大气中水分

合集下载

大气中的水分课件

大气中的水分课件

集聚,使其成为水汽凝结核心。 产生凝结。
凝结核的存在是大气中水汽凝结的重要条件之一 《大气中的水分》PPT课件
实际大气中总是存在凝结核的,能否产生凝结, 关键取决于空气是否达到过饱和。
空气团气温 25 ℃ , 实 际 水 汽 压 为 20hPa, 如 何 使该空气团水汽 饱和?
《大气中的水分》PPT课件
3
水 融解线
升华线
蒸发线
水的三种相态分别存在于不同的温度和压强条 件下: (1)水只存在于0℃以上的区域,冰只存在于0℃ 以下的区域,水汽虽然可存在于0℃以上及以下的区 域,但其压强却被限制在一定值域下。
《大气中的水分》PPT课件
蒸发过程:较大动能水分子脱出液面使液面温 度降低。如果保持其温度不变,必须自外界供给热 量,这部分热量等于蒸发潜热L,L 与温度t有如下 的关系:
此外,水滴上的电荷对水滴表面上的饱和水汽 压也有一定的影响:使饱和水汽压减小
《大气中的水分》PPT课件
影响因素之三:蒸发面形状
蒸发面形状不同,水分子受周围分子吸引力不同。
凸表面
平表面
凹表面
A 凸表面水分子受到引力最小,表面水汽压最大 C 凹表面水分子受到引力最小,表面水汽压最小 B 平表面水分分子的情况介于二者之间。
《大气中的水分》PPT课件
30
(一)蒸 发和凝结的基本原理
大气中 (二)地表面和大气中的凝结现象 的水分
(三) 降水及人工影响天气
《大气中的水分》PPT课件
第二节 地表面和大气中的凝结现象
一、地面的水汽凝结物 二、近地面层空气中的凝结 三、较高大气中的凝结——云
《大气中的水分》PPT课件
(一)露和霜 1、定义:
《大气中的水分》PPT课件

《大气中的水分》课件

《大气中的水分》课件

降水的过程和类型
降水的过程和类型是理解气候变化和天气预报的关键。
降水是指从大气中降落到地面的水滴、冰晶、雪、雹等水汽凝结物的总称。根据降水的物理状态和形 成机制,可以将降水分为雨、雪、冰雹、霜、露等类型。这些不同类型的降水过程和形成机制各不相 同,对气候变化和天气预报有重要影响。
降水对气候的影响
大气中水分的未来变化
REPORTING
温室效应与水汽的关系
温室效应是指大气层能够让阳光透进来照射地面,却阻止地 面热量散发出去的自然现象。水汽是温室气体之一,能够吸 收和重新辐射热量,对地球温度起着重要的调节作用。
随着工业化进程的加速,温室气体排放量不断增加,导致大 气中水汽含量升高,加剧了温室效应,进而引起全球气候变 化。
吸收光谱
水汽的吸收光谱呈现带状 分布,主要吸收中心位于 620-780纳米和11001800纳米的红外波段。
水汽的辐射特性
辐射特性定义
辐射光谱
水汽分子能够发射特定波长的电磁辐 射,这种特性称为水汽的辐射特性。
水汽的辐射光谱呈现带状分布,主要 发射中心位于620-780纳米和11001800纳米的红外波段。
降水
水滴或冰晶等降水物从云层降 落到地面。
地表径流
地表水通过河流、湖泊等途径 流入海洋。
PART 02
水汽的吸收与辐射
REPORTING
水汽的吸收特性
吸收特性定义
水汽分子能够吸收特定波 长的电磁辐射,这种特性 称为水汽的吸收特性。
吸收机制
水汽分子通过振动和转动 跃迁吸收电磁辐射,主要 吸收红外波段和微波波段 的辐射。
汽含量的增加。
水汽变化对未来气候的影响
降水模式的改变
大气中水汽含量的变化会影响降水模式的分布和强度,可能导致某 些地区出现极端天气现象,如暴雨、干旱等。

气象气候学-大气中的水分

气象气候学-大气中的水分

1.什么是饱和水汽压?饱和水汽压:水汽与水或冰两相共存,其间分子交换过程达到动态平衡时的水汽压。

2.饱和水汽压主要受哪些因素影响?✓蒸发面的温度✓蒸发面的性质(水面、冰面、溶液面)✓蒸发面的形状(平面、凹面、凸面)3.饱和水汽压与温度成什么关系?饱和水汽压随温度升高而按指数规律迅速增大。

4.为什么饱和水汽压随温度升高而迅速增大?温度越高,水分子平均动能越大,单位时间脱出水面的分子越多;只有当水面上水汽密度增大到更大值时,落回水面的分子数才和脱出水面的分子数相等。

温度越高,水汽分子平均动能越大,而水汽压是水汽重量及其碰撞器壁的结果,故也随之增大。

5.饱和水汽压随温度升高而迅速增大有什么重要意义?温度升高,饱和变不饱和,蒸发重现;温度降低,不饱和变饱和,凝结出现。

饱和水汽压随温度改变的量,高温时比低温时大。

6.蒸发面性质对饱和水汽压有什么影响?冰面和过冷却水面的饱和水汽压仍随温度升高而按指数规律变化.7.蒸发面形状如何影响饱和水汽压?温度相同时,凸面的饱和水汽压最大,平面次之,凹面最小。

凸面的曲率愈大,饱和水汽压愈大;凹面的曲率愈大,饱和水汽压愈小大水滴曲率小,饱和水汽压小;小水滴曲率大,饱和水汽压大;从而出现大水滴“吞并”小水滴现象。

8.影响蒸发的因素有哪些?气象因素:热源、饱和差、风和湍流扩散、气压下垫面因素:水源、水面大小,形状及深度、水质、物理性质9.空气湿度随时间变化有何规律?10.大气中水汽凝结需要什么条件?凝结核、水汽饱和或过饱和11.不同饱和或过饱和途径对云雾的形成有何差异?水汽凝结以冷却为主。

绝热冷却对形成云最为主要;辐射冷却、平流冷却与混合冷却对形成雾最为主要。

12.什么是云?与雾有什么区别?云是悬浮在大气中的大量小水滴、冰晶微粒或两者混合物的可见聚合群体;底部不接触地面。

雾是悬浮于近地面空气中的大量小水滴或冰晶的可见聚合群体,底部接触地面。

13.云的形成需要什么条件?凝结核、充足水汽、冷却过程14.形成云的上升冷却过程有哪些类型?热力对流:多形成积状云动力抬升:锋面、气旋作用,多形成层状云大气波动:多形成波状云地形抬升:可形成积状云、层状云与波状云积状云:空气对流上升冷凝而成的具有孤立分散、云底平坦、顶部凸起形态的垂直发展云块。

第四章 大气中的水分

第四章 大气中的水分

空气中常见的降温过程:
(1)绝热冷却 云、雨、雪、雹等。 (2)辐射冷却 露、霜、辐射雾等。 (3)接触冷却(平流冷却) 平流雾、雾凇V等。 (4)混合冷却:两团温差大、但都接近饱和而未饱 和的空气混合后有可能达到饱和。 低云、雾。
17
温度(℃)
-30 0.5
-20 1.2
-10 2.9
0 6.1
按云的外形、结构特点和成因:分为11属,29类。

高云族:云底高度6000米以上,冰晶,白色。一般不降水 中云族:云底高度2000-6000米,水滴、过冷却水滴、冰 晶。有时降水 低云族:云底高度2000米以下,水滴、水滴或冰晶。 云型 层状云 低 雨层云 层积云 层云 淡积云 浓积云 积雨云 碎云 中 高层云 高 卷层云、卷云
e 100% E
5
2.年变化
干燥而全年的绝对湿度a变化不大的地区:与T的 年变化相反,冬季最大,夏季最小。 季风气候区:冬季寒冷干燥,夏季炎热湿润,与气 温一致。
我国 最大 江南 春末夏初 华南 春(初春) 华北 夏季 西北 冬季 律) 最小 秋季 秋季 春季 夏季(不受季风影响,符合一般规
6
第二节 蒸发和蒸散
24
雾的种类(根据成因):雾可分为多种类型,常见 的有辐射雾和平流雾。
⑴辐射雾:局部地区在晚上辐射冷却,t≤td而形成的 雾,日出后消散 有利条件:晴朗、微风、湿度大、大气层结稳定的夜 间 特点: ①季节性强(冬半年),常出现在秋冬季节; ②明显日变化; ③地方性特点:局地性、范围小。 “十雾九晴” :辐射雾,预示着晴天
纯净空气--水汽自生凝结过程 凝结(华)核:能起到水汽凝结(华)核心作用的大气 气溶胶质粒,包括固体、液体或亲水气体。 作用机制:

气象学与气候学-大气中的水分-蒸发和凝结

气象学与气候学-大气中的水分-蒸发和凝结

E
E e19.9t / 273t 0
5
饱和水汽压随温度的升高而增大 高温时的饱和水汽压比低温时要大 随着温度的升高,饱和水汽压按指数规律迅速 增大
6
重要推论:
空气温度的变化对蒸发和凝结有重要影响
高温时,饱和水汽压大,空气中所能容纳的水 汽含量增多,因而能使原来已处于饱和状态的 蒸发面会因温度升高而变得不饱和,蒸发重新 出现;
气象学与气候学
大气中的水分-蒸发和凝结
1
一.水相变化
1、水的三态和相变原理 (1)大气中的水分,可以以固态、液态、气
态存在,水分处于哪种形态,取决于其温度。 (2)相变原理 (principle of phase transformation) 水的相态变化,实质上是水分子运动状态
的反映。
2
2.水相变化判据
(一)空气要达到饱和或超饱和状态 (e≥E) 途径:1、增加大气中的水汽含量
2、空气冷却使T<Td,减小E 绝热冷却:空气上升 辐射冷却:夜间地面降温 平流冷却:暖空气流到冷水面上
10
三、大气中水汽的凝结条件
(二)有充足的凝结核 1、来源: 土壤微粒、风化岩石、火山微粒 工业、失火烟尘 海水飞溅时泡沫中的盐粒 流星、陨石燃烧后的微尘 。 2、作用 增大水滴半径,降低E,快速饱和, 增大水滴体积, 下降时不易蒸发掉 。
11
End
12
同样,可以得到冰面上的水相变化判据
4
二.饱和水汽压
(一)饱和水汽压与温度的关系
(1)定义: 在一定的温度条件下,一定体积 的空气所能容纳的水汽分子的数量是有一定 限度的,如果水汽含量恰好达到此限度,就 称为饱和空气,饱和空气中水汽所产生的压 力,就称为饱和水汽压。

水在大气中的作用

水在大气中的作用

水在大气中的作用水是一种在地球上普遍存在的物质,也是生命的基本要素之一、在地球上的大气中,水以不同形式存在,包括水蒸气、云、雾、雨、雪等。

首先,水蒸气是大气中最常见的组成部分之一,它起着很重要的气候调节作用。

大气中的水分以水蒸气的形式存在,它可以通过蒸发和蒸散等过程进入大气中。

当大气中的水蒸气遇冷时,就会凝结成云和雾。

云是由大量微小的水滴组成的,它们可以通过凝结核形成。

云可以帮助调节地球的温度,它们可以反射太阳的辐射,减少地表的紫外线辐射,保护地面生物。

同时,云还可以帮助局部降温,因为云层可以阻挡太阳光的直射,减少地表的热量吸收。

云层的变化也可以预示天气情况,例如浓云可能预示着降雨的到来。

另外,雨是大气中水的一个重要表现形式。

当大气中的水蒸气饱和时,水分会凝结成水滴,这些水滴会通过空气的上升运动形成云。

当云中的水滴不断增大,达到一定大小时,它们会失去浮力而下落,形成降水,即雨水。

雨水的降落可以清洗大气中的污染物,改善空气质量。

同时,降雨也是地球的一种淋溶作用,它可以将大气中的氮、氧、二氧化碳等气体溶解在水中,形成雨水,降低大气中的气体含量。

除了雨水,雪也是大气中水的另一种表现形式。

在寒冷的地区,水蒸气会直接从气态转变为固态,形成冰晶,从而形成雪。

雪的形成不仅改变了地表的外貌,也起到保温的作用。

在冬季,雪可以覆盖在地表上,形成一层厚重的保护层,防止地面受到严寒天气的直接冷空气和寒风的影响。

同时,雪的融化也会向地下渗透,补充地下水资源。

此外,大气中的水还参与了地球上的气候变化。

由于人类活动的影响,大气中的温室气体浓度不断增加,进而导致全球气候的变暖。

水蒸气是最重要的温室气体之一,它的变化会对地球的气候产生重要影响。

当大气中的水蒸气增加时,它们会吸收和辐射更多的热量,导致地球的温度上升。

这种增温现象会引发更频繁和严重的自然灾害,如龙卷风、洪水、干旱等。

总结起来,水在大气中起到了多种作用。

它通过蒸发和蒸散进入大气中,从而形成水蒸气、云、雾等形式。

大气水分平衡方程

大气水分平衡方程

大气水分平衡方程
大气水分平衡方程可以表达为:
Ai - E - P = ±ΔA
其中:
Ai表示大气层中除降水与蒸发以外的其他收入水量。

E表示蒸发量,即水从地表、水体或植物叶片等表面蒸发进入大气的水量。

P表示降水量,即大气中水汽凝结并以降水的形式回到地表的水量。

±ΔA表示大气中水量的变化,当ΔA为正时,表示大气中水量增加,当ΔA为负时,表示大气中水量减少。

这个方程描述了大气中水量的收支平衡关系,即收入水量(除了降水和蒸发以外的其他来源)减去蒸发量和降水量,等于大气中水量的变化。

这个方程适用于从大气层到地下水的任何层次,以及不同空间尺度的系统,如全球或某个特定区域。

另外,还有一个单位气柱水汽平衡方程,可以写成:
∂w/∂t + ∇·Q = E - P
其中:
w表示大气可降水量,即单位气柱内水汽的质量。

∂w/∂t表示大气可降水量的时间变化率。

∇·Q表示垂直积分的水通量,即单位时间内通过单位面积的气柱内的水汽通量。

E和P分别表示蒸发量和降水量,意义同上。

这个方程描述了单位气柱内水汽的收支平衡关系,即水汽通量的垂直积分加上大气可降水量的时间变化率,等于蒸发量减去降水量。

这个方程有助于理解大气中水汽的循环和分布规律。

气象学第五章大气中水分

气象学第五章大气中水分
气象学第五章大气中水分
云族
低云
1000M<H<2000M
中云
2000M<H<6000M
高云
H>6000M
学名 积云 积雨云 层积云 层云 雨层云 高层云 高积云 卷云 卷层云 卷积云
云属
简写 Cu Cb Sc St Ns As Ac Ci Cs Cc
气象学第五章大气中水分
气象学第五章大气中水分
二、凝结物
地面凝结物 露、霜、雾凇、雨凇 露 和霜 : 辐射冷却的产物,形成在晴朗无风的夜间和清晨。 露:贴地层空气中的水汽在地面发生凝结而形成的小水滴。
Td>0℃ 霜:贴地层空气中的水汽在地面发生凝华而形成的小冰晶。
Td<0℃ 热容量小、导热率小、粗糙的地表易形成露和霜。
气象学第五章大气中水分
冰 蒸发面形状:W凸面>W平面>W凹 面 含盐度:含盐度 W
气象学第五章大气中水分
二、土壤蒸发
土壤蒸发定义 土壤水分汽化并向大气扩散的过程。
土壤蒸发的两种过程 第一种:蒸发直接发生在土壤表面。 第二种:水分在土壤中某层次进行蒸发之后,水汽通过土 壤的孔隙达表层溢出土表。
影响因子 土壤因子、气象因子
单位:g/ cm日2·蒸日发量
定义:一天中蒸发掉的水层的厚度。
单位:mm/日; 1g/cm2·日=1mm/日
道尔顿蒸发公式
W A' • E e P
d>0 时,W>0,蒸发过程 d=0 时,W=0,动态平衡 d<0 时,W<0,凝结过程
气象学第五章大气中水分
影响水面蒸发速率的因子 温度:T E d W 湿度:e d W 气压:P W 风:风速 W 蒸发面性质:W过冷却水>W
r 夏季
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、空气湿度的垂直分布
通过蒸发(蒸腾)作用,水汽进入大气,随空气的垂
直运动向上输送,高度高愈度高愈,水高汽:愈少,因此,在对流层 中水汽压和绝对湿度水随高汽度含的量升减高小而减小。
从地面上升到1实.5~际2水.0汽Km高压度减处小,e就减小到近地面 的1/2左右,5Km处约绝为近对地湿面度的减1/小10。相对湿度随高度的 分 随布高比度较 增复加杂而,减相难小对以,湿用气简温度单随?的高?规度?律增?说加明而?。降?这低是,因使为饱水和汽水压汽
土壤的坡度、坡向等有关。
4、抑制土壤水分蒸发的措施: 根据土壤水分蒸发所处的阶段,采取不同的措施。
第一阶段:松土以切断土壤毛细管 第二阶段:镇压结合中耕松土 第三阶段:考虑灌溉措施
三、植物蒸腾 通过植物体表蒸发水分的过程称为蒸腾
(transpiration)。
蒸腾主要是通过叶片气孔来实现的。
蒸腾速度主要取决于三个基本条件:小气候条 件、植物的形态结构、植物的生理类型。
一、大气中的水汽含量及其表示方法
(一)水汽压(e)---- hPa(百帕)
大气中水汽所产生的分压强叫水汽压 (vapour pressure)。
水汽压的大小和空气中水汽含量的多少有关, 当空气中的水汽含量增多时,水汽压就相应地增大, 反之,水汽压减小。所以,用水汽压的大小可表示 空气中水汽含量的多少。
一、大气中的水汽含量及其表示方法
饱和水汽密度也随温度的升高而迅速增大。 由于绝对湿度的直接测量比较困难,而水汽压 值简单易测,所以在实际工作中,常用水汽压代 替绝对湿度。
一、大气中的水汽含量及其表示方法
(四)相对湿度(r)--天气预报湿度的指标
空气的实际水汽压与同温度下饱和水汽压之百分
比,称为相对湿度(relative humidity)。其表达
粒状雾凇:结构紧密,-7.0~7.0℃时出现
雨凇 它是由过冷却的雨滴与温度低于0℃的物体 或地面相碰时,会立即冻结成外表光滑而透明的 冰层,在电线或树枝上常边淌边冻而形成长长的
冰柱,称为雨凇(glaze)。
---- 日出前后
这种双波型的日变化型多发生在高温干燥的地区和季 节。如内陆暖季及沙漠地区等。
(一)绝对湿度的日变化和年变化
2.绝对湿度的年变化
最大值-----陆地7月份;海洋8月份 最小值-----陆地1月份;海洋2月份
绝对湿度的年变化还与降水的季节分布有关。
(二)相对湿度的日变化和年变化
1.相对湿度的日变化 一般而言与气温的日变化相反
凡是影响土壤蒸发和植物蒸腾的一切因子都 影响到农田蒸散。
在实际工作中,因可能蒸散和实际蒸散不易 实测,所以农田蒸散量的估算多采用经验、半经 验的方法,下面介绍两种常用的求算可能蒸散量 的方法。
彭曼公式(综合法) ;桑斯特维公式
第三节 水汽的凝结
凝结(condensation)
一、水汽凝结的条件 (一)空气中的水汽必须达到饱和或过饱和状态 要满足这个条件:
第三章 大气中的水分
第三章 大气中的水分
大气中的水分,来源于下垫面的蒸发和植物蒸腾,但其状态和含量极不稳 定,在自然界温度范围内,经常进行着相态变化,在相变过程中,就产生了云、 雾、雨、露、霜等天气现象,同时也构成了自然界陆地—海洋—大气的水分循 环。此外,大气中的水分对大气的能量转换和输送也起着很重要的作用。
T↑,e↑(蒸发多);T↓,e↓(蒸发少)
一、大气中的水汽含量及其表示方法
(二)饱和水汽压(E)---- hPa(百帕) 在一定温度条件下,单位体积的空气中所能
容纳的水汽数量有一个最大的限度,此时空气中
的水汽压叫做饱和水汽压 (saturation vapour pressure)。
e﹥E,过饱和空气; T 不变: e﹦E,饱和空气;
第一节 空气湿度
大气中的水汽含量极不稳定,在湿热地方的暖季能高 达大气组成中的4%,而在冬季干燥寒冷的地方则可低到 0.01%。
表示空气中水汽含量的多少(即空气的潮湿程度)的
物理量称为空气湿度(humidity)。
空气湿度状况是决定云、雾、降水等天气现象的重要 因素,近地层的空气湿度无论对植物的生命活动还是农业 生产活动都有较大的影响。
一、大气中的水汽含量及其表示方法
对一团空气而言,在运动过程中,只要其内部没 有水相的转变,则水汽质量不发生变化,气块的 比湿保持不变。
在讨论空气的上升或下降运动时,通常用比湿表 示空气湿度,在讨论水汽输送时,比湿梯度是重 要的物理量。
二、空气湿度的变化
从下垫面蒸发出来的水汽,进入近地气层,然后通 过对流、乱流和分子扩散作用向上输送,平流在水平方 向的输送,因此影响空气湿度变化的主要因子是蒸发速 度与空气运动影响水汽交换强度,两者都随气温而变化。 由于气温具有周期性的日、年变化,因此,空气湿度也 具有周期性的日、年变化。在近地气层中以绝对湿度和 相对湿度的日、年变化最为显著。
绝对湿度(absolute humidity)是指单位体积空
气中所含水汽量的多少,即水汽密度。 绝对湿度只表示空气中水汽的绝对含量,多用于
理论计算。当水汽压以毫米汞高为单位时,水汽压与 绝对湿度的关系为:
a =1.06× e (g/m3)
1 t
上式中a为气体膨胀系数,其值为1/273;t为空气温 度;
最大值---清晨 最小值---14~15时 在特殊地区,如沿海一带,r日变化与T日变化一致。 白天----海风,e↑,则r↑; 夜间----陆风,e↓,则r↓。
(二)相对湿度的日变化和年变化
2.相对湿度的年变化 在一般情况下,与气温的年变化相反
温暖季节相对湿度小 寒冷季节相对湿度大 但在季风发达的地区, 夏季风----暖湿空气,e↑,则r↑; 冬季风----干冷空气,e↓,则r↓;
当空气中水汽压(e)一定时r随T↑而↓,随 T↓而↑。
一、大气中的水汽含量及其表示方法
(五)饱和差(d)--- hPa(百帕) 在某一温度下,饱和水汽压与空气中实际水汽压
之差,称为饱和差(saturation deficit)。即:
d = E-e d表示空气中水汽含量距离饱和的程度。 d 越大,表示空气越干燥,且随T↑而↑,随T↓而↓。 在一定温度下,d值越小,空气越接近饱和,即空气 越潮湿;当d=0,空气达到饱和。
(一)绝对湿度的日变化和年变化
1.绝对湿度的日变化
蒸发速度的大小决定于温度,温度高蒸发快。空 气的乱流、对流交换能使低空中的水汽向上输送, 运动强度与温度有关。两者对水汽含量的改变作 用是相反,不同的情况,两者所起的作用大小不 同,从而出现了不同的绝对湿度日变型。
(一)绝对湿度的日变化和年变化
单波型 在空气乱流、对流交换不十分旺盛的地区和季节。
蒸腾速度在一定限度内,随温度的增大而增大, 随饱和差的增大而增大,随风速的增大而增大。植 物的地面覆盖密度、根密度和深度,气孔的大小及 张开程度和干旱时根系的吸水能力等都会不同程度 地影响到蒸腾速度。
四、农田蒸散:
蒸散(evapotranspiration)指农田水分输
送(土壤蒸发和植物蒸腾)到大气中去的总过程, 它的数值表示了农田总的耗水量。
一、大气中的水汽含量及其表示方法
(七)比湿(q) 单位质量空气中所含的水汽质量为比湿
(specific humidity)。单位为g·g –1(克·克-1)
或g·kg-1(克·千克-1)。其表达式为
q mw md mw
式中:mw 是单位质量空气中水汽的质量;md 是单位 质量空气中干空气的质量。
压也随高度而减小,但饱和水汽压与水汽压的递减率不同, 所以它们的比值(相对湿度)可能随高度递增,也可能递 减。
蒸发、蒸腾
第二节 蒸发与蒸腾
蒸发;凝结
蒸发量单位:g·cm-2·s-1
在气象观测中:单位是mm(毫米)
一、水面蒸发
在自然条件下水面蒸发的速度主要决定于水面上的 气象条件。
⑴水温越高,蒸发越快。 ⑵水面上空气饱和差越大,蒸发越快。 ⑶水面上空的风速越大,蒸发越快。
T﹥0℃,则凝结物为水滴,称为露(dew) T﹤0℃,则凝结物为白色的冰晶,称为霜(frost)


雾凇 形成于地面物体(如电线、电杆和树枝等)迎风 面呈现针状或粒状的白色松脆结构的冰晶层称为雾凇
(rime),俗称树挂。
根据形成的条件和结构不同,可将雾凇分为两类: 晶状雾凇:结构疏松,形成时气温约为-15℃
的水变为水汽逸出土壤表面,是通过两种不同的形 式完成的。
1、土壤水分蒸发的形式:
A、土壤水沿毛管上升到土壤表面后才能进行蒸发,进 入大气。


地表面为蒸发面
这种形式蒸发快
B、土壤水分先在土壤中蒸发,变为水汽,再通过土壤
孔隙扩散出土表进入大气。

。。。
地表面 蒸发面
蒸发面因土壤水多少深浅不同,这种形式蒸发慢
(一)、空气中的水汽必须达到饱和或过饱和状态 (二)、要有足够数量的凝结核
二、水汽凝结物
大气中的水汽凝结物按形成的高度和形状不同分为 三大类型: (一)地面或地物表面上的水汽凝结物(霜、露、 雾凇、雨凇等) 霜和露 在晴朗无风或微风的夜晚,地面和地面物 体因辐射冷却而迅速降温,接近地面很薄的气层也 随之降温,当T﹤Td时,水汽接触地面或地物表面凝 结而成。
A:增加空气中的水汽含量,e→E ; B:降低空气温度,T→Td
降温是致使空气中的水汽达到饱和或过饱和的主 要途径。大气中常见的降温过程有以下几种: 辐射冷却----晴朗微风的夜晚 绝热冷却----绝热冷却是大气中最重要的冷 却方式 接触冷却----暖湿空气接触冷的下垫面 混合冷却----冷暖温差大且湿度较大的两团 空气
最大值:14~15时, 最小值:日出ቤተ መጻሕፍቲ ባይዱ后。
这种日变型多发生在温度变化不大、水分比较充足的海洋、 海岸、寒冷季节的大陆以及暖季潮湿的地区。
相关文档
最新文档