的正负决定
43
驻波特点:
A. 有的点始终不动(干涉减弱)称波节;
有的点振幅最大(干涉加强)称波腹;
其余的点振幅在0与最大值之间。
B. 波形只变化不向前传
故称驻波。
驻波能量: 波形无走动、能量无流动
振动状态(位相)特点 同一段同相位 相邻段反相位
作业:2.15 2.16 2.17 2.18
2
2
o
y
A
t , 3
2
tt ,
作业:P108~109 2.2 2.3 2.5 2.6
23
练习.一沿X轴负向传播的平面简谐波在
t=2s时的波形曲线如图所示,写出质
点O的振动方程和平面简谐波的波动
方程。
y
u=1.00m/s
0.5
0
X
-1
1
2
3
y( x0)
0.5cos(
2
t
) 2
y 0.5cos[ (t x) ]
坐标 t
横轴为质点平
x 衡位置坐标
17
x( y)
振动曲线
y t
t t0
x
波形曲线(波形图)
第振动和波动波动PPT课件

kx)
wp
1 2
2 A2
si n2(t
kx)
w = wk+wp = 2A2sin2 (t-x/u)
wk、wp 均随 t 周期性变化,两者同相同大 。
怎么动能和势能之和不等于常数,也不相互转化 ?
第22页/共49页
2. 波的强度 单位时间内通过垂直于波的传播方向的
单位面积的平均能量,称为平均能流密度,
第30页/共49页
【例7】相干波源 A、B 位置如图所示,频率 =100Hz, 波速 u =10 m/s,A-B=,求:P 点振动情况。
【解】 rA 15m
P
rB 152 202 u 0.1m
15m
A
20 m
B
B
A
2
rB
rA
200
201
P点干涉减弱
第31页/共49页
【例8】两相干波源分别在 PQ 两点处,初相相同,
横波的波形图与实际的波形是相同的,但是对于纵波, 波形图表示的是各质点位移的分布情况。
y
u
o
x
第4页/共49页
4. 描述波特性的几个物理量
周期T : 传播一个完整的波形所用的时间,或一个完整的波通过波线上某一点所需 要的时间。
频率 :单位时间内传播完整波形的个数。
周期、频率与介质无关,波在不同介质中频率不变。
2纵波横轴x表示波的传播方向坐标x表示质点的平衡位置纵轴y表示质点的振动方向坐标y表示质点偏离平衡位置的位移表示某一时刻波中各质点位移的图横波的波形图与实际的波形是相同的但是对于纵波波形图表示的是各质点位移的分布情况
5.4.1 机械波的产生与描述
1. 产生机械波的条件
产生波的条件——存在弹性介质和波源
振动和波动的基本知识

振动和波动的基本知识振动和波动是物理学中非常重要的两个概念,它们在自然界和日常生活中处处可见。
本文将为您介绍振动和波动的基本知识,包括定义、特征以及其应用领域等内容。
一、振动的基本概念和特征振动是物体在围绕平衡位置周围作往复运动的现象。
当物体受到外界扰动时,它会围绕平衡位置做周期性的往复运动。
振动的基本特征包括振幅、周期、频率和相位。
1. 振幅:振幅是指振动过程中物体偏离平衡位置的最大距离。
振幅越大,说明物体的振动幅度越大。
2. 周期:周期是指振动中,物体完成一次往复运动所需的时间。
用T表示,单位为秒。
周期与振动的频率有关,两者满足T=1/f。
3. 频率:频率是指单位时间内振动的次数。
用f表示,单位为赫兹(Hz)。
频率与周期相反,频率越高,则周期越短。
4. 相位:相位是指在一定时间内物体相对于某个参考点的位置。
可以用角度或时间表示。
相位差可以用来描述两个或多个振动之间的关系。
振动现象广泛存在于自然界和科学技术领域。
例如,机械振动的研究可以帮助我们设计更加稳定和高效的机械结构;电子设备中的振荡器可以产生稳定的电信号等。
二、波动的基本概念和分类波动是指能量在空间中传播的过程。
波动的主要特征包括振幅、波长、频率和波速等。
1. 振幅:波动中振幅表示波峰和波谷之间的最大偏移距离。
2. 波长:波长是指波动传播一个完整波周期所需要的距离。
用λ表示,单位为米。
波动的波长与频率成反比,满足λ=速度/频率。
3. 频率:波动的频率是指波动中单位时间内通过某个点的波的个数。
频率用f表示,单位为赫兹(Hz)。
4. 波速:波速是指波动在介质中传播的速度。
波速与波长和频率有关,满足v=λf。
根据波动的性质和传播介质的不同,波动可以分为机械波和电磁波两大类。
机械波需要介质来传播,例如水波、地震波等;而电磁波可以在真空中传播,包括光波、无线电波等。
三、振动和波动的应用领域振动和波动在科学技术的各个领域都有着重要的应用。
以下是一些具体的应用领域:1. 声波的应用:声波是一种机械波,在通信、音乐、医学等领域中有着广泛的应用。
振动与波动振动PPT课件

y(x, t) = 2Acos kx cost
三.驻波的特点
1.频率特点:各质元以同一频率作简谐振动。 2.振幅特点:
(1)各点的振幅|2Acos kx|和位置x有关, 振幅在空间按余弦规律分布。
(2)波节:有些点始终静止,这些点称作波节 (node)。
v
此方程是取原点质原振动初相位为0时得到的
波方程更加一般的表达(通解)如下:
yt( ) A x, ω c k o t x s
例1、 已知波源在原点的平面简谐波方程为
yAcos(btcx)
A,b,c均为常量。试求: (1)振幅,频率,波速和波长; (2)写出在传播方向上距波源处一点的振动方程式,
一.驻波的形成
驻波是由两列频率相同、振动方 向相同、且振幅相等,但传播方 向相反的行波叠加而成的。
t=0
y2
t = T/8
t = T/4
t = 3T/8
y y1
o
o
o o
t = T/2 o
驻波的形成
图中红线即驻波的波
x
形曲线。可见,驻波
x 波形原地起伏变化。
x
驻波波形不传播
(“驻”字的第一层含义)
驻波不传播能量 (“驻”字的第三层含义)
在驻波中,两个相邻波节间各质 点的振动 ( ) (A)振幅相同,位相相同。 (B)振幅不同,位相相同。 (B)振幅相同,位相不同。 (D)振幅不同,位相不同
试总结比较
弹簧振子简谐振动
平面简谐行波
能量特点
驻波
四、实际中驻波的形成
实际的驻波可由入射到媒质界面上的行波和它的 反射波叠加而成
(2) 求出三个 x 数值使得在P点合振动最弱.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章波动(Wave)前言:1.振动在空间的传播过程叫做波动。
波动是一种重要的运动形式。
2.常见的波有两大类:(1)机械波:机械振动在媒质中的传播。
(2)电磁波:变化电场和变化磁场在空间中的传播。
·此外,在微观中波动的概念也很重要。
3.各种波的本质不同,传播机理不同,但其基本传播规律相同。
本章讨论:机械波(Mechanical wave)的特征和有关规律,具体为,(1)波动的基本概念;(2)与波的传播特性有关的原理、现象和规律;(3)与波的叠加特性有关的原理、现象和规律。
§1 机械波的产生和传播一、机械波的产生1.产生条件:(1)波源;(2)介质(媒质)2.弹性波:机械振动在弹性介质中的传播(如弹性绳上的波)。
弹性介质的质元之间以弹性力(elastic force) 相联系。
3.简谐波:若媒质中的所有质元均按一定的相位传播规律做简谐振动,此种波称为简谐波(simple harmonic wave)。
以下我们主要讨论简谐波。
二、波的传播1.波是振动状态的传播以弹性绳上的横波为例,由图可见:由图可见:t = T/4t = T/2t = 3T/4t = T弹性绳上的横波(1)媒质中各质元都只在自己的平衡位置附近振动,并未“随波逐流”。
波的传播不是媒质质元的传播。
(2)“上游”的质元依次带动“下游”的质元振动(依靠质元间的弹性力)。
(3)某时刻某质元的振动状态将在较晚时刻于“下游”某处出现,这就是“波是振动状态的传播”的含义。
(4)有些质元的振动状态相同,它们称作同相点。
相邻的同相点间的距离叫做波长(wave- length)λ,它们的相位差是2π。
2.波是相位的传播·由于振动状态是由相位决定的,“振动状态的传播”也可说成是“相位的传播”,即某时刻某点的相位将在较晚时刻重现于“下游”某处。
·于是沿波的传播方向,各质元的相位依次落 后。
图中b 点比a 点的相位落后即a 点在t 时刻的相位(或振动状态)经∆t 的时间传给了与它相距为∆x 的b 点,或b 点 在t +∆t 时刻的相位(或振动状态)与a 点在t时刻的情况相同( 即波的传播速度)。
∆x ∆t2π ∆ϕ = ( )∆x λx u 传播方向b 点和a 点的相位比较三、波形曲线(波形图)1.波形曲线(ξ−x 曲线) 波形曲线(wave formcurve) 是ξ−x 关系曲线),·ξ-质元的位移·x -质元平衡位置的坐标 ·ξ--x 曲线反映某时刻t 各质元位移ξ 在空间 的分布情况。
(t 时刻用照相机为所有质元拍的团体相) ·波的传播在外貌上表现为波形的传播。
不同 时刻对应有不同的波形曲线。
每过一个周期 (质元振动一次),波形向前传播一个波长的距 离。
ξx·在波形曲线上必须标明时刻t和波的传播方向。
·波形曲线不仅能反映横波也能反映纵波的位移情况。
2.注意区别波形曲线和振动曲线波形曲线:ξ−x曲线振动曲线:ξ−t曲线,反映某一质元的位移随t的变化。
(用摄像机为“舞姿优美”的某质元拍的一段特写镜头)。
·在振动曲线上应标明是哪个质元的振动曲线。
3.要求:应掌握,(1)由某时刻的波形曲线→画出另一时刻的波形曲线;(2)由某时刻的波形曲线→确定某些质元的振动趋势→画出这些质元的振动曲线;(3)由某质元的振动曲线→画出某时刻的波形曲线。
☆重要原则:不管是在波形曲线还是振动曲线上,同一质元在同一时刻的振动位移应相同(可用此原则检验所画曲线是否正确)。
练习:1.已知t = 0时刻的波形曲线如下图,(1)画出t +(T/4),t +(T/2),t +(3T/4)(2)在题图上用小箭x头示出a 、b 、c 、d 各质元的振动趋势,并 分别画出它们的振动曲线。
2.已知x =0处质元 的振动曲线如图,画出t = 0时刻的波形曲线(设波沿+x 方向传播)。
四、波的特征量1.波长λ:两相邻同相点间的距离。
波长—也即波形曲线上一个完整波形的长度,或 一个振动周期内波传过的距离。
2.波的频率ν :即媒质质点(元)的振动频率。
·波的频率—也指单位时间传过媒质中某点的 练习题用图ξt波的个数。
·通常情况下有波的频率ν = 波源的振动频率νs3.波速u :波速是振动状态的传播速度,数值 上等于单位时间内振动状态传播的距离。
·波速u 主要决定于媒质的性质和波的类型(横波、纵波)。
·因振动状态由相位决定,所以波速也就是相位传播的速度,称相速度(phase velocity)。
·要注意区分波速u和 媒质质元的振动速度 。
∂ξ ∂t五、横波和纵波横波(transverse wave):质元振动方向 ⊥ 波的传播方向纵波(longitudinal wave):质元振动方向 ‖波的传播方向演示:横波、纵波模型§2 一维简谐波的表达式一、一维简谐波的表达式一维简谐波的表达式也称波函数(wavefunction) 讨论:沿+x 方向传播的一维简谐波(波速u ,振动角频率为ω)假设:媒质无吸收(质元振幅均为A )x o 任一点p 参考点a 波速u已知:参考点a 的振动表达式为ξa (t ) = A cos(ωt + ϕa )求写:任一点p 的振动表达式比较:p 点和a 点的振动·其A 和 ω均各相同·但p 点比a 点相位落后 任一点p 的振动表达式为一维简谐波的表达式 它即是任一点的振动表达式,反映任一点 (位置在x )在任一时刻t 的位移。
2π λ(x - d )★如果选 原点为参考点 (即d = 0), 且其 初相 ϕa 为零,则可得表达式为此情形下波的表达式还有几种形式:式中 ω 1 λ λ 2π u k = = 称作角波数(圆波数) 称作波数 (wave number)。
(angular wave number)练习:如果波沿- x方向传播,请写出波的表达式?二、一维简谐波表达式的物理意义由ξ(x, t) =A cos(ωt -kx)从几方面讨论:1.固定x:如令x = x0,则波的表达式变为ξ(x0, t) = A cos(ωt - kx0)·即x0处质元的振动表达式(初相是-kx0),·由它画出的曲线是x0处质元的振动曲线。
2.固定t:如令t = t0,则波的表达式变为ξ(x, t0) =A cos(ωt0 -kx)·反映t 0时刻各不同x 处质元的位移状况。
·由它画出的曲线即t 0时刻的波形曲线。
3.如看定某一相位,即令(ωt - kx ) =常数(x ,t 均为变量),则此相位在不同时刻出现 于不同位置,它的传播速度(相速度) 可由上 式的微分得出为4.表达式也反映了波是振动状态的传播。
可以验证有 ξ(x +∆x , t +∆t ) = ξ(x , t )其中∆x = u ∆t 。
上式说明t 时刻x 处质元 的振动状态在t +∆t 时传到了x +∆x 处。
d x = u = d t ω k5.表达式还反映了波的时间、空间双重周期性。
(1)周期T代表了时间周期性·由质元运动看:每个质元振动周期为T ·由波形看:t时刻和t +T时刻的波形曲线完全重合。
(2)波长λ代表了空间周期性·由质元看:相隔λ的两点振动状态完全相同(同相点)。
·由波形看:波形在空间以λ为“周期”分布着。
λ称波的“空间周期”。
时间、空间两方面的周期性以相速u联系起来:=u =λTωk三、平面波和球面波1.波的几何描述·波线(wave line):沿波传播方向的射线。
·波面(wave surface):波在同一时刻到达的各点组成的面。
一个波面上各点是同时开始振动的,具有相同的相位,波面又称同相面。
·波前(波阵面) (wave front):最前沿的波面。
·平面波(plane wave):波面是一些平行平面的波。
·球面波(spherical wave):波面是一些同心球面(可以是球面的一部分)的波。
在各向同性的媒质中波线 波面。
2.平面简谐波的表达式若平面简谐波(plane simple harmonic wave) 沿+x 向传播,空间任一点p(x , y , z )的振动相 位只和x 与t 有关,而和它空间坐标无关。
前面讲的一维简谐波的表达式就可以表示平面简谐波。
3.球面简谐波的表达式·设一各向同性的点波源,在各向同性媒质 中向四面八方发出球面波。
球面波平面波 波面和波线·各点的频率仍决定于波源,·但振幅和各点到波源的距离r 成反比(原因 见波的能量部分),其表达式为式中A 0为距波源r 0处的振幅。
§3 波动方程和波速本节对媒质的波动行为作动力学分析,导 出连续弹性媒质中波所遵守的运动微分方 程−波动方程(wave function)。
一、平面波波动方程A 0r 0 r 为r 处的振幅,随r 的增大而减小。
1.一般形式·此即沿x 向传播的平面波(不限于平面简谐 波)的动力学方程,等号右端项的系数即波 速u 的平方。
·前面所讲的平面简谐波的表达式是此波动 方程的解(可用代入法检验)。
2.弹性绳上的横波·波动方程: ·波速: T -绳的初始张力 η-绳的线密度 3.固体棒中的纵波η√ u = T ∂ t 2 ∂ x 2 ∂2ξ∂2ξ = T η·波动方程:·波速: Y -杨氏弹性模量 ρ -体密度 ·相应形变:长变4.固体中的横波·波动方程:·波速: G -切变模量 ∵ G <Y,固体中u 横波< u 纵波√u =G ρ∂2ξ ∂2ξ ∂ t 2 ∂ x 2= Y ρ ρ√u = Y = Y F S ∆ l l 0∂2ξ ∂2ξ ρ ∂ t 2∂ x 2 = G p 长变(拉、压)F 切F 切面积Sϕ固体的几种基本形变容变ppp 切变·相应形变:切变思考:如果发生地怎样的震感?5.流体中的声波·波动方程: ·波速: k -体积模量ρ0 -无声波时的流体密度 理想气体: ∂ t 2∂ x 2 ∂2ξ ∂2ξ = kρ0√u = k ρ0= G ϕF SγRT √u = μ家中的震感式中 μ−摩尔质量·相应形变:容变可见,波速取决于·媒质的性质(弹性和惯性,材料对不同 的形变有不同的抵抗能力即表现出不同的弹性); ·波的类型(横波、纵波)。
二、固体棒中纵波的波动方程(推导) 思路:·由胡克定律(应力、应变关系) ·由牛顿第二定律 1.某截面处的应力、应变关系γ = C p C υ p = -k ( ∆V V 0 )在棒上取长为∆x 的一小段质元, ·t 时刻, x 处截面的位移:ξ(x , t ) x +∆x 处截面的位移:ξ(x +∆x , t ) ·波引起的∆x 段的平均应变:·当∆x →0时,得x 处截面t 时刻的应变 为 ·x 处截面的应力为 ·由胡克定律有∂ξ ∂xF (x , t ) S ξ(x +∆x , t ) - ξ(x , t )∆xxt ξ(x , t )ξ(x +∆x , t )有纵波时棒中质元t 时刻的位形与它原来位形的比较x 处截面的应力 、应变关系(待下面用) 2.波动方程·在棒上取质元∆x ,其质心位移为ξ(x , t )·由牛顿定律有,·将前述应力、应变结果代入有 ·令∆x →0,并取极限即得所求波动方程(ρS ∆x ) ∂2ξ∂t 2 = F 2 - F 1∂2ξ∂ t 2ρ F 2 S F 1 S - ∆x= ⇒ = Y F S ∂ξ ∂xξ(x , t )x 1截面 x 2截面截面S有纵波时棒中质元t 时刻的位形和受力情况§4 波的能量·前已讲:波是振动状态的传播, 相位的传播, 外观上有波形在传播。