大气水分及其相变
《大气中的水分》课件

降水的过程和类型
降水的过程和类型是理解气候变化和天气预报的关键。
降水是指从大气中降落到地面的水滴、冰晶、雪、雹等水汽凝结物的总称。根据降水的物理状态和形 成机制,可以将降水分为雨、雪、冰雹、霜、露等类型。这些不同类型的降水过程和形成机制各不相 同,对气候变化和天气预报有重要影响。
降水对气候的影响
大气中水分的未来变化
REPORTING
温室效应与水汽的关系
温室效应是指大气层能够让阳光透进来照射地面,却阻止地 面热量散发出去的自然现象。水汽是温室气体之一,能够吸 收和重新辐射热量,对地球温度起着重要的调节作用。
随着工业化进程的加速,温室气体排放量不断增加,导致大 气中水汽含量升高,加剧了温室效应,进而引起全球气候变 化。
吸收光谱
水汽的吸收光谱呈现带状 分布,主要吸收中心位于 620-780纳米和11001800纳米的红外波段。
水汽的辐射特性
辐射特性定义
辐射光谱
水汽分子能够发射特定波长的电磁辐 射,这种特性称为水汽的辐射特性。
水汽的辐射光谱呈现带状分布,主要 发射中心位于620-780纳米和11001800纳米的红外波段。
降水
水滴或冰晶等降水物从云层降 落到地面。
地表径流
地表水通过河流、湖泊等途径 流入海洋。
PART 02
水汽的吸收与辐射
REPORTING
水汽的吸收特性
吸收特性定义
水汽分子能够吸收特定波 长的电磁辐射,这种特性 称为水汽的吸收特性。
吸收机制
水汽分子通过振动和转动 跃迁吸收电磁辐射,主要 吸收红外波段和微波波段 的辐射。
汽含量的增加。
水汽变化对未来气候的影响
降水模式的改变
大气中水汽含量的变化会影响降水模式的分布和强度,可能导致某 些地区出现极端天气现象,如暴雨、干旱等。
气象气候学-第1节(大气的一般特性)

暖层(中间层顶到800km)
①温度随高度增加迅速上升: 据探测,在300km高度上,气温可达1000℃以上,这是 因为所有波长<0.175μm的紫外线辐射,都被该层中的大 气物质所吸收的缘故。 ②空气处于高度电离状态: 因而这层也称为电离层。它们都能反射无线电波,对 无线电通讯具有重要意义,而且有极光现象出现。
年变化:与温度的变化相似,最高值出现在温度最高、蒸 发最强的7-8月,最低值出现在温度低、蒸发最弱的1-2月。
三、大气水分及其相变 (一)空气湿度
2、空气湿度的时间变化 相对湿度: 日变化:高温时,相对湿度小; 低温时,相对湿度大。
年变化:冬季最大,夏季最小。但季风气候区, 相对湿度夏季大,而冬季小。
水点和冰晶 云
露点温度
凝结高度
降温至水汽 饱和
降水
降水
3)人工影响降水:认为补充某些形成降水的必要条件,促 进云滴迅速凝结或碰撞并增大形成云滴,降落到地面。 冷云催化:冷云由冰晶或冷却水滴组成,或二者混合组 成的云,这种云形成降水主要通过冰水转移,使云滴增 大——人工增加足够的冰晶:加入干冰(二氧化碳),形 成低温区自生冰晶;投入人工冰核(如碘化银、氯化汞), 造成冰水共存。 暖云催化:暖云的形成主要取决于云中有无大小水滴共 存的环境和升降运动的碰撞过程——提供大小水滴:向 云中播入氯化钠、氯化钾等吸湿性物质,吸收水汽,使 云内形成溶液云滴。
降水
4)降水的种类:
对流雨、气旋雨、锋面雨、台风雨和地形雨
1. 地形雨
3 44
2. 对流雨 4 1
235 3
6
第四章 大气中的水分

Ei E过冷却水面-E冰面
冰分子脱出冰面所受 的束缚比水分子脱出 水面的束缚大
E冰面 E过冷却水面 100%
冰晶和过冷却水滴共存情况在云中很普遍 冰晶效应 如果实际水汽压处于两者的饱和水汽压之间:
es (过冷却水滴) ea (实际水汽) es (冰晶)
蒸发
凝华
水滴不断蒸发而减小,冰晶因不断凝华而 增大,在冰和水之间水汽转移现象。 冰晶效应:这种由于冰水共存引起冰水间的 水汽转移的作用
E>e 未饱和 蒸发 E=e 饱和 动态平衡 E<e 过饱和 凝结
4
水 融解线
蒸发线
升华线
水的三种相态分别存在于不同的温度和压强条 件下: (1)水只存在于0℃以上的区域,冰只存在于0℃ 以下的区域,水汽虽然可存在于0℃以上及以下的区 域,但其压强却被限制在一定值域下。
蒸发过程:较大动能水分子脱出液面使液面温 度降低。如果保持其温度不变,必须自外界供给热 量,这部分热量等于蒸发潜热L,L 与温度t有如下 的关系:
第四章 大气中的水分
凝结
水汽输送
凝结
降水
蒸发 植物蒸腾
湖
降水
地表径流 地下径流
蒸发
海洋
下渗
地球上水分循环过程对地-气系统的热量平衡和 天气变化起着非常重要的作用
(一) 蒸发和凝结的基本原理
大气中 (二) 地表面和大气中的凝结现象 的水分
(三) 降水及人工影响天气
(一)蒸发和凝结的基本原理
1、水相变化
辐射雾多发生 在夜长、气温低的 冬季。只要满足条 件,在大部分地区 均可形成。
29
(4)混合冷却:当温差较大,且接近饱和的两 团空气水平混合后,也可能产生凝结。由于饱和水 汽压随温度的改变呈指数曲线形式,就可能使混合 后气团的平均水汽压比混合气团平均温度下的饱和 水汽压大。
5_农业气象学_水分

w
mw V
青岛农业大学农学与植保学院
农业气象学
第四章 水分
比湿:单位质量湿空气中所含的水汽质量。
(用 q 表示;单位为 g〃g-1或kg〃kg-1)
mw q m w md
青岛农业大学农学与植保学院
农业气象学
第四章 水分
空气密度:单位体积空气中所含的干空气和水汽质量之和。 (用 ρa 表示;单位为 kg 〃 m-3)
第四章 水分
第四章 水分
大气中的水份是大气组成成分中最富于变化的部分。
1. 空气湿度的表示方法和变化规律
2. 水面蒸发、农田蒸散及变化规律 3. 成云致雨的条件和降水特征、水分利用率
青岛农业大学农学与植保学院
农业气象学
第四章 水分
第一节 大气湿度
一、水的相变
1.水相变化的物理过程 2.水相变化中的蒸发潜热 L=2500-2.4t < 2450 J/g >
ρa:空气密度,
0.622 L a(esw ea) P
从周围空气中获得的热量
a Cp (ta tw)
Cp:空气质量热容,J/g〃℃
青岛农业大学农学与植保学院
农业气象学
第四章 水分
0.622 L a Cp (ta tw) a (esw ea ) P 0.622 L Cp (ta tw) (esw ea ) P Cp P ea esw (ta tw) 0.622 L Cp P 湿度常数 ( , Psychrometer constant) 0.622 L
当空气中水汽含量一定时,在压力不变的情况下,降低温度, 使空气达到饱和时的温度,称为露点温度。
例题:已知北京某年初夏ta=30℃,
气象学-大气水分

空气湿度第一节第二节第三节蒸发与蒸腾水汽凝结与大气降水退出第四节水分与农业第四章水分二三第一节空气湿度(air humidity)空气湿度的表示方法空气湿度的时空变化一水的相变一、水的相变水汽是大气中唯一能发生相变的气体,水的三相为水汽、水、冰。
•水相变化的物理过程从分子运动学的观点看,水相变化是各相之间分子交换的过程。
•水相变化中的三种过程在水和水汽共存的系统中,存在三种过程:蒸发过程、凝结过程和动态平衡。
气象学上用空气湿度表示大气中水汽含量的多少二、空气湿度的表示方法1.水汽压(water vapour pressure)水汽压(e):空气中水汽产生的压强。
水汽压可以直接表示空气中水汽含量的多少。
水汽压单位:百帕(hPa),毫米汞柱mmHg饱和水汽压:空气中水汽达到饱和状态时的水汽压(saturation/equilibrium vapour pressure),用E或e表示。
s(1)物态同温度下冰面E冰<E水饱和水汽压E的影响因素云中,冰晶与过冷却水滴常常并存,若E冰<e<E水,则水滴将蒸发而逐渐缩小,冰晶将不断凝华而增大,水分子不断从水滴向冰晶转移,这就是“冰晶效应”E受物态、蒸发面形状、水溶液浓度、温度等因素影响。
凝结增长大小水滴共存(2)蒸发面形状当蒸发面曲率半径<1μm,与水分子半径相近时,蒸发面形状会影响E的大小。
(3)云中水滴大小云中水滴大小不一,曲率不同,若实际水汽压介于大小水滴的E之间时(E大<e<E小),小水滴因蒸发而缩小,大水滴因凝结而增大。
凝结增长(4)蒸发面浓度当蒸发面浓度的不同,也会影响E的大小。
因为浓度大的液体表面水分子占据的面积小,单位时间内逸出的水分子就少。
饱和水汽压与温度关系曲线饱和水汽压(E)温度(℃)4.饱和差(saturation deficit/deficiency)饱和差(d):同温度下的饱和水汽压与空气中实际水汽压之差。
第四章 大气中的水分

空气中常见的降温过程:
(1)绝热冷却 云、雨、雪、雹等。 (2)辐射冷却 露、霜、辐射雾等。 (3)接触冷却(平流冷却) 平流雾、雾凇V等。 (4)混合冷却:两团温差大、但都接近饱和而未饱 和的空气混合后有可能达到饱和。 低云、雾。
17
温度(℃)
-30 0.5
-20 1.2
-10 2.9
0 6.1
按云的外形、结构特点和成因:分为11属,29类。
高云族:云底高度6000米以上,冰晶,白色。一般不降水 中云族:云底高度2000-6000米,水滴、过冷却水滴、冰 晶。有时降水 低云族:云底高度2000米以下,水滴、水滴或冰晶。 云型 层状云 低 雨层云 层积云 层云 淡积云 浓积云 积雨云 碎云 中 高层云 高 卷层云、卷云
e 100% E
5
2.年变化
干燥而全年的绝对湿度a变化不大的地区:与T的 年变化相反,冬季最大,夏季最小。 季风气候区:冬季寒冷干燥,夏季炎热湿润,与气 温一致。
我国 最大 江南 春末夏初 华南 春(初春) 华北 夏季 西北 冬季 律) 最小 秋季 秋季 春季 夏季(不受季风影响,符合一般规
6
第二节 蒸发和蒸散
24
雾的种类(根据成因):雾可分为多种类型,常见 的有辐射雾和平流雾。
⑴辐射雾:局部地区在晚上辐射冷却,t≤td而形成的 雾,日出后消散 有利条件:晴朗、微风、湿度大、大气层结稳定的夜 间 特点: ①季节性强(冬半年),常出现在秋冬季节; ②明显日变化; ③地方性特点:局地性、范围小。 “十雾九晴” :辐射雾,预示着晴天
纯净空气--水汽自生凝结过程 凝结(华)核:能起到水汽凝结(华)核心作用的大气 气溶胶质粒,包括固体、液体或亲水气体。 作用机制:
大气中水分

三、空气湿度的垂直分布
通过蒸发(蒸腾)作用,水汽进入大气,随空气的垂
直运动向上输送,高度高愈度高愈,水高汽:愈少,因此,在对流层 中水汽压和绝对湿度水随高汽度含的量升减高小而减小。
从地面上升到1实.5~际2水.0汽Km高压度减处小,e就减小到近地面 的1/2左右,5Km处约绝为近对地湿面度的减1/小10。相对湿度随高度的 分 随布高比度较 增复加杂而,减相难小对以,湿用气简温度单随?的高?规度?律增?说加明而?。降?这低是,因使为饱水和汽水压汽
土壤的坡度、坡向等有关。
4、抑制土壤水分蒸发的措施: 根据土壤水分蒸发所处的阶段,采取不同的措施。
第一阶段:松土以切断土壤毛细管 第二阶段:镇压结合中耕松土 第三阶段:考虑灌溉措施
三、植物蒸腾 通过植物体表蒸发水分的过程称为蒸腾
(transpiration)。
蒸腾主要是通过叶片气孔来实现的。
蒸腾速度主要取决于三个基本条件:小气候条 件、植物的形态结构、植物的生理类型。
一、大气中的水汽含量及其表示方法
(一)水汽压(e)---- hPa(百帕)
大气中水汽所产生的分压强叫水汽压 (vapour pressure)。
水汽压的大小和空气中水汽含量的多少有关, 当空气中的水汽含量增多时,水汽压就相应地增大, 反之,水汽压减小。所以,用水汽压的大小可表示 空气中水汽含量的多少。
一、大气中的水汽含量及其表示方法
饱和水汽密度也随温度的升高而迅速增大。 由于绝对湿度的直接测量比较困难,而水汽压 值简单易测,所以在实际工作中,常用水汽压代 替绝对湿度。
一、大气中的水汽含量及其表示方法
(四)相对湿度(r)--天气预报湿度的指标
空气的实际水汽压与同温度下饱和水汽压之百分
气象学与气候学-大气中的水分-蒸发和凝结

E
E e19.9t / 273t 0
5
饱和水汽压随温度的升高而增大 高温时的饱和水汽压比低温时要大 随着温度的升高,饱和水汽压按指数规律迅速 增大
6
重要推论:
空气温度的变化对蒸发和凝结有重要影响
高温时,饱和水汽压大,空气中所能容纳的水 汽含量增多,因而能使原来已处于饱和状态的 蒸发面会因温度升高而变得不饱和,蒸发重新 出现;
气象学与气候学
大气中的水分-蒸发和凝结
1
一.水相变化
1、水的三态和相变原理 (1)大气中的水分,可以以固态、液态、气
态存在,水分处于哪种形态,取决于其温度。 (2)相变原理 (principle of phase transformation) 水的相态变化,实质上是水分子运动状态
的反映。
2
2.水相变化判据
(一)空气要达到饱和或超饱和状态 (e≥E) 途径:1、增加大气中的水汽含量
2、空气冷却使T<Td,减小E 绝热冷却:空气上升 辐射冷却:夜间地面降温 平流冷却:暖空气流到冷水面上
10
三、大气中水汽的凝结条件
(二)有充足的凝结核 1、来源: 土壤微粒、风化岩石、火山微粒 工业、失火烟尘 海水飞溅时泡沫中的盐粒 流星、陨石燃烧后的微尘 。 2、作用 增大水滴半径,降低E,快速饱和, 增大水滴体积, 下降时不易蒸发掉 。
11
End
12
同样,可以得到冰面上的水相变化判据
4
二.饱和水汽压
(一)饱和水汽压与温度的关系
(1)定义: 在一定的温度条件下,一定体积 的空气所能容纳的水汽分子的数量是有一定 限度的,如果水汽含量恰好达到此限度,就 称为饱和空气,饱和空气中水汽所产生的压 力,就称为饱和水汽压。