成角透视 PPT课件

合集下载

透视学原理成角透视PPT讲稿

透视学原理成角透视PPT讲稿
角为50度和40度。作图比例为1:30.
成角透视
第四章
V1
M2
CV
M1
D
C’ B’
C
A
B
S
V HL 2 (PL
GL
成角透视
第四章
E
F
G
V1
M2
CV
M1
D
C’ B’
C
A
B
S
V HL 2 (PL
GL
成角透视
第四章
LE F
G
V1
M2
CV
M1
D
C’
B’
K’
C
KA
B
S
V HL 2 (PL
GL
成角透视
第四章
透视学原理成角透视课件
成角透视
第四章
第一节 成角透视及其特点
成角透视
第四章
在透视投影中,凡视线平视,
直线与地面平行,对画面成一定角度
时的透由视于称空成间角物透体视对,画也面称的两角点度透不视同。 形成下述两种透视,以立方体为例。
一、立方体的两个面和两个边棱 与画面都成45度角时消失于距点。此 种透视的特点,是两个距点与心点和 视点的距离都相等,故被称为等角透 视。
成角透视
第四章
成角透视
第四章
CV
M1
V2
(HLPL
D’
B’
C’
B
A 123
C
G
L
S
成角透视
第四章
E
F
HG
4
V1
M2
CV
M1
V2
5
(HLPL
6 D’
B’
C’

透视(一点透视两点透视)ppt课件

透视(一点透视两点透视)ppt课件
设计师可以利用透视技巧来突出产品的重点部分,使得观众能够更清楚地了解产品 的构造和特点。
透视还可以用来表现产品的内部结构和功能原理,通过透视剖面图等形式来展示产 品的内部构造和工作原理,增强观众对产品的认知和理解。
产品材质表现方法
透视在产品设计中能够真实地表现产品 的材质质感,通过光影效果和色彩处理 可以模拟出不同材质的表面质感和纹理
利用一点透视和两点 透视原理,构建具有 深度感和立体感的动 画场景。
运用色彩、光影等视 觉元素,增强场景的 空间感和真实感。
通过调整视角和视平 线的高低,表现不同 的空间层次和远近关 系。
角色动作设计和运动规律掌握
根据透视原理,设计符合角色性 格和情绪的动作,表现角色的动
态美。
掌握运动规律,使角色动作更加 自然、流畅,符合物理原理。
2
设计师可以利用透视原理,将产品的设 计理念以立体、生动的形式呈现出来, 使得观众能够更直观地理解设计师的创 意和想法。
3
透视效果图可以作为产品设计的重要依 据,帮助设计师在产品开发的各个阶段 进行有效的沟通和交流,确保最终产品 的实现与其设计意图相符合。
产品结构表达技巧
透视在产品设计中能够清晰地表达产品的结构关系,通过透视原理可以准确地表现 出产品各个部件之间的位置、比例和连接方式。
与眼睛平齐的水平线,是确定画面中 物体高度和深度的基准线。
消失点
在两点透视中,物体两侧的垂直线分 别向左右两个方向汇集,最终消失在 视平线上的两个点,称为消失点。
消失点与视平线确定方法
01
02
03
确定视平线
根据观察者的眼睛高度和 物体在画面中的位置,确 定视平线的位置。
确定消失点
在视平线上根据物体两侧 垂直线的汇集方向,分别 定出左右两个消失点。

绘画透视学课件资料成角透视资料

绘画透视学课件资料成角透视资料

定义:通过透明平 面观察物体研究三 维空间中的物体在 平面上的投影表现
分类:线性透视、 色彩透视、立体透 视等
基础要素:视点、 视线、画面、物体
透视学在绘画中的 应用:构图、造型、 色彩等方面
03
成角透视基本概念
成角透视定义
成角透视是绘 画透视学中的 一种透视类型 指的是在画面 中物体与视线 的角度呈一定 角度产生透视
细节处理:在静物绘画中细节的 处理也非常重要如光影、质感等 这些都可以通过透视技巧来增强 表现力。
06
成角透视实例解析
解析几何形体的成角透视
定义:成角透视是指当物体与观察者之间形成一定角度时物体在透视画面上呈现的透视效果。
特点:成角透视中物体的两个面与画面平行其余的面与画面形成一定的角度产生透视效果。
07
练习与提高
绘制简单的成角透视图形
确定视平线和消 失点
画出透视线段
连接端点和消失 点
完成图形并检查 准确性
绘制复杂的成角透视图形
掌握绘制技巧:通过练习绘制复 杂的成角透视图形提高透视感和 对透视原理的理解。
观察与思考:在绘制过程中观察 和思考发现并解决透视中的问题 提高空间思维能力。
添加标题
透视学分为线性 透视和大气透视 两种类型
透视学原理可以 帮助艺术家创造 出更真实、更有 立体感的作品
透视学分类
线性透视:利用线条表现空间深度和距离感
成角透视:通过角度变化表现立体感和深度
空气透视:利用色彩和明暗变化表现空间感和深度 色彩透视:利用色彩的冷暖、明暗、饱和度等变化表现空间感和深 度
透视学原理
添加标题
添加标题
添加标题
实践应用:将所学的透视知识应 用到实际绘制中通过不断练习提 高熟练度和准确性。

透视学(成角透视)

透视学(成角透视)
02
题目:“临摹一张室外空间成角建筑透视图”
01
02
03
04
要求:学习优秀作品成角透视的绘制技巧,尝试理论结合实践。
工具材料:直尺、铅笔、三角板等绘图仪器。
考核标准:透视准确,能够熟练运用测点法绘制成角透视效果。
202X
感谢各位的观看
汇报人姓名
使用教材: 透视学 总学时:32 周学时:2
202X
透 视 学
第四章 成角透视
CONTENTS
01
02
03
04
作品欣赏
Add a title
成角透视的定义 我们与平行透视相对照,当平放在水平基面GP上的立方体,与垂直基面的画面PP构成一定夹角关系时(不包括0度、90度、180度角,这样的立方体与画面构成了平行透视),我们称之为成角透视。
观察能力和认识能力的体现,要求学生认真观察、认真构思。
05
什么是成角透视?成角透视的特点及其应用?
题目:“徒手(速写)绘制一张室内一角透视图”
要求:根据所讲的成角透视的画法步骤,绘制一张基本内容准确的成角透视。
工具材料:速写用具。
考核标准:基本透视准确,能够把成角透视理论运用到实践。
03
04
1为圆心,VP1-EP为半径长,水平摆动,求得测点M,得到VP1-M等于VP1-EP。连接M-EP,构成等腰三角形,夹角33度(根据内错角相等原理)。
经过B点在GL基线上量出BC等于50厘米(把HL的高度分成二等份,取一份长即为50厘米),通过C点做一条平行EP-M的直线,交于B点直线,得到A点。
绘图中测点法截取步骤:
经过EP1作一条平行线,以平行线为准作夹角33度,交于HL于VP1。
以VP1点为圆心,VP1-EP1为半径摆动求得测点M。得到M-VP1等于VP1-EP1,连接M-EP1,构成等腰三角形,夹角33度(内错角相等)。现在VP1、EP1、M这个三角形实际上就是图4-12空间中的VP1、EP、M三角形。作法也同上面讲过的图4-12直观空间图分析步骤一样。

素描几何体的基本透视课件-PPT

素描几何体的基本透视课件-PPT

视平线——画面上表示绘画者视点的水平线。
视平线
以正方体为例, 画一个 一点透视图
这个正方体是什么透视?
成角透视
成角透视一个立方体任何一个面均不与画面平行(即 与画面形成一定角度),但是它垂直于画面底平线。 它的透视线消失在视平线两边的余点上,称为成角透 视,也称两点透视.
余点——成角透视中在视平线上的消失点
山东省无棣第一中学 李永杰
——绘画中的透视问题
山东省无棣第一中学 李永杰
——绘画中的透视问题
山东省无棣第一中学 李永杰
——绘画中的透视问题
山东省无棣第一中学 李永杰
——绘画中的透视问题
山东省无棣第一中学 李永杰
含义就是通过透明平面(透视学中称为“画面”,是透视图形产生的平面)观察、研究透视图形的发生原理、变化规律和图形画法,最终
——绘画中的透视问题
山东省无棣第一中学 李永杰
——绘画中的透视问题
山东省无棣第一中学 李永杰
——绘画中的透视问题
山东省无棣第一中学 李永杰
——绘画中的透视问题
山东省无棣第一中学 李永杰源自——绘画中的透视问题山东省无棣第一中学 李永杰
——绘画中的透视问题
山东省无棣第一中学 李永杰
——绘画中的透视问题
山东省无棣第一中学 李永杰
心 点——平行透视中在视平线上的消失点。
山东省无棣第一中学 李永杰
视平线——画面上表示绘画者视点的水平线。
——绘画中的透视问题 4、多点透视(散点透视)等。
三点透视多用于高层建筑透视。 同样大小的物体——近大远小
山东省无棣第一中学 李永杰
山东省无棣第一中学 李永杰
以立方体为例画一个 成角透视图
——绘画中的透视问题

《绘画中的透视现象》PPT课件

《绘画中的透视现象》PPT课件

近‗宽‗‗ 远‗窄‗‗ 近‗高‗‗ 远‗低‗‗ 近‗‗大‗ 远 小‗‗
近‗‗疏‗ 远‗‗密‗ 近‗‗实‗ 远‗‗虚‗
4 消失点
随着视线的延伸,景物会逐渐聚于一点,这个 点叫消失点。
消失点
4 消失点
突出左边的景物, 消失点就往右移。
突出右边的景物, 消失点就往左移。
5 视平线
视—就是与眼睛平行的水平线,平视时, 视平线与地平线重合。
绘画中的透视现象
hui hua zhong de tou shi xian xiang
-.
说一说 哪张给你的空间感最强烈?
1 什么是透视?
绘画中运用线条或色彩在平面上 表现物象立体效果的一种方法。
???
2 透视分类
透视:一点透视(平行透视) 二点透视(成角透视) 三点透视
透视现象正确 3、用勾线笔勾边 4、利用彩铅上色
8 知识扩展
8 知识扩展
8 知识扩展
8 知识扩展
消失线—景物轮廓 与消失点的连线叫 消失线。
视平线
5 视平线
想表现视平线以上 视平线可以低一点
想表现视平线以下 视平线可以高一点
6 找一找
消失点
视平线以上,景物越远越向下。 视平线以下,景物越远越向上。
消失线
消失线—景物 轮廓与消失点 的连线叫消失线。
视平线
7 作业
运用透视现象画画自己的小卧室。

透视学原理成角透视(课堂PPT)

透视学原理成角透视(课堂PPT)
成角透视
第四章
第四章 成角透视
1
成角透视
第四章
第一节 成角透视及其特点
2
成角透视
第四章
在透视投影中,凡视线平视,直线与地面平行, 对画面成一定角度时的透视称成角透视,也称两点透视。
由于空间物体对画面的角度不同形成下述两种透视, 以立方体为例。
一、立方体的两个面和两个边棱与画面都成45度角 时消失于距点。此种透视的特点,是两个距点与心点和 视点的距离都相等,故被称为等角透视。
25
成角透D
C’ B’
C
A
B
S
V2 HL
(PL)
GL 26
成角透视
第四章
E
F
G
V1
M2
CV
M1
D
C’ B’
C
A
B
S
V2 HL
(PL)
GL 27
成角透视
第四章
E
L
F
G
V1
M2
CV
M1
D
C’
B’
K’
C
KA
B
S
V2 HL
(PL)
GL 28
成角透视
第四章
E
L
F
G
N
V1
M2
CV
4
成角透视
第四章
第四节 量 点 法
5
成角透视
第四章
一、量点法形成的原理
M B’
B B1
m A
V E
v
S
6
成角透视
第四章
M
B’
A
B1
B
A
m B1
S
V HL

人教版美术七年级上册第二单元 平行透视、成角透视作图法PPT课件

人教版美术七年级上册第二单元 平行透视、成角透视作图法PPT课件
平行透视作图法
迹点法室外景作图 迹点法室内景作图 距点法室外景作图 距点法室内景作图
2020年10月2日
1
视平线
画面
心点
基线

1
2
画面
心点
1
2
2020年10月2日
2
视点
透视图 顶视图
2020年10月2日
视平线 基线 画面
3
视点
距点
2020年10月2日
心点
4
距点
2020年10月2日
心点
5
距点
10
成角透视作图法
起点法 测点法 视线迹点法
2020年10月2日
11
左余点 高 度
右余点
左余点
右余点 视点
左余点 视点
右余点
视平线 基线 画面
2020年10月2日
侧视图
右余点
14
视点
透视图 顶视图
视平线 基线
视点透视Biblioteka 顶视图视平线 视点透视圆的画法
心点
视平线
距点
灯光阴影作图法
光线角度
日光阴影作图法
心点
演讲完毕,谢谢观看!
Thank you for reading! In order to facilitate learning and use, the content of this document can be modified, adjusted and printed at will after downloading. Welcome to download!
2020年10月2日
心点
6
距点法室内景作图
距点
侧视图 正视图 高 度
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二节 成角透视的画法
与平行透视一样,成角透视作图的关键也是如何表现线段在 纵深关系中的距离和长度的变化。所不同是,成角透视的纵深 线段与画面形成倾斜关系,且有两组消失各不相同的线段。按 照成角透视的规律:观察物体时,视点越远,两个余点的距离 越远;而余点距离主点的远近,决定物体透视纵深线段的长短。 成角透视图中物体纵深线段的寻求,一般采用量点法来表现。
4.立方体做深度排列时,体积由大变小,而顶,底面两组成角边 间的前后夹角由小变大,越远越平缓,彼此出现形体差异。
余角透视的三状态透视特征
(1)微动状态:两竖立面与画面所成A,B角相差甚大,可谓:“两角相 殊”。两个余点经常一个在画框内,另一个在相反方向较远处。余点较远 的的竖立面很正,看上去较宽;余点很近的竖立面很侧,较窄;
近处立方体共有三个不同朝向的面:
A是水平面,其两组边线分别向左右余点消失; B是左竖立面,其边线一组垂直,一组向左余点消失; C是右竖立面。其边线一组向右余点消失,一组垂直。
由此可知:视平线,左右余点垂线,控制成角透视场景中 物体板面的朝向和透视的宽窄。
根据成角透视场景中方形物的变化规律,只要把握住他 们板面的位置和边线的方向,就能用简便的画法,快速表现 出其空间的透视图。
(2)一般状态:两个竖立面与画面所成A,B两个角大小差不多, 谓之“两角相仿”,两个余点,离距点都比较近;
(3)对等状态:两竖面与画面所成角均为45°,“两角相等”两个余点的位 置就在距点上,在心点垂直线上的立方体,两竖立面一样宽窄;靠近左余点 的方体,左竖立面较窄;靠近右余点的方体,右竖立面较窄。
成角透视的常见错误
1.消失点位置要适当,太远或太近均会出现反常现象;
2.同一物体的两个消失点应在一条视平线上。
作业:
掌握成角透CM*5CM)
要求:
1.透视画法准确; 2.每种透视状态九个正立方体; 3.每种透视状态一张A3纸。
量点法在成角透视的画法中,是以两个余点为圆心,余点 到视点的距离为半径,与视平线相交得相应的两个量点,并由 此测量物体两个侧面透视深度的一种作图法。
其量点不像平行透视那样可以任意确定,需要通过 一定的方法才能找到。
一。确定量点的方法
方形物体向左右余点消失线段的透视长短,表示成 角透视景物深度,这深度由量点来测定。每个余点都有 自己的专用量点,要测定某个余点线段的透视长度,须 用该余点的量点来完成。余点及其测点用相同编号。如 余点1(V1)和测点1(M1),余点2(V2)和测点2(M2). 确定视点的位置,便能确定左右余点(视点至两余点之 夹角总设为90°)。以余点为圆心,以余点至视点的长 度为半径作弧,弧线与视平线的焦点即该余点的量点。
3.自D,C分别向余点V2V1消失,相交得E,分别自C,D,E向上引 垂直线,与AV2,AV1相交得F,G,再分别向余点V1V2消失,交的H, 成角正方体透视图完成。
三,成角透视简便画法
成角透视场景中,有众多相互平行的方形物体出现,只 要正确把握其空间关系,把握他们三组边线的透视方向,就 能快速的画出平稳,排列有序的成角透视场景图。
第三章 成角透视
CHENGJIAOTOUSHI
第一节 成角透视
一.什么叫成角透视
以立方体为例,只要离画幅最近的是立方体的一个 角,那么立方体左右两个竖立面必然与画幅呈一定角度, 且两角相加为90°,在这种情况下作图称为成角透视。由 于它有两个消失点,两个角互为余角,所以,又叫“二点 透视”“余角透视”。
二,正方体的画法
量点法作图步骤: 1.根据画面,已知两个余点V1,V2,以及分别以V1V2为圆
心,V1EV2E为半径与视平线相交得到两个测点M1,M2,主点CV, 视点E ,正方体的一条垂直线段AB。
2.经过B点画一根与AB 线段相垂直的水平线D’B=BC’=AB, 从B点分别向余点V1V2消失,自D’C’分别向M1M2相连,与 BV1,BV2相交于D,C。
二,成角透视的线段
1.边线为平行于画面的垂直原线,透视方向不变,仍然 垂直,没有灭点,但有近大远小的透视变化。
2.边线为平行于基面的成角变线,左右各一组,水平消失 方向不一,形成两个灭点,都在视平线上。
三,成角透视的规律
1.在同一视域中,由于立方体与画面所成的角度不同,决定了成 角透视的灭点在视平线上的的位置是可移动的。
2.同一立方体左右两组成角边形成的两个灭点处在主点两侧。当 立方体与画面成45°角时,两个灭点即两个距点;当立方体成 角边与画面非45°也非90°角时,一个余点处在同侧距点内,另 外一个余点处在同侧距点外,两个余点到主点的距离成反比。
3.立方体上下移动时,越接近视位高度,顶 底面两组成角边间的 夹角越大,体积越平缓。当立方体顶面或底面与视位等高时,该 面两组成角边的前后夹角称为平角,贴于视平线。而越远离视平 线,前后夹角越小,体积感越强。
相关文档
最新文档