电气设备故障分析与诊断

合集下载

设备故障诊断及解决方案

设备故障诊断及解决方案

设备故障诊断及解决方案一、引言设备故障是在日常工作和生产中常见的问题,它们对生产效率和工作质量产生了负面影响。

因此,正确诊断设备故障,并采取适当的解决方案,对于提高生产效率和减少损失非常重要。

本文将介绍设备故障的常见类型、诊断方法和解决方案。

二、设备故障类型及其诊断方法1. 电气故障电气故障通常涉及电流异常、线路断开或短路等问题。

对于电气故障的诊断和解决方案,可以采取以下步骤:(1)检查电源和电线连接是否正常;(2)使用万用表测量电压和电流;(3)检查电气元件,如开关、保险丝和继电器等。

2. 机械故障机械故障涉及设备的机械部件,如轴承、传动系统等。

机械故障的诊断和解决方案可以按照以下步骤进行:(1)观察设备运行过程中是否出现异常声音或振动;(2)检查机械部件的润滑情况;(3)检查传动系统,如皮带、链条等。

3. 控制系统故障控制系统故障涉及设备的自动化控制系统,如传感器、执行器等。

对于控制系统故障的诊断和解决方案,可以采取以下步骤:(1)检查传感器的连接和状态;(2)检查执行器的状态和控制信号;(3)通过软件对控制系统进行故障诊断。

4. 压力故障压力故障通常涉及设备的压力传感器、液压系统等。

对于压力故障的诊断和解决方案,可以按照以下步骤进行:(1)检查压力传感器的状态和信号输出;(2)检查液压系统的液位和泄漏情况;(3)检查液压阀门的状态和控制信号。

三、设备故障的解决方案1. 修理故障设备当设备故障能够诊断出具体原因时,可以采取修理的方式解决故障。

修理可能涉及更换损坏的部件、修复电路连接等操作。

在进行修理时,应确保设备处于停机状态,并由专业维修人员进行操作。

2. 替换故障部件如果故障是由某个部件引起的,而该部件无法进行修理,最好的解决方案就是替换故障部件。

在替换部件时,应选择与原部件相匹配的型号和规格,并确保在更换过程中保持设备的安全性。

3. 优化设备维护计划为了减少设备故障发生的可能性,可以制定和优化设备的维护计划。

电气设备故障分析解决方案

电气设备故障分析解决方案

电气设备故障分析解决方案电气设备在我们日常生活和工业生产中扮演着重要的角色。

然而,由于各种原因,这些设备也可能会出现故障。

本文将对电气设备故障的分析和解决方案进行探讨。

一、故障分析1. 观察故障现象当电气设备发生故障时,首先需要观察和记录故障现象。

这包括设备停止工作、发出异常声音、烟雾、闪光等。

了解故障现象可以为后续的故障诊断提供重要线索。

2. 检查供电系统供电系统是电气设备正常运行的关键。

因此,在进行故障分析时,需仔细检查供电电源、插头、线路和保险丝等。

如发现异常,应尽快修复或更换。

3. 分析电路连接电路连接问题也是电气设备故障的常见原因之一。

应仔细检查电线、插座、开关等连接部分是否牢固,是否存在松动或老化现象。

同时,也需要确保电路连接符合规范,无短路或断路现象。

4. 检测设备元件电气设备中的元件也常常会损坏或失效,导致设备无法正常运行。

对于这类故障,可以使用测试仪器检测设备元件的性能。

发现损坏或失效的元件,应及时更换。

二、故障解决方案1. 修复或更换故障元件根据故障分析的结果,确定造成故障的具体元件,然后进行修复或更换。

修复或更换故障元件时需按照相关操作规范进行,以确保修复工作的质量和安全。

2. 重新调节设备参数对于一些电气设备,故障可能是由于参数设置不当引起的。

在进行元件修复或更换后,有必要检查和调节设备的参数设置,确保其符合要求。

3. 进行系统测试修复故障后,应进行系统测试以验证修复效果。

测试时需要模拟实际工作场景,检查设备是否能正常运行,并充分测试设备的性能和安全性。

4. 定期维护保养为了最大程度地避免电气设备故障的发生,定期的维护保养是必不可少的。

维护保养工作包括设备的清洁、紧固螺丝、润滑部件等。

定期维护保养可以延长设备的使用寿命,减少故障的发生。

结论电气设备故障分析和解决方案对于确保设备的正常运行和延长其使用寿命具有重要意义。

在进行故障分析时,应系统地观察故障现象、检查供电系统、分析电路连接并检测设备元件。

常见电气故障判断和维修【共18张PPT】

常见电气故障判断和维修【共18张PPT】
D、接灯法和短接法 接灯法是用干电池和灯泡串联后检测断点的方法,原理与C同。如果测量 点断路,则灯泡不亮,反之灯亮。 短接法是用导线根据电路图逐一短接可疑的断路点的方法,即将断路点 并联的方法,带有一定危险性。
常见电气故障判断和分析
二。电路故障
2。短路故障
不同电位的导电部位之间被导体短接,或绝缘被击穿,形成短路。在 电路中,当正常工作时,电压主要施加在负载上(如电机、线圈), 因此负载两端的短接是最严重的短路故障。
三。电气元件故障
应对元件有一定程度的了解才能解决一般的电气元件故障。 可见设备常用电气元件部分。
了解电气元件各接线端子的作用是解决电气故障的前提:如 输入、输出、使能信号、通信信号等。
对于一些电气元件(如温控器、变频器)的输入参数有所了 解。
3)进一步查找短路点。
常见电气故障判断和分析
二。电路故障
3。接地故障
保护接地:为保证人身安全防止间接触电而将电气设备的金属外壳 或其他部分接地称为保护接地。
工作接地:为保证系统、装置、设备达到 正常工作要求而进行的接地,称为工作接 地,常见的为三相电力系统中性点接地, 除尘或油箱的防静电接地等。
3。电源故障的特点
电源是驱动设备正常工作的源头,电源出现问题会使整台设备或 5例1如3(电及路S2接3的地1、1绕和组24接点整地)等至个K10控的A制2电阻电;路都不能正常工作。因此,电源故障属于整体性故障。
电路接地就是电路对地的绝缘损坏,使电路对地的绝缘电阻大大降低,甚至为零。
例试电如笔电是路显接示地带、电绕体组电接位的地对工等具于,可我用试们电笔的测量设电位备。 来讲,检查电源故障,应根据电源的性质检查 例如可以用万用表检查电电源机三的相绕电组压对地、的绝对缘称电阻性,、如果极为零性或、接近相零即序说,明故接障接地地等. 等,相对较容易。

电气控制系统故障分析诊断及维修技巧

电气控制系统故障分析诊断及维修技巧

电气控制系统故障分析诊断及维修技巧电气控制系统在工业生产中扮演着至关重要的角色,它负责控制设备的运行、监测生产流程、保障生产安全等工作。

由于电气控制系统的复杂性,系统故障时有发生。

一旦电气控制系统出现故障,将会给生产带来严重的影响,因此及时的故障分析、诊断及维修技巧对于保障生产系统的正常运行至关重要。

本文将介绍电气控制系统故障的常见原因以及针对这些原因的分析、诊断及维修技巧。

一、电气控制系统故障的常见原因1. 供电问题供电问题是电气控制系统故障的常见原因之一。

供电问题包括电压不稳、电压突波、电压断相等问题。

这些问题会直接影响到电气设备的正常运行,甚至导致设备损坏。

2. 过载过载是指设备长时间以超负荷运行,这会导致设备过热、线路绝缘老化等问题,最终导致设备故障。

过载是电气控制系统故障的常见原因之一。

3. 环境影响环境因素也是导致电气控制系统故障的常见原因之一,比如高温、潮湿等环境会导致设备老化、绝缘破损等问题。

4. 设备老化设备老化也是电气控制系统故障的重要原因之一,长时间的使用会导致设备老化、性能下降。

二、故障分析、诊断及维修技巧1. 供电问题的故障分析、诊断及维修技巧对于供电问题导致的电气控制系统故障,首先要检测供电系统的电压、电流等参数,确保供电系统的稳定性。

对于电压不稳、电压突波等问题,可以安装稳压器、电压保护器等设备来保障电气设备的正常运行。

对于电压断相等问题,需要及时排除故障,恢复供电系统的正常运行。

2. 过载的故障分析、诊断及维修技巧对于设备的过载问题,首先要了解设备的额定负载和运行参数,确保设备运行在正常的负载范围内。

其次要合理安排生产计划,避免长时间的超负荷运行。

在设备运行过程中应该定期检测设备的运行参数,确保设备的正常运行。

3. 环境影响的故障分析、诊断及维修技巧对于环境影响导致的故障,首先要对生产环境进行调查,了解环境的影响因素。

其次要采取相应的措施,比如在高温环境下加强设备冷却,在潮湿环境下加强设备防潮等。

电气设备故障诊断

电气设备故障诊断

电气设备故障诊断随着电气设备技术的不断发展,电气设备已成为工业生产与人们日常生活中必不可少的设备。

然而,随着电气设备的使用量不断增加,电气设备产生故障的概率也随之增加。

如何快速准确地诊断电气设备故障,是电气工程师们在工作中需要掌握的重要能力之一。

电气设备故障常见类型电气设备故障的类型繁多,大致分为以下几类:1.短路:电气设备内部的两个或多个电路之间发生直接或间接的电路连接。

2.开路:电气设备内部的电路中断。

3.地闸:电气设备与地之间因发生电路连接而引起电器故障。

4.过载:电气设备工作过程中超过其允许的正常工作负荷而引起的故障。

电气设备故障诊断步骤1.观察和检查在进行电气设备故障诊断时,首先需要观察和检查电气设备外部情况,包括观察电气设备运行状态、检查电气设备接触器是否存在氧化等情况。

2.电路测试电路测试是电气设备故障诊断的关键步骤之一。

通过使用万用表或其他测试仪器,检查电气设备的电路,包括电气设备内部的继电器、开关、保险丝、电机等部件。

3.故障分析在检查完电气设备的电路之后,需要进行故障分析,找出故障出现的原因。

根据电气设备不同的故障类型,采取不同的分析方法。

对于电路中的短路和开路问题,需要进行更加详细的检查,找到故障模块并进行替换或维修。

4.故障解决在确定了故障原因后,需要进行故障解决。

根据故障的具体情况,选择正确的维修方式,进行处理。

电气设备故障诊断注意事项在进行电气设备故障诊断时,需要注意以下几点:1.安全:在对电气设备进行诊断时,需要注意对自身的安全以及周围人员的安全进行保障。

在进行电气设备测试时,需要注意选用安全测试仪器,并且需要使用绝缘工具。

2.原则:要根据电气设备故障的类型,按照固定的故障诊断步骤进行诊断和解决。

3.专业:进行电气设备故障诊断的人员需要具备一定的电气设备知识和技能,并且要保持专业精神。

电气设备故障诊断是电气工程师必备的技能之一。

在进行电气设备故障诊断时,需要按照固定的步骤进行,注意自身安全与周围人员安全,并且保持专业性和严谨性。

电力设备的故障诊断与分析方法

电力设备的故障诊断与分析方法

电力设备的故障诊断与分析方法随着电力设备的不断更新和发展,现代化的电力系统越来越复杂,电力设备的故障问题也日益凸显。

电力设备的故障一旦发生,不仅会影响电力系统的正常运行,还可能会对人员和设备造成安全隐患。

因此,对电力设备的故障进行及时、准确的诊断与分析显得尤为重要。

本文将探讨电力设备故障诊断与分析的方法及其实际应用。

一、故障诊断的方法1. 监测系统监测系统是电力设备故障诊断的重要手段之一,通过监测设备运行参数的变化,可以及时发现异常情况。

常见的监测系统包括温度、湿度、电流、电压等参数的监测。

当设备运行参数超出正常范围时,监测系统会发出警报,提示操作人员进行故障排查。

2. 故障记录故障记录是电力设备故障诊断的重要依据,可以帮助工程师了解设备的故障历史,从而分析故障的原因。

对设备进行定期的故障记录,可以帮助发现故障的重复性和规律性,为后续的故障诊断提供重要参考。

3. 检测工具现代化的电力设备故障诊断离不开各种高精度的检测工具,如红外热像仪、振动分析仪、局部放电检测仪等。

这些检测工具可以全面、准确地检测设备的运行状态,帮助工程师快速定位故障点,并采取相应的维修措施。

二、故障分析的方法1. 常见故障分类电力设备的故障可以分为电气故障、机械故障和热故障等多种类型。

在进行故障分析时,工程师需要根据不同类型的故障特征,采取相应的分析方法。

比如对于电气故障,可以通过测量电流、电压等参数来判断故障原因;对于机械故障,可以通过振动分析等手段来确定故障位置。

2. 故障原因分析在进行故障分析时,除了要了解故障类型外,还需要深入分析故障的根本原因。

常见的故障原因包括设备老化、磨损、设计缺陷等。

通过对故障原因的深入分析,可以为后续的设备维护和改进提供重要参考。

3. 实时监测与预警除了传统的故障诊断与分析方法外,现代化的电力设备还可以通过实时监测与预警系统来提前发现潜在的故障隐患。

通过智能化的监控装置和数据分析系统,可以实现对电力设备的全面监测和分析,及时预警,减少故障发生的可能性。

国内电气设备的故障诊断与检测技术分析(开题报告)

国内电气设备的故障诊断与检测技术分析(开题报告)

国内电气设备的故障诊断与检测技术分析开题报告1.课题主要研究内容;随着社会和经济的发展,电力系统在国民经济中的地位日趋重要,因此对电力系统安全可靠性提出了更高的要求,同时,电力系统的改革也促使各个电力运营商在满足质量要求的情况下追求以最低的成本实现最终的目标,而其中重要的举措之一就是采取科学的监测和故障诊断手段对电气设备进行检修,从而能够提早发现设备隐患,提高设备的可靠性,降低运行和维修的成本。

设备的检修体制大致经历了事后维修、预防性定期检修、状态检修的方式,而我国电力系统当前对电气设备所采取的维修方式为事后维修和预防性定期检修的方式。

早期所采用的事后维修方式,是当电气设备发生故障时才进行的维修,此时事故已经造成,所承受的经济损失也是最大的。

在现代设备管理要求下,事后维修仅用于对生产影响极小的非重点设备、有冗余配置的设备或采用其他检修方式不经济的设备。

预防性定期检修是以时间为基础的预防检修方式,在电厂通常分为大修、小修,这种检修方式不管被检修的电气设备状态如何,一律到期必修。

长期以来,对我国电力系统安全运行起到了很大的作用,但随着电力系统向高电压,大容量,互联网发展,以及用电部门要求的提高,这种传统的方法己越来越不适用,主要表现在需要停电进行试验,而很多重要电力设备轻易不能退出运行停电后设备状态如工作电压,温度等和运行中不一致,影响判断准确性受检修周期的限制,检修往往不能恰到好处,对在两次检修期间发生的事故没有好的解决方法。

第一章电气设备现状调研1.1短路故障1.2放电故障1.3绝缘故障第二章电气设备在线监测与故障诊断内容2.1电气设备在线监测与故障诊断的方法2.2在线监测与故障诊断的基本原则2.3在线监测与故障诊断步骤2.3.1故障判断的步骤2.3.2有无异常的判断2.3.3故障严重性判断2.3.4故障类型的判断第三章电气设备检修措施3.1加强继电保护3.2降低设备缺陷率3.3完成绝缘改造3.4减少短路几率总结2.课题的研究意义、国内外现状;本文在分析现代电力系统设备检修体制的基础上,论述了电气设备实行状态监测必要性和可能性,并以高压断路器为研究对象。

电气控制系统故障分析诊断及维修技巧

电气控制系统故障分析诊断及维修技巧

电气控制系统故障分析诊断及维修技巧电气控制系统是现代工业生产中不可或缺的一部分,它负责控制与监测设备的运行和工艺过程的实时控制,然而由于各种原因,电气控制系统可能会出现故障。

本文将介绍电气控制系统的故障分析、诊断及维修技巧。

一、故障现象的分析当电气控制系统出现故障时,首先需要进行故障现象的分析。

故障现象包括设备不能开启、设备不能停止、设备运行不正常等问题。

通过对故障现象的观察和记录,可以初步判断故障的类型和可能出现的原因。

设备不能开启可能是由于电源故障、控制模块故障或信号传输故障等造成的。

二、故障原因的排查根据故障现象的分析结果,可以进行相关原因的排查。

首先要检查设备的电源供电情况,确认电源是否正常工作。

然后可以检查控制模块和信号传输线路,包括检查控制模块是否存在短路、开路或损坏的情况,检查信号传输线路是否存在接触不良或损坏等。

三、仪器设备的运用在进行故障排查时,可以运用一些仪器设备来辅助分析。

可以使用万用表来测量电路中的电压、电流和电阻等数值,以判断电路是否正常。

还可以使用示波器来观察信号的波形,以判断信号传输的稳定性和波形是否正常。

还可以使用红外线热像仪来检测电气设备的温度分布,以判断是否存在过热现象。

四、故障诊断的方法针对不同的故障现象和排查结果,可以采用不同的故障诊断方法。

一种常用的方法是逐步排除法,即从最基本的电源供电开始排查,然后逐个排除故障可能存在的部件,直到找到故障原因。

另外还可以使用分离法,即将电路分成几个部分,逐个测试每个部分的工作情况,以确定存在故障的部分。

五、故障维修的技巧在进行故障维修时,需要注意以下几点技巧。

首先要对设备的维修手册和技术资料进行充分的研究和了解,以便在维修过程中参考。

其次要做好维修记录,包括故障现象、排查过程和维修措施等内容,以备日后参考。

维修人员要具备良好的电气基础知识和丰富的实践操作经验,以便能够准确判断和处理故障情况。

电气控制系统故障的分析、诊断及维修是一项复杂而关键的工作,需要进行故障现象的分析、故障原因的排查、仪器设备的运用、故障诊断的方法和故障维修的技巧。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
u (t)=C0sinωt + C1cosωt
式中, D 0 =I mcosφi ,D1 =I msinφi , C0 =U mcosφu,C1 =Umsinφu
φi = arctan (D1/D0) , φu = arctan ( C1/ C0) 在对信号i(t) 和u(t) 采样,并用最小二乘算法求
得D0、D1、C0、C1 后,即可由上式算出φ 。
第二部分
故障诊断实例与分析
基于贝叶斯网络的电容型设备 故障诊断
• 实例1
对型号为LB-110 W的电容式电流互感器进行介质损失 测量,测量电压为10 kV,结果如表4 所示。
实例1
然后,采用2 500 V 摇表测得到1 次与2 次绕组之间 以及1 次与地之间的绝缘电阻均为8 800 MΩ采用500 V 摇 表测得2 次绕组之间及2 次绕组对地的绝缘电阻数据如表5 所示。
日进行定期预试时,测得电气试验数据如 表8 所示,油样气相色谱数据如表9 所示。
实例2
应用贝叶斯网络方法进行诊断,该穿墙 套管属于各故障类型的概率结果如表10 所
。由表10 可知,故障c4 的后验概率最大, 因此判断该套管故障为结构缺陷。
实例2
结果:将该套管和末屏小瓷套打开,发 现末屏引出线断裂,可见应用贝叶斯网络 进行电容型设备故障诊断的结果与实际吊 芯检查的结果相符,本文的诊断方法正确 。
实例1
对其进行局部放电试验当电压升到30 kV 时电流互感 器底部有密集的放电声,继续升压到80 kV 时,放电声增 大且有间歇性,此时测得的放电量为1 μC,持续加压10 min 后放电量减小到0.4 μC,放电声没有变化。油中溶解 气体的色谱分析结果如表6 所示。
实例1
应用贝叶斯网络方法进行诊断,该电容式电流互感器 属于各故障类型的概率结果如表7 所示。由表7 可知,故 障c2 的后验概率最大,因此判断该套管故障为绝缘受。 由表7 可知,故障c2 的后验概率最大,因此判断该套 管故障为绝缘受潮。
电气设备状态监测 与故障诊断技术
沈阳工程学院 国哥哥
主要内容
• 第9章:电容型设备的监测与诊断
• 第15章:金属氧化物避雷器的监测与 诊断
第一部分
监测原理
电容性设备
通常绝缘介质的平均击穿场强随其厚度的增加而 下降。在较厚的绝缘内设置均压电极,将其分隔为 若干份较薄的绝缘,可提高绝缘整体的耐电强度。 由于结构上的这一共同点,电力电容器、耦合电容 器、电容型套管、电容型电流互感器以及电容型电 压互感器等,统称为电容型设备。
UC
U
二、在线监测
1 三相不平衡信号的检测
1.1 三相不平衡电流法(传统) 1.2 早期的三相不平衡电压法
2 运行时C及tg的分相检测
2.1 TV-Cn法 2.2 数字化测量法(包括四种方法)
1.1 三相不平衡电流法(传统)
测量比例值
k I0 I Id I0 Id
1.2 早期的三相不平衡电压法

加强交通建设管理,确保工程建设质 量。18:33:5718:33:5718:33Thursday, October 22, 2020

安全在于心细,事故出在麻痹。20.10.2220.10.2218:33:5718:33:57October 22, 2020

踏实肯干,努力奋斗。2020年10月22日下午6时33分 20.10.2220.10.22

相信相信得力量。20.10.222020年10月 22日星 期四6时33分57秒20.10.22
谢谢大家!
实例1
结果:将该电流互感器送至厂家,互感 器吊芯后发现,由于电流互感器密封不良 ,一个二次线圈受潮损坏,造成局部放电 。可见应用贝叶斯网络进行电容型设备故 障诊断的结果与实际吊芯检查的结果相符 ,本文的诊断方法正确。
实例2
某公司一只1994 年出厂的CRW-110/ 1250 型110 kV 穿墙套管,在2003 年5 月21

树立质量法制观念、提高全员质量意 识。20.10.2220.10.22Thursday, October 22, 2020

人生得意须尽欢,莫使金樽空对月。18:33:5718:33:5718:3310/22/2020 6:33:57 PM

安全象只弓,不拉它就松,要想保安 全,常 把弓弦 绷。20.10.2218:33:5718:33Oc t-2022- Oct-20
UA UB UC
YA YB
YC
RA RB RC
R
U0
r
2.1 TV-Cn法原理图
Cx
CN
2.2 数字化测量法
数字化测量方法主要包括: 1、过零点时差法 2、零点电压比较法 3、正弦波参数法 4、积分法
过零点时差法
正弦波参数法
i=I msin(ωt+φi) ,u=U msin(ωt+φu) I (t)=D0sinωt + D1cosωt
测量的量 仪表(方法) 试验电压
绝缘电阻
绝缘电阻表
1KV、2.5KV、 5KV(直)
tg、C 西林电桥 10KV(交)
介质损耗所能反映的缺陷
绝缘受潮。 绝缘脏污。 绝缘中存在气隙放电。
tg
UC代表较多气隙开始放电
时所对应的外加电压。
tg = f (U ) 从tg 增长的陡度可反映绝
缘劣化的程度。

好的事情马上就会到来,一切都是最 好的安 排。下 午6时33分57秒 下午6时33分18:33:5720.10.22

专注今天,好好努力,剩下的交给时 间。20.10.2220.10.2218:3318:33:5718:33:57Oct-20

牢记安全之责,善谋安全之策,力务 安全之 实。2020年10月22日 星期四6时33分 57秒T hursday, October 22, 2020
▪ 电力电容器 ▪ 电容式套管 ▪ 高压电流互感器(CT) ▪ 高压电压互感器(PT) ▪ 电容式电压互感器(CVT)
是电力系统中检修数量最大的一类设备,检修项 目明确,工作量大。进行在线监测是非常必要的。
电力电容器
电流互感器(CT)
耦合电容器
电容式电压互感器(CVT)
变压器套管
பைடு நூலகம்
一、常规检测(需要停电) • 试验项目

追求至善凭技术开拓市场,凭管理增 创效益 ,凭服 务树立 形象。2020年10月22日星期 四下午6时33分 57秒18:33:5720.10.22

严格把控质量关,让生产更加有保障 。2020年10月 下午6时 33分20.10.2218:33Oc tober 22, 2020

作业标准记得牢,驾轻就熟除烦恼。2020年10月22日星期 四6时33分57秒 18:33:5722 October 2020
相关文档
最新文档