原子物理知识点汇总

合集下载

高考物理原子必考知识点总结

高考物理原子必考知识点总结

高考物理原子必考知识点总结在高考物理考试中,原子物理是一个必考的知识点。

了解原子物理的基本概念和相关原理,掌握一些基本计算方法,对于顺利完成物理题目至关重要。

本文将对高考物理原子必考的知识点进行总结。

1. 原子结构原子结构是原子物理的基础。

原子由质子、中子和电子组成。

质子和中子构成了原子核,而电子围绕在原子核外部的轨道上。

2. 质子数和电子数质子数通常等于电子数,一个稳定的原子内,正电荷和负电荷相等,使得原子整体是电中性的。

3. 同位素和质量数同位素是指具有相同质子数但质量数不同的原子。

质量数是指原子核中质子和中子的总数。

4. 原子的电离原子发生电离意味着它失去或获得电子。

当原子失去电子时,它会变成正离子;当原子获得电子时,它会变成负离子。

电离过程对于理解离子化合物的形成和电解质的行为至关重要。

5. 原子核的稳定性原子核的稳定性决定了原子是否具有放射性。

通过了解原子核的稳定性规律,可以判断某个核素是否具有放射性以及它的衰变方式。

6. 放射性衰变放射性衰变是指原子核自发地转变为另一种原子核的过程。

常见的放射性衰变有α衰变、β衰变和γ衰变。

α衰变是指原子核放出一个α粒子,质量数减少4、原子序数减少2;β衰变是指原子核衰变成另一个元素,电子从原子核中发射出来;γ衰变是指原子核释放出γ射线,改变的只是能量状态而不改变原子核本身。

7. 原子能级和能级跃迁原子的电子在不同的能级上存在。

原子的电子可以吸收或释放能量,从一个能级跃迁到另一个能级。

这种能级跃迁是光谱学研究的基础,也是激光产生的原理之一。

8. 粒子的波粒二象性粒子的波粒二象性是指微观粒子既可以表现出粒子性质,又可以表现出波动性质。

通过对粒子的物态描述和双缝干涉实验等现象的解释,可以更好地理解物质微观本质。

9. 干涉和衍射干涉是指两个或多个波的叠加现象。

光的干涉在涉及光的波动性质的实验中经常发生。

衍射是波在穿过障碍物或经过边缘时产生的弯曲和扩散现象。

原子物理知识点总结

原子物理知识点总结

原子物理知识点总结1. 原子的基本结构原子的基本结构由核和电子组成。

原子核位于原子的中心,它由质子和中子组成。

质子带正电荷,中子不带电,它们共同组成原子核的内部结构。

原子核的直径约为10^-15米,但它包含了原子的绝大部分质量。

电子绕着原子核运动,它们带负电荷,质量远小于质子和中子。

电子的外轨道上有固定的能量,可以跃迁到不同的能级,从而导致原子的发光和吸收现象。

2. 原子核原子核是原子的中心部分,它由质子和中子组成。

质子和中子是由夸克组成的基本粒子,它们之间通过强相互作用力相互作用。

质子和中子在原子核中相互聚集,通过核力相互作用,维持着原子核的结构。

原子核的质量集中在原子核的小范围内,并且它带有整数的电荷,这使得原子核可以被外部的电场所控制。

3. 原子的谱线原子的谱线是原子的能级结构在光谱上的体现。

原子的能级是电子在原子轨道上具有的稳定能量,不同的能级对应着不同的波长和频率的电磁波谱线。

当电子从高能级跃迁到低能级时,会放出能量,产生发射谱线。

而当原子吸收能量后,电子会从低能级跃迁到高能级,产生吸收谱线。

通过观察原子的谱线,可以了解原子的能级结构和原子的性质。

4. 原子的量子力学原子的性质可以通过量子力学的理论来解释。

量子力学是一种描述微观粒子运动和相互作用的理论,它通过波函数描述了微观粒子的运动状态和性质。

原子内的电子是以波动形式存在的,它们的轨道运动是由波函数描述的。

波函数是满足薛定谔方程的解,并且它们描述了电子的位置、动量、运动轨道等性质。

量子力学的理论可以解释原子的光谱、化学键、原子的稳定性等现象,为我们理解原子的性质和行为提供了重要的理论基础。

总之,原子物理是研究原子内部结构和性质的重要学科,它对于我们理解物质的性质和行为具有重要的意义。

通过了解原子的基本结构、原子核、原子的谱线和原子的量子力学等知识点,我们可以更深入地理解原子的性质和行为,为相关领域的研究和应用提供理论基础。

希望本文的总结对读者有所帮助,也希望大家能够深入学习原子物理,探索更多有关原子的奥秘。

原子物理学知识点总结

原子物理学知识点总结

原子物理学知识点总结一、理论知识基础1。

离子化合物原子的结构是由原子核和电子组成,原子核又由质子和中子组成,而质子与中子又可以有不同的结合能状态,但其最稳定的结合方式是结合成带正电荷的原子核,所以质子与中子便有不同的能量状态,而根据原子的能级知识,高能级原子会向低能级原子转变,因此在实验室中经常观察到了同种元素的气态氢化物比其固态氢化物稳定。

除此之外,原子的能级状态还与其带电的状态有关。

如上述气态氢化物因为同种元素的原子核带同种电荷,因此它们的结合能最大,所以也就更加稳定。

而根据电荷守恒,气态非金属元素的阳离子由于失去一个电子,所以其结合能比其阴离子小,因此更加稳定。

2。

共价化合物 2。

共价化合物1。

配位化合物配位化合物是含有共用电子对的分子。

其实质是在形成配位键时,电子云必须重新排布。

两种元素的原子只有各自得到两个电子才形成稳定的配位键,因此元素原子的核电荷数等于零,它们的原子彼此形成的是共价键。

2。

配位多面体( NaFeCl3, Cl2)配位多面体指的是元素间形成配位键时,有四个原子与另一元素形成四个共价键的情况。

配位多面体是平面正方形的对角线围城的封闭区域,该区域具有平行于对角线的一组相互垂直的平面,因此每条边长为1, 3。

1。

钠原子Na的结合能比较低,与水作用放出大量的热,水的结合能比钠的低,放出的热也少,反应速度很快,这说明钠原子只能和活泼金属反应,那么钠原子能否与活泼金属钠和碱反应呢?从微观角度来看,一般认为钠原子具有8电子,和氯原子的外层电子差不多,但钠原子比氯原子小,所以钠原子的能级与氯原子相近,故钠原子也只能与活泼金属反应。

2。

锂原子Li与活泼金属反应的时候能放出大量的热,这些热是由Li原子内层2电子与2个原子核形成共价键的热运动放出的,可见锂原子内部能级比较高,所以锂原子也不容易与活泼金属反应。

2。

锂原子Li的结合能比钠原子小,所以Li能与活泼金属锂发生置换反应, 2Li+3H2O=LiCl2+2H2↑,或者2Li+Li2O2=Li2CO3+2H2↑。

原子物理知识点详细汇总

原子物理知识点详细汇总

第一讲 原 子 物 理自1897年发现电子并确认电子是原子的组成粒子以后,物理学的中心问题就是探索原子内部的奥秘,经过众多科学家的努力,逐步弄清了原子结构及其运动变化的规律并建立了描述分子、原子等微观系统运动规律的理论体系——量子力学。

本章简单介绍一些关于原子和原子核的基本知识。

§1.1 原子1.1.1、原子的核式结构1897年,汤姆生通过对阴极射线的分析研究发现了电子,由此认识到原子也应该具有内部结构,而不是不可分的。

1909年,卢瑟福和他的同事以α粒子轰击重金属箔,即α粒子的散射实验,发现绝大多数α粒子穿过金箔后仍沿原来的方向前进,但有少数发生偏转,并且有极少数偏转角超过了90°,有的甚至被弹回,偏转几乎达到180°。

1911年,卢瑟福为解释上述实验结果而提出了原子的核式结构学说,这个学说的内容是:在原子的中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外的空间里软核旋转,根据α粒子散射的实验数据可估计出原子核的大小应在10-14nm 以下。

1、1.2、氢原子的玻尔理论 1、核式结论模型的局限性通过实验建立起来的卢瑟福原子模型无疑是正确的,但它与经典论发生了严重的分歧。

电子与核运动会产生与轨道旋转频率相同的电磁辐射,运动不停,辐射不止,原子能量单调减少,轨道半径缩短,旋转频率加快。

由此可得两点结论:①电子最终将落入核内,这表明原子是一个不稳定的系统; ②电子落入核内辐射频率连续变化的电磁波。

原子是一个不稳定的系统显然与事实不符,实验所得原子光谱又为波长不连续分布的离散光谱。

如此尖锐的矛盾,揭示着原子的运动不服从经典理论所表述的规律。

为解释原子的稳定性和原子光谱的离经叛道的离散性,玻尔于1913年以氢原子为研究对象提出了他的原子理论,虽然这是一个过渡性的理论,但为建立近代量子理论迈出了意义重大的一步。

2、玻尔理论的内容:一、原子只能处于一条列不连续的能量状态中,在这些状态中原子是稳定的,电子虽做加速运动,但并不向外辐射能量,这些状态叫定态。

原子物理知识点归纳

原子物理知识点归纳

原子物理知识点归纳原子物理知识点归纳原子是指化学反应不可再分的基本微粒。

原子在化学反应中不可分割,但在物理状态中可以分割。

以下是店铺为大家收集的原子物理知识点归纳,仅供参考,希望能够帮助到大家。

1.卢瑟福的核式结构模型(行星式模型)α粒子散射实验:是用α粒子轰击金箔,结果是绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进,但是有少数α粒子发生了较大的偏转。

这说明原子的正电荷和质量一定集中在一个很小的核上。

卢瑟福由α粒子散射实验提出:在原子的中心有一个很小的核,叫原子核,原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间运动。

由α粒子散射实验的实验数据还可以估算出原子核大小的数量级是10-15m。

2.玻尔模型(引入量子理论,量子化就是不连续性,整数n叫量子数。

)⑴玻尔的三条假设(量子化)①轨道量子化rn=n2r1r1=0。

53×10-10m②能量量子化:E1=-13。

6eV③原子在两个能级间跃迁时辐射或吸收光子的能量hν=Em-En⑵从高能级向低能级跃迁时放出光子;从低能级向高能级跃迁时可能是吸收光子,也可能是由于碰撞(用加热的方法,使分子热运动加剧,分子间的相互碰撞可以传递能量)。

原子从低能级向高能级跃迁时只能吸收一定频率的光子;而从某一能级到被电离可以吸收能量大于或等于电离能的任何频率的光子。

(如在基态,可以吸收E≥13。

6eV的任何光子,所吸收的能量除用于电离外,都转化为电离出去的电子的动能)。

2.天然放射现象⑴天然放射现象----天然放射现象的发现,使人们认识到原子核也有复杂结构。

⑵各种放射线的性质比较③放射性同位素的应用⑴利用其射线:α射线电离性强,用于使空气电离,将静电泄出,从而消除有害静电。

γ射线贯穿性强,可用于金属探伤,也可用于治疗恶性肿瘤。

各种射线均可使DNA发生突变,可用于生物工程,基因工程。

⑵作为示踪原子。

用于研究农作物化肥需求情况,诊断甲状腺疾病的类型,研究生物大分子结构及其功能。

原子物理常考知识点

原子物理常考知识点

原子物理常考知识点一、光电效应:物体在光的照射下发射电子的现象;发射出的电子称光电子,照射的光叫光子。

1、条件:入射光的频率大于被照物体的极限频率;与光照强度无关,与光照时间无关;即:入射光的频率小于被照物体的极限频率的话,无论多大强度,无论多长的照射时间,都不会产生光电效应。

2、光电效应方程E km=hν-W0h:普朗克常量;ν:光子的频率;hν:光子的能量;E km:发射出光电子的初动能;W0:克服原子核引力做功(逸出功);即:照射光子的能量一部分用来克服原子核做功(逸出功),余下的部分转化为光电子的动能。

二:氢原子的能级1、氢原子能自发的从高能级向低能级跃迁,跃迁时放出光子的能量等于初末两能级的能量之差,能放出的光谱条数如能级3跃迁到能级2:1条能级2跃迁到能级1:1条能级3跃迁到能级1:1条合计:3条2、若吸收的光子能量恰好等于某两级能量之差,则从低能级向高能级跃迁;注:吸收的能量必须等于初能级与末能级的能量之差,否则不跃迁。

如处在能级2(-3.40ev)要向能级3(-1.51ev)跃迁,吸收的能量必.须.是-1.51ev—(-3.40ev)=1.89ev三、几种常见的微粒质子:11H;电子:0-1e;中子:10n ;α粒子:42He;氘核:21H ;氚核:31H 三种射线:α射线:放出α粒子(带正电);β射线:放出电子(带负电);γ射线:放出光子(不带电)四、原子核的衰变α衰变:A Z X→A-4Z-2Y+42He;放出α粒子;如:211H+210n→42He;β衰变:A Z X→A Z+1Y+0-1e ;放出电子如:10n→11H+0-1e半衰期:放射性元素的原子核有半数发生衰变所需的时间:如:某原子核的半衰期为8天,经过8天,衰变一般,剩下一半,在经过8天(即16天)后,又衰变剩下的这一半的一半,还余下1/4,再经过8天,剩下1/8,依次下去,每经过半衰期衰变余下一半中的一半五:爱因斯坦质能方程质能方程:一定的能量和一定的质量相联系,物体的总能量和它的质量成正比,即E=mc2m:物体的总质量;c:光速方程的含义是:物体具有的能量与它的质量之间存在简单的正比关系,物体的能量增大,质量也增大;物体的能量减小,质量也减小.①核子在结合成原子核时出现质量亏损Δm,其能量也要相应减少,即ΔE =Δmc2.②原子核分解成核子时要吸收一定的能量,相应的质量增加Δm,吸收的能量为ΔE=Δmc2.六、几个核反应方程四种核反应:衰变、人工转变、裂变、聚变注:1、核反应过程一般都不是可逆的,所以核反应方程只能用单向箭头表示反应方向,而不能用等号连接2、核反应过程遵循质量数守恒及电荷数守恒而不是质量守恒,即:左右两边的质量数总和相等,左右两边的电荷数(质子数)总和相等,核反应过程前后的总质量一般会发生变化(质量亏损)且释放出核能.。

原子物理知识点

原子物理知识点

考点一光电效应1.与光电效应有关的五组概念(1)光子与光电子:光子指光在空间传播时的每一份能量,光子不带电;光电子是金属表面受到光照射时发射出来的电子,其本质是电子。

光子是因,光电子是果。

(2)光电子的动能与光电子的最大初动能:只有金属表面的电子直接向外飞出时,只需克服原子核的引力做功的情况,才具有最大初动能。

(3)光电流和饱和光电流:金属板飞出的光电子到达阳极,回路中便产生光电流,随着所加正向电压的增大,光电流趋于一个饱和值,这个饱和值是饱和光电流,在一定的光照条件下,饱和光电流与所加电压大小无关。

(4)入射光强度与光子能量:入射光强度指单位时间内照射到金属表面单位面积上的总能量。

(5)光的强度与饱和光电流:频率相同的光照射金属产生光电效应,入射光越强,饱和光电流越大,但不是简单的正比关系。

2.对光电效应规律的理解1)光电效应中的“光”不是特指可见光,也包括不可见光。

2)能否发生光电效应,不取决于光的强度和光照时间而取决于光的频率。

任何一种金属都有一个截止频率,入射光的频率低于这个频率则不能使该金属发生光电效应。

3)光电效应的发生几乎是瞬时的。

4)五个关系:最大初动能与入射光频率的关系:E k=hν-W0(光电子的最大初动能与入射光的强度无关).最大初动能与遏止电压U c的关系:E k=eU c,U c可以利用光电管实验的方法测得.逸出功W0与极限频率νc的关系:W0=hνc。

光子频率一定时光照强度与光电流的关系:光照强度大→光子数目多→发射光电子多→光电流大.光子频率与最大初动能的关系:光子频率高→光子能量大→产生光电子的最大初动能大.(5)逸出功的大小由金属本身决定,与入射光无关。

(6)若入射光子的能量恰等于金属的逸出功W0,则光电子的最大初动能为零,入射光的频率就是金属的截止频率。

此,可求出截止频率。

时有hνc=W0,即νc=W0h考点二光电效应的图像问题1.解答光电效应有关图像问题的三个“关键”1)明确图像的种类。

原子物理 知识要点

原子物理  知识要点

原子物理 知识要点第一节 电子的发现与汤姆孙模型 1、阴极射线 2、汤姆孙的研究3. 汤姆生发现电子,根据原子呈电中性,提出了原子的葡萄干布丁模型。

第二节 原子的核式结构模型 1、粒子散射实验原理、装置 (1)粒子散射实验原理:(2)粒子散射实验装置 主要由放射源、金箔、荧光屏、望远镜几部分组成。

(3)实验的观察结果 入射的粒子分为三部分。

大部分沿原来的方向前进,少数发生了较大偏转,极少数发生大角度偏转。

2、原子的核式结构的提出三个问题:用汤姆生的葡萄干布丁模型能否解释粒子大角度散射?(1)粒子出现大角度散射有没有可能是与电子碰撞后造成的?(2)按照葡萄干布丁模型,粒子在原子附近或穿越原子内部后有没有可能发生大角度偏转?小结:实验中发现极少数粒子发生了大角度偏转,甚至反弹回来,表明这些粒子在原子中某个地方受到了质量、电量均比它本身大得多的物体的作用,可见原子中的正电荷、质量应都集中在一个中心上。

①绝大多数粒子不偏移→原子内部绝大部分是“空”的。

②少数粒子发生较大偏转→原子内部有“核”存在。

③极少数粒子被弹回 表明:作用力很大;质量很大;电量集中。

3、原子核的电荷与大小4.卢瑟福原子核式结构模型 第三节 波尔的原子模型卢瑟福原子核式结构学说与经典电磁理论的矛盾丹麦物理学家玻尔,在1913年提出了自己的原子结构假说。

1、玻尔的原子理论(1)能级(定态)假设:原子只能处于一系列不连续的能量状态中,在这些状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量。

这些状态叫定态。

(本假设是针对原子稳定性提出的)(2)跃迁假设:原子从一种定态(设能量为En )跃迁到另一种定态(设能量为E m )时,它辐射(或吸收)一定频率的光子,光子的能量由这两种定态的能量差决定,即(h 为普朗克恒量)(本假设针对线状谱提出)(3)轨道量子化假设:原子的不同能量状态跟电子沿不同的圆形轨道绕核运动相对应。

原子的定态是不连续的,因此电子的可能轨道的分布也是不连续的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考考点:原子物理考点分析
一、
历史人物及相关成就
1、 汤姆生:发现电子,并提出原子枣糕模型 ——说明原子可再分
2、 卢瑟福:α粒子散射实验——说明原子的核式结构模型 发现质子
3、 查德威克:发现中子
4、 约里奥.居里夫妇:发现正电子
5、 贝克勒尔:发现天然放射现象——说明原子核可再分
6、 爱因斯坦:质能方程2mc E =,2
mc E ∆=∆ 7、 玻尔:提出玻尔原子模型,解释氢原子线状光谱 8、 密立根:油滴实验——测量出电子的电荷量 二、
核反应的四种类型
提醒:
1、 核反应过程一般都是不可逆的,所以核反应方程只能用单箭头表示反应方向,不能用等号连
接。

2、 核反应的生成物一定要以实验事实为基础,不能凭空只依据两个守恒定律杜撰出生成物来写
出核反应方程
3
、 核反应遵循质量数守恒而不是质量守恒,遵循电荷数守恒
提醒:
1、 半衰期:表示原子衰变一半所用时间
2、 半衰期由原子核内部本身的因素据顶,跟原子所处的物理状态(如压强、温度)或化学状态(如
单质、化合物)无关
3、 半衰期是大量原子核衰变时的统计规律,个别原子核经多长时间衰变无法预测,对个别或极少
数原子核,无半衰期而言。

4、 放射性同位素的应用:(1)工业、摊上、农业、医疗等(2)作为示踪原子 四、
原子结构
1、 原子的核式结构模型 (1)α粒子散射实验结果:
绝大多数α粒子穿过金箔后仍沿原来的方向前进,少数α粒子发生了较大偏转,极少数α粒子甚至被反弹回来。

(2)原子的核式结构模型:
在原子中心有一个很小的原子核,原子全部的正电荷和几乎全部质量都集中在核里,带负电的电子在核外空间绕核旋转。

(3)原子核的尺度:原子核直径的数量级为10-15
m ,原子直径的数量级约为10-10
m 。

(4)原子核的组成:原子核是由质子和中子组成的,原子核的电荷数等于核内的质子数。

2、玻尔原子模型
(1)原子只能处于一系列能量不连续的状态中,具有确定能量的未定状态叫定态。

原子处于最低能级的状态叫基态,其他的状态叫激发态。

(2)频率条件:
高能m 到低能m 态:辐射光子λ
c
h
E E hv n m =-=
(3)原子的不同能量状态对应于电子的不同运行轨道。

五、氢原子光谱
1、氢原子光谱的实验规律
巴耳末系是氢光谱在可见光区的谱线,其波长公式
)为里德伯常量(1722101.01R ..R .,54,3n )n
1-21R(1
-⨯===m λ 2、 氢原子的能级和轨道半径
(1)
氢原子的能级公式:...)3,2,1(1
12==n E n
En 其中E 1
=-3.6ev
(2) 氢原子的半径公式:...)3,2,1(12
=⋅=n r n r n ,其中r1=0.53×10-10
m
(3) 氢原子能级图: 提醒:
A 、 原子跃迁条件:n m E E hv -=,只适用于光子和原
子作用而使原子在各定态之间跃迁的情况。

对于光
子和原子作用而使原子电离时,只要入射光的能量
eV E 6.13≥,原子就能吸收,对于实物粒子与原子作用使原子激发时,粒子能量大于或
等于能级差即可。

B 、 原子跃迁发出的光谱线条数2
)
1(2
-=
=n n C N n ,是一群氢原子,而不是一个,因为某一个氢原子有固定的跃迁路径。

六、核力与核能
1、核力:原子核内核子间存在的相互作用力
2、特点:强相互作用、短程力,作用范围1.5×10-15
m 之内 3、核能
(1)质能方程:一定的能量和一定的质量相联系,物体的总能量和他的质量成正比。

即2
mc E = 含义:物体具有的能量与他的质量之间存在简单的正比关系,物体的能量增大,质量也增大,物体的能量减小,质量也减小。

(2)核子在结合成核子时出现质量亏损m ∆,吸收的能量也要相应减小。

2
mc E ∆=∆ 原子核分解成核子时要吸收一定的能量,相应的质量增加m ∆,吸收能量2mc E ∆=∆ (4) 获得方式:重核裂变和轻核聚变
聚变反应比裂变反应平均每个核子放出的能量大约要大3-4倍。

1 -13.61
2 -3.40
3 -1.51
4 -0.85
5 -0.54 ∞ 0 n E /eV
图3。

相关文档
最新文档