专题复习1—有理数
第一章_有理数复习提纲

《第一章有理数》复习提纲1.1正数和负数正数:像+1.8,+420、+30、+10%等带有理数“+”号的数叫做正数。
为了强调正数,前面加上“+”号,也可以省略不写。
负数:像-3、-4754、-50、-0.6、-15%等带有“-”号的数叫做负数,在正数前面加上负号“-”的数叫做负数。
而负数前面的“-”号不能省略。
数0既不是正数也不是负数,0是正数与负数的分界。
在同一个问题中,分别用正数和负数表示的量具有相反的意义。
1.2.1有理数正整数、 0 、负整数统称整数,正分数和负分数统称分数。
整数和分数统称有理数。
∏、无限不循环小数不是有理数(练习)在-,1,0,8.9,-6,,-3.2,+108,-0.05,28,-9中,(1)正整数是__________________;(2)负整数是____________________(3)正分数是_________________;(4)负分数是_____________________1.2.2数轴规定了原点、正方向、单位长度的直线叫做数轴。
注意事项:⑴数轴的原点、正方向、单位长度三要素,缺一不可。
⑵同一根数轴,单位长度要相等。
一般地,设a是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示数-a的点在原点的左边,与原点的距离是a个单位长度。
(练习)用数轴上的点表示下列各数:-1,0,4,-5,1,-2.5.1.2.3相反数只有符号不同的两个数叫做互为相反数。
(2和-2互为相反数)数轴上表示相反数的两个点关于原点对称。
求相反数的方法:在任意一个数前面添上“-”号,新的数就表示原数的相反数。
(练习)1、+的相反数是__;-的相反数是__;0的相反数是__;a的相反数是__。
2、化简下列各数:同号得“+”,异号得“-”-(+8)=__; -(-6)=__ ; -0=__;-(-a)=___。
1.2.4绝对值(绝对值:∣a∣≥0,绝对值不可能是负数。
有理数与实数中考专题复习-含答案

有理数与实数专题复习专题一 有理数与无理数的意义知识回顾1. 实数的分类2.在实际生活中正负数表示_____的量.典例分析例1:(2010四川巴中)下列各数:2π,错误!未找到引用源。
0.23·,cos60°,227,0.30003……,1 )A .2 个B .3 个C .4 个D .5 个解析:无理数是无限不循环的小数,其中的无理数有2π,0.30003……,1故选C. 评注:解决此类问题的关键是准确把握有理数,无理数及实数的概念,不能片面的从形式上判断属于哪一类数,另外对有关实数进行归类时,必须对已给出的某些数进行化简,以最简的结果进行归类.专题训练一1.(2010年南宁)下列所给的数中,是无理数的是( )A .2B . 2C .12D .0.1 2.(2010年湖北襄樊)下列说法错误的是( )A 2± 是无理数 C D .2是分数3.(2010年上海)下列实数中,是无理数的为( )A . 3.14B . 13C . 3D . 9 4.(2010安徽)在-1,0,1,2这四个数中,既不是正数也不是负数的是( )A .1-B .0C .1D .2专题二 实数的有关概念知识回顾1. 数轴:规定了___、____、___的直线叫数轴.数轴上的点与___是一一对应.2.相反数:到原点的距离相等且符号不同的两个数称为相反数,实数a 的相反数是__,零的相反数是__,a 与b 互为相反数,则_____;3.绝对值:在数轴上,表示一个数的点到原点的距离叫这个数的绝对值.⎪⎩⎪⎨⎧<=>=)0___()0(___)0(___||a a a a典例分析例1:(2010.湘潭)下列判断中,你认为正确的是( )A .0的绝对值是0B .31是无理数 C .|—2|的相反数是2 D .1的倒数是1-解析:A评注:解决本题的关键是弄清实数中的有关的概念,关于绝对值除了了解几何意义是表示点到原点的距离,还应理解“正数的绝对值是它本身,零的绝对值是零,负数的绝对值是它的相反数”的内涵;关于无理数应从概念上突破:表示无限不循环小数;|—2|=2,2的相反数为-2;对于倒数,掌握它们的乘积为1.专题训练1.(2009年滨州)对于式子(8)--,下列理解:(1)可表示8-的相反数;(2)可表示1- 与8-的乘积;(3)可表示8-的绝对值;(4)运算结果等于8.其中理解错误的个数是( )A .0B .1C .2D .3 2.(2010年内蒙古鄂尔多斯)如果a 与1互为相反数,则a 等于( ).A .2B .2-C .1D .1-3.(2010年山东菏泽)负实数a 的倒数是( ).A .a -B .1aC .1a- D .a 4.(2010年绵阳)-2是2的( ).A .相反数B .倒数C .绝对值D .算术平方根5.(2010年镇江)31的倒数是 ;21-的相反数是 . 6.(2010年四川成都)若,x y 为实数,且20x ++=,则2010()x y +的值为________. 7.(2010吉林)如图,数轴上点A 所表示的数是_________.8(2010河南)若将三个数是 .专题三 实数的大小比较知识回顾比较实数大小的一般方法:① 性质比较法:正数大于___,负数____0,正数_____任何负数;② 数轴比较法:在数轴上的实数,右边的数总是比左边的数___;差值法:③ 设a ,b 是任意实数,如a -b .>0,则a ___b ,如a -b .<0,则a b ,如a -b =0,则a ___b ;④ 商值法:如a ÷b .>1,则a ___b ,如a ÷b .<1,则a ___b ,如a ÷b .=1,则a ___b ,⑤扩大法;⑥倒数比较法,当然还有分子、分母有理化和换元法等。
完整版)有理数专题训练

完整版)有理数专题训练专题一有理数的概念及其应用例1:已知a,b互为相反数,c,d互为倒数,x的绝对值是2,求(a+b+c*d)*m-cd的值。
解:根据题意可得a=-b,c=1/d,|x|=2,代入原式得:a+b+c*d)*m-cd=(0+c*d)*m-cd=cd*(m-1)练:已知a,b互为相反数,c,d互为倒数,|x|=3,求代数式a+b-cdx+x/3的值。
解:根据题意可得a=-b,c=1/d,|x|=3,代入原式得:a+b-cdx+x/3=-2b-cd*x+x/3=-2b-cd*3+x/3=-2b-3c+x/3巩固:已知a,b互为相反数,c,d互为倒数,x的平方等于4,试求x^2-cd*x+(a+b)*2010-cd*2009的值。
解:根据题意可得a=-b,c=1/d,x^2=4,代入原式得:x^2-cd*x+(a+b)*2010-cd*2009=4-cd*x-2b+2010c-2009cd=2010c-2b-3cd专题二非负数的性质例2:若x+1+(y-2)^2=0,求xy的值。
解:由非负数的性质可知,(y-2)^2>=0,所以x+1<=0,即x<=-1.又因为x+1+(y-2)^2=0,所以(y-2)^2=-(x+1)<=0,所以y=2.因此,xy=-2.练:已知有理数满足a-1+b+3+3c-1=0,求(a*b*c)^(1/7)*2011的值。
解:整理得a+b+3c=1,代入原式得:a*b*c)^(1/7)*2011=(a*b*c)^(1/7)*(a+b+3c)^2011=(a*b*c)^(1/7)巩固:若x-1与(y+2)^2互为相反数,求x^2015+y^3的值。
解:由非负数的性质可知,(y+2)^2>=0,所以x-1<=0,即x<=1.又因为x-1=-(y+2)^2,所以(y+2)^2=1-x<=2,所以y<=sqrt(2)-2.因此,x^2015+y^3<=1+(sqrt(2)-2)^3,具体值需要进一步计算。
有理数(归纳与讲解)(解析版)

专题01 有理数【专题目录】技巧1绝对值的八种常见应用技巧2 有理数中的六种易错类型【题型】一、有理数概念理解【题型】二、用数轴上的点表示有理数【题型】三、求一个数的相反数【题型】四、求一个数的绝对值【题型】五、有理数的加减乘除混合运算【题型】六、科学记数法【考纲要求】1、了解有理数的概念,知道有理数与数轴上的点一一对应.2、借助数轴理解相反数和绝对值的意义,会求一个数的相反数、倒数与绝对值.【考点总结】一、有理数【注意】数轴1、数轴的三要素:原点、正方向、单位长度(重点)2、任何有理数都可以用数轴上的点表示,有理数与数轴上的点是一一对应的。
3、数轴上的点表示的数从左到右依次增大;原点左边的数是负数,原点右边的数是正数.【考点总结】二、有理数四则运算【注意】1、有理数的加减混合运算规则:运用减法法则将加减混合运算统一为加法进行运算步骤:(1)减法化加法;(2)省略括号和加号;(3)运用加法运算律使计算简便; (4)运用有理数加法法则进行计算。
注:运用加法运算律时,可按如下几点进行: (1)同号的先结合;(2)同分母的分数或者比较容易通分的分数相结合; (3)互为相反数的两数相结合; (4)能凑成整数的两数相结合;(5)带分数一般化为假分数或者分为整数和分数两部分,再分别相加。
2、多个有理数相乘的法则及规律:(1) 几个不是0的数相乘,负因数的个数是奇数时,积是负数;负因数的个数是偶数时,积是正数。
确定符号后,把各个因数的绝对值相乘。
(2)几个数相乘,有一个因数为0,积为0;反之,如果积为0,那么至少有一个因数是0. 注:带分数与分数相乘时,通常把带分数化成假分数,再与分数相乘。
【技巧归纳】技巧1:绝对值的六种常见应用【类型】一、已知一个数求这个数的绝对值 1.化简:(1)|-(+7)|; (2)-|-8|;【类型】二、已知一个数的绝对值求这个数 2.若|a|=2,则a =________.3.若|x|=|y|,且x =-3,则y =________. 【类型】三、 绝对值在求字母的取值范围中的应用 4.若|x|=-x ,则x 的取值范围是________. 5.若|x -2|=2-x ,则x 的取值范围是________. 【类型】四、绝对值在比较大小中的应用6.把-(-1),-23,-⎪⎪⎪⎪-45,0,用“>”连接正确的是( ) A .0>-(-1)>-⎪⎪⎪⎪-45>-23 B .0>-(-1)>-23>-⎪⎪⎪⎪-45 C .-(-1)>0>-23>-⎪⎪⎪⎪-45 D .-(-1)>0>-⎪⎪⎪⎪-45>-23【类型】五、绝对值的非负性在求字母值中的运用 7.若⎪⎪⎪⎪a -12+⎪⎪⎪⎪b -13+⎪⎪⎪⎪c -14=0,求a +b -c 的值. 【类型】六、绝对值的非负性在求最值中的应用 8.根据|a|≥0这条性质,解答下列问题:(1)当a =________时,|a -4|有最小值,此时最小值为________; 参考答案1.解:(1)原式=7. (2)原式=-8. 2.±2 3.±3 4.x≤0 5.x≤2 6.C7.解:由题意知a =12,b =13,c =14,所以a +b -c =12+13-14=712.8.解:(1)4;0(2)因为a ,b 互为相反数,所以b =-a.又因为a <0,b >0. 所以|a -b|+2a +|b|=|2a|+2a +|b|=-2a +2a +b =b. 技巧2: 有理数中的六种易错类型【类型】一、对有理数有关概念理解不清造成错误 1.下列说法正确的是( ) A .最小的正整数是0 B .-a 是负数C .符号不同的两个数互为相反数D .-a 的相反数是a【类型】二、 误认为|a|=a ,忽略对字母a 分情况讨论 2.如果一个数的绝对值等于它本身,那么这个数一定是( ) A .负数 B .负数或零 C .正数或零D .正数【类型】三、对括号使用不当导致错误 3.计算:2-⎝⎛⎭⎫-15+14-12. 【类型】四、忽略或不清楚运算顺序4.计算:-5-(-5)×110÷110×(-5).【类型】五、乘法运算中确定符号与加法运算中的符号规律相混淆5.计算:-36×⎝⎛⎭⎫712-56-1. 【类型】六、除法没有分配律6.计算:24÷⎝⎛⎭⎫13-18-16. 参考答案 1.D 2.C3.解:原式=2+15-14+12=2920.4.解:原式=-5-(-5)×110×10×(-5)=-30.5.解:原式=-36×712-(-36)×56-(-36)×1=-21+30+36 =45.6.解:原式=24÷⎝⎛⎭⎫824-324-424 =24÷124=576.方法指导:解本题时往往会出现将乘法分配律运用到除法运算中的错误,从而出现“原式=24÷13-24÷18-24÷16=72-192-144=-264”这样的错误.【题型讲解】【题型】一、有理数概念理解例1、在下列实数:2π227、﹣0.0010001中,有理数有( )A .1个B .2个C .3个D .4个【答案】D【提示】由题意根据有理数的定义:整数与分数统称有理数,进行提示即可判断. 【详解】解:34,227,﹣0.0010001是有理数,其它的是无理数.有理数有4个. 故选:D .【题型】二、用数轴上的点表示有理数例2、如图,数轴上两点,M N 所对应的实数分别为,m n ,则m n -的结果可能是( )A .1-B .1C .2D .3【答案】C【提示】根据数轴确定m 和n 的范围,再根据有理数的加减法即可做出选择. 【详解】解:根据数轴可得0<m <1,2-<n <1-,则1<m n -<3。
中考数学一轮复习 专题01 有理数(基础训练)(原卷版)

专题01 有理数【基础训练】一、单选题1.(2021·西宁市教育科学研究院中考真题)中国人最先使用负数,魏晋时期的数学家刘徽在其著作《九章算术注》中,用不同颜色的算筹(小棍形状的记数工具)分别表示正数和负数(红色为正,黑色为负).如图1表示的是(+2)+(-2),根据这种表示法,可推算出图2所表示的算式是( )A .()()36+++B .()()36++-C .()()36-++D .()(36)-+-2.(2021·山东滨州市·中考真题)在数轴上,点A 表示-2.若从点A 出发,沿数轴的正方向移动4个单位长度到达点B ,则点B 表示的数是( )A .-6B .-4C .2D .4 3.(2021·广西百色市·中考真题)﹣2022的相反数是( )A .﹣2022B .2022C .±2022D .2021 4.(2021·广西桂林市·中考真题)有理数3,1,﹣2,4中,小于0的数是( ) A .3 B .1 C .﹣2 D .4 5.(2021·湖北荆门市·中考真题)2021的相反数的倒数是( ).A .2021-B .2021C .12021-D .12021 6.(2021·内蒙古呼和浩特市·中考真题)几种气体的液化温度(标准大气压)如表:A .氦气B .氮气C .氢气D .氧气 7.(2021·湖北襄阳市·中考真题)下列各数中最大的是( )A .3-B .2-C .0D .18.(2021·山东济宁市·中考真题)若盈余2万元记作2+万元,则2-万元表示( ) A .盈余2万元 B .亏损2万元 C .亏损2-万元 D .不盈余也不亏损 9.(2021·广东深圳市·中考真题)计算|1tan 60|-︒的值为( )A .1B .0C 1D .1 10.(2021·湖北鄂州市·中考真题)实数6的相反数等于( )A .6-B .6C .6±D .1611.(2021·湖北恩施土家族苗族自治州·中考真题)-6的相反数是( )A .-6B .6C .6±D .1612.(2021·黑龙江齐齐哈尔市·中考真题)五张不透明的卡片,正面分别写有实数1-,115 5.06006000600006……(相邻两个6之间0的个数依次加1).这五张卡片除正面的数不同外其余都相同,将它们背面朝上混合均匀后任取一张卡片,取到的卡片正面的数是无理数的概率是( )A .15B .25C .35D .4513.(2021·广东广州市·中考真题)如图,在数轴上,点A 、B 分别表示a 、b ,且0a b +=,若6AB =,则点A 表示的数为( )A .3-B .0C .3D .6-14.(2021·广东广州市·中考真题)下列运算正确的是( )A .()22--=-B .3=C .()22346a b a b =D .(a -2)2=a 2-415.(2021·贵州安顺市·中考真题)如图,已知数轴上,A B 两点表示的数分别是,a b ,则计算b a -正确的是( )A .b a -B .-a bC .a b +D .a b --16.(2021·内蒙古中考真题)下列运算结果中,绝对值最大的是( )A .1(4)+-B .4(1)-C .1(5)-- D17.(2021·黑龙江大庆市·中考真题)下列说法正确的是( )A .||x x <B .若|1|2x -+取最小值,则0x =C .若11x y >>>-,则||||x y <D .若|1|0x +≤,则1x =-18.(2021·河北中考真题)如图,将数轴上-6与6两点间的线段六等分,这五个等分点所对应数依次为1a ,2a ,3a ,4a ,5a ,则下列正确的是( )A .30a >B .14a a =C .123450a a a a a ++++=D .250a a +<19.(2021·湖南邵阳市·中考真题)如图,若数轴上两点M ,N 所对应的实数分别为m ,n ,则m n +的值可能是( )A .2B .1C .1-D .2-20.(2021·河北中考真题)能与3645⎛⎫-- ⎪⎝⎭相加得0的是( ) A .3645-- B .6354+ C .6354-+ D .3645-+ 21.(2021·四川达州市·中考真题)﹣23的相反数是( ) A .﹣32 B .﹣23 C .23 D .3222.(2021·浙江宁波市·中考真题)在﹣3,﹣1,0,2这四个数中,最小的数是( ) A .﹣3 B .﹣1 C .0 D .223.(2021·安徽中考真题)9-的绝对值是( )A .9B .9-C .19D .19- 24.(2021·四川南充市·中考真题)数轴上表示数m 和2m +的点到原点的距离相等,则m 为( )A .2-B .2C .1D .1-25.(2021·山东枣庄市·中考真题)如图,数轴上有三个点A﹣B﹣C ,若点A﹣B 表示的数互为相反数,则图中点C 对应的数是( )A .﹣2B .0C .1D .4二、填空题 26.(2021·辽宁盘锦市·2________27.(2021·江苏常州市·中考真题)数轴上的点A 、B 分别表示3-、2,则点__________离原点的距离较近(填“A ”或“B ”).28.(2021·湖北随州市·()012021π+-=______.29.(2021·湖北鄂州市·中考真题)已知实数a 、b30b +=,若关于x 的一元二次方程20x ax b -+=的两个实数根分别为1x 、2x ,则1211x x +=_____________. 30.(2021·甘肃兰州市·中考真题)《九章算术》中注有“今两算得失相反,要令正负以名之”大意为:今有两数若其意义相反,则分别叫做正数与负数.若水位上升1m 记作1m +,则下降2m 记作______m .三、解答题31.(2021·广西桂林市·中考真题)计算:|﹣3|+(﹣2)2.32.(2021·河北中考真题)某书店新进了一批图书,甲、乙两种书的进价分别为4元/本、10元/本.现购进m 本甲种书和n 本乙种书,共付款Q 元.(1)用含m ,n 的代数式表示Q ;(2)若共购进4510⨯本甲种书及3310⨯本乙种书,用科学记数法表示Q 的值.33.(2021·西宁市教育科学研究院中考真题)计算: 121(2)|3|2-⎛⎫-+-- ⎪⎝⎭. 34.(2021·山西中考真题)(1)计算:()()24311822⎛⎫-⨯-+-⨯ ⎪⎝⎭. (2)下面是小明同学解不等式的过程,请认真阅读并完成相应任务.2132132x x -->- 解:()()2213326x x ->--第一步42966x x ->--第二步49662x x ->--+第三步510x ->-第四步2x >第五步任务一:填空:﹣以上解题过程中,第二步是依据______________(运算律)进行变形的;﹣第__________步开始出现错误,这一步错误的原因是________________;任务二:请直接写出该不等式的正确解集.35.(2021·浙江台州市·中考真题)小华输液前发现瓶中药液共250毫升,输液器包装袋上标有“15滴/毫升”.输液开始时,药液流速为75滴/分钟.小华感觉身体不适,输液10分钟时调整了药液流速,输液20分钟时,瓶中的药液余量为160毫升.(1)求输液10分钟时瓶中的药液余量;(2)求小华从输液开始到结束所需的时间.。
有理-数-总-复-习知识点讲解

有理数总复习------知识点、考点一、有理数的基本概念1.负数⑴数的分类与范围扩展---解释为什么会产生负数:相反量的出现,方便表示、书写、计算⑵正负数的规定性及由规定性产生的正数、0、负数分类法、大小关系。
带“-”的不一定是负数,可能为正,亦可能为0。
⑶理解0的含义:既可表示生活、生产、计算中没有了、不存在,当然也可表示一种状态,比如温度0度表示不是没有温度而是温度客观存在的一种状态。
再比如规定往什么方向前进、水位的变化,此时0表示在原地没动或没有变化。
⑷正数、负数在表示一对相反量时有习惯的约定性,比如水位上升0.1米记作+0.1米,水位没有变化记作0米。
水位下降0.1米,记作-0.1米。
这就是人们习惯上升这种正向思维,“+”表示上升、“-”表示下降。
正数、负数在表示一对相反量时还有临时的约定性,比如还以水位变化为例。
水位上升0.1米记作-0.1米,水位没有变化记作0米。
水位下降0.1米,记作+0.1米。
这样表示不是不可以,这样表示的话正负数也表达了相反,但不符合人们的思维习惯,总感觉别扭。
不过有些情况下约定性不是习惯性的、固定的,比如站在某点要往相反的两个方向作不同的运动,比如向西与向东,这两个方向往东、往西可选定其中任何一个方向距始发点某点的运动距离为正,相对应的另一方向的运动距离为负,切忌两个方向的运动距离同时记为正或同时记为负。
比如向东5米记为+5米,向西2米需记为-2米。
当然也可把向东5米记为-5米,向西2米需记为+2米。
双重相反关系的转化问题,比如水位上升记作+,水位下降-2米是什么意思呢?表示的并不是下降2米后又紧接着降2米,表示的是往下降的相方向变化2米,那下降的相方向变化是什么?不就是上升吗?所以,水位下降-2米就记作+2米。
⑸相反量关系规定后,在表记之后的语言描述上注意用正方向词汇统一描述,避免双重相反关系的误出现。
比如水位上升0.1米记作+0.1米,水位下降0.1米,记作-0.1米。
中考数学专题复习一实数及其运算

专题01有理数考点一:有理数之正数和负数◎基础巩固1.正数和负数的定义:大于0的数叫做正数,小于0的数叫做负数。
0既不是正数也不是负数。
2.正数和负数的意义:表示具有相反意义的两个量。
3.正负号的化简:同号为正,异号为负。
◎同步练习1.下列各数是负数的是()A .0B .21C .﹣(﹣5)D .﹣52.下列各数为负数的是()A .﹣2B .0C .3D .53.四个实数﹣2,1,2,31中,比0小的数是()A .﹣2B .1C .2D .314.在﹣3,1,21,3中,比0小的数是()A .﹣3B .1C .21D .35.若气温上升2℃记作+2℃,则气温下降3℃记作()A .﹣2℃B .+2℃C .﹣3℃D .+3℃6.如果将“收入50元”记作“+50元”,那么“支出20元”记作()A .+20元B .﹣20元C .+30元D .﹣30元7.在东西向的马路上,把出发点记为0,向东与向西意义相反.若把向东走2km 记做“+2km ”,那么向西走1km 应记做()A .﹣2km B .﹣1km C .1km D .+2km8.中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.若零上10℃记作+10℃,则零下10℃可记作()A .10℃B .0℃C .﹣10℃D .﹣20℃9.(如果水位升高2m 时水位变化记作+2m ,那么水位下降2m 时水位变化记作.10.负数的概念最早出现在中国古代著名的数学专著《九章算术》中,负数与对应的正数“数量相等,意义相反”,如果向东走5米,记作+5米,那么向西走5米,可记作米.考点二:有理数之相反数◎基础巩固1.相反数的定义:只有符号不同的两个数互为相反数。
我们说其中一个数是另一个数的相反数。
0的相反数还是0。
2.相反数的性质:互为相反数的两个数和为0。
即a 与b 互为相反数⇔0=+b a ⇔()a b b a -=-=◎同步练习11.实数9的相反数等于()A .﹣9B .+9C .91D .﹣9112.下列各数中,﹣1的相反数是()A .﹣1B .0C .1D .213.﹣2022的相反数是.14.如图,数轴上点A 表示的数的相反数是()A .﹣2B .﹣21C .2D .3考点三:有理数之绝对值◎基础巩固1.绝对值的定义:数轴上表示数a 的点到原点的距离用数a 的绝对值来表示。
有理数必考43个知识点

有理数必考43个知识点一、有理数的基本概念。
1. 有理数的定义。
- 整数和分数统称为有理数。
整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。
例如,3是正整数,属于有理数;0.5是有限小数,也是有理数; - 2是负整数,同样是有理数。
2. 有理数的分类。
- 按定义分类:有理数可分为整数(正整数、0、负整数)和分数(正分数、负分数)。
- 按性质分类:有理数可分为正有理数(正整数、正分数)、0、负有理数(负整数、负分数)。
3. 数轴。
- 规定了原点、正方向和单位长度的直线叫做数轴。
原点表示0,原点右边为正数,左边为负数。
例如,在数轴上表示 - 3,就是在原点左边距离原点3个单位长度的点。
- 数轴上的点与有理数的关系:每一个有理数都可以用数轴上的一个点来表示,但数轴上的点不都表示有理数(还有无理数)。
4. 相反数。
- 只有符号不同的两个数叫做互为相反数。
例如,3和 - 3互为相反数,0的相反数是0。
- 互为相反数的两个数在数轴上的对应点关于原点对称。
- 若a与b互为相反数,则a + b=0。
5. 绝对值。
- 数轴上表示数a的点与原点的距离叫做数a的绝对值,记作a。
例如,3 = 3,- 3 = 3。
- 正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。
即当a>0时,a = a;当a = 0时,a = 0;当a<0时,a=-a。
6. 倒数。
- 乘积为1的两个数互为倒数。
例如,2的倒数是1/2, - 3的倒数是 - 1/3,0没有倒数。
- 若a与b互为倒数,则ab = 1。
二、有理数的运算。
7. 有理数的加法法则。
- 同号两数相加,取相同的符号,并把绝对值相加。
例如,2+3 = 5,( - 2)+( - 3)= - 5。
- 异号两数相加,绝对值相等时和为0(互为相反数的两数相加得0);绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。
例如,2+( - 3)= - 1,3+( - 2)=1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
二、选择题( 6 3' 18' )
13、下列大小关系正确的是( )
A 、 100 1 101 3
B 、 100 101
C 、 100 100 1 3
14、在一个数的前面加上一个“—”号,就可以得到( )
D 、 100 1 100 3
A 、负数
B 、非负数
C 、正数或零
D 、原数的相反数
一、知识总结
1、正数和负数的有关概念 (1)正数:比 0 大的数叫做正数;负数:比 0 小的数叫做负数;0 既不是正数,也不是负数。 (2)正数和负数表示相反意义的量。
2、有理数的概念及分类 有理数是整数和分数的统称。通常有两种分类:
正整数
有理数
整数
0
负整数
分数
正分数 负分数
有理数
正数
一个正数的绝对值等于本身,一个负数的绝对值等于它的相反数,0 的绝对值是 0.
a(a 0)
a
0(a
0)
a(a 0)
(2)相反数:符号不同、绝对值相等的两个数互为相反数。
若 a 、 b 互为相反数,则 a b 0;
相反数是本身的是 0,正数的相反数是负数,负数的相反数是正数。
(3)绝对值最小的数是 0;绝对值是本身的数是非负数;任何数的绝对值是非负数。
17、l 米长的小棒,第 1 次截去一半,第 2 次截去剩下的一半,如此下去,第 6 次后剩下的长度为( )
A、 1 12
B、 1 32
C、 1 64
D、 1 128
18、 a 和 b 都是有理数,下列说法正确的是( )
A 、若 a b 则 a3 b3
B 、若 a2 b2 ,则 a b
C 、若 a b ,则 a b
正整数 正分数 0
负数
负整数 负分数
3、有关数轴 (1)数轴的三要素:原点、正方向、单位长度,数轴是一条直线。 (2)所有有理数都可以用数轴上的点来表示,但数轴上的点不一定都是有理数。 (3)数轴上,右边的数总比左边的数大;表示正数的点在原点的右侧,表示负数的点在原点的左侧。
4、绝对值与相反数
(1)绝对值:一个数在数轴上对应的点与原点的距离,叫做这个数的绝对值,记作: a 。
7、倒数等于本身的有理数是________________。
8、用科学计数法表示 1350000000 =______________;1.2031020 是______位数。
9、若 m 、 n 互为倒数, 1 (mn)2 1 __________ ;[ 1 (b)]2012 _____________ 。
3
a
10、若 m 为有理数,则 m2 ______ 0 ;若 (5)n 0 ,那么 n 一定为_________。
11、所有大于 4.5 的负整数之和是_________,绝对值小于 1.7 的整数之和是____________。 12、若 n 为自然数,则 (2)2n1 2(2)2n ________ 。
定义:一个大于 10 的数可以写成 a 10n 的形式,其中1 a 10, n 是正整数。
(1)掌握形式的结构特征:1 a 10 , n 为正整数,且 n 值等于原数的整数的位数减 1
(2)在把用科学计数法表示的数还原为原数时,根据其基本原理和结构,把 a 的小数点向右移动 n 位, a 中数
字不够时,用 0 补足。 本身之迷: ①倒数是它本身的数是±1;②绝对值是它本身的数是非负数;③平方等于它本身的数是 0,1;④立方等于经本身 的数是±1,0;⑤偶数次幂等于本身的数是 0、1;⑥奇数次幂等于本身的数是±1,0;⑦相反数是它本身的数是 0 数之最: ①最小的正整数是 1;②最大的负整数是-1;③绝对值最小的数是 0;④平方最小的数是 0; ⑤最小的非负数是 0;⑥最大的非正数 0;⑦没有最大和最小的有理数;⑧没有最大的正数和最小的负数
1
(5) (1 2)3 ( 2)3 (3)2
3
3
(6) (2)3 23 (3)3 (33) 52
四、解答题( 45' 20' )
20、 (8.4)[2007 3 1989 1 (1995.5) (1997 1 )]
7
6
42
二、练习
一、填空题(12 2' 24' )
1、有理数可分为_________、__________;_________、_________、_________。
2、数轴三要素_________、_________、_________。
3、 4 2 的相反数的绝对是_________; 1 的倒数的相反数是_________; 0.7 的倒数的绝对值是_________。
15、一个点从数轴的原点开始,先向右移动 3 个单位长度,再向左移动 7 个单位长度,这是点对应的数是( )
A 、4
B 、 3
C 、3
D 、 4
16、下列说法错误的是( )
A 、若 a 为负数,则 a 0
B 、若 a 为负数,则 a 0
C 、若 a 为非负数,则 a 0
D 、若 a 为非负数,则 a 0
5、有理数的混合运算
(1)有理数的混合运算
一个算式里含有有理数的加、减、乘、除、乘方五种运算中的两种或两种以上的运算称为有理数的混合运
算。(乘方是乘法的特例。)
(2)有理数的混合运算顺序
1、先乘方,再乘除,最后加减
1
2、同级运算,从左到右依次进行 3、如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行 6、科学计数法
5
3
4、在数轴上,点 A 所表示的数为 2 3 ,那么到点 A 的距离等于 3 个单位长度的点所表示的数是_____________。 4
5、某天晚上 20:00 时的气温是 4 ℃,到次日早上 8:00 时气温上升了 6 ℃,此时的气温是_________。
6、用四舍五入取近似值:0.237840 精确到千分位是_________;237840 精确到百分位是___________。
D 、若 a b ,则 a2 b2
三、计算题( 6 4' 24' ) 19、(1) (16) [(2)3 (2)2 ]
(3) (1)2011 (1)2012 0.1258 89
(2) 3 23 [(3) 2]3ห้องสมุดไป่ตู้ (23 3)
(4) 23 [1 (2 1) ( 1)2 ]
2
22