磁场边界问题

合集下载

(精典)磁场中各种边界问题解析

(精典)磁场中各种边界问题解析

V 0θθ V 0ABθ V 0 AV 0图1图2 图3 带电粒子在匀强磁场中作圆周运动的分析方法一.找圆心、画轨迹、找角度。

数学模型:(1)已知圆的两条切线,作它们垂线,交点为O ,即为圆心。

(2)已知圆的一条切线,和过圆上的另一点B ,作过圆切线的垂线,再作弦的中垂线。

交点即为圆心O 。

(3)偏向角补角的平分线,与另一条半径的交点直线边界磁场例1.找到下面题中粒子的圆心,画出轨迹。

求从左边界或右边界射出时与竖直方向夹角φ以及粒子在磁场中经历的时间。

(第3图作出粒子刚好不从右侧穿出磁场)练1:已知B 、+q 、m 、θ、d 、a 、V 0。

求从左边界穿出时经历的时间。

(1)刚好不从上边界穿出 (2)刚好不从下边界穿出 (3)能从左边界穿出。

练3.如图所示,在水平直线MN 上方有一匀强磁场,磁感强度为B ,方向垂直向里。

一带电粒子质量为m 、电量为q ,从a 点以与水平线MN 成θ角度射入匀强磁场中,从右侧b 点离开磁场。

问: (1)带电粒子带何种电荷?(2)带电粒子在磁场中运动的时间为多少?A B COV 0V 0φ练习.1.AB、CD、EF为三条平行的边界线,AB、CD、相距L1,CD、EF相距L2,如图所示,AB、CD之间有垂直纸面向里的匀强磁场,磁感强度为B1,CD、EF之间也有垂直纸面向里的匀强磁场,磁惹感强度为B2。

现从A点沿A方向垂直磁场射入一带负电的粒子,该粒子质量为m,带电量为-q,重力不计,求:(1)若粒子运动到CD边时速度方向恰好与CD边垂直,则它从A点射入时速度V0为多少?(2)若已知粒子从A点射入时速度为u(u>V0),则粒子运动到CD边界时,速度方向与CD边的夹角θ为多少?(3)若已知粒子从A点射入时速度为u(u>V0)粒子运动到EF边界时恰好不穿出磁场,则CD、EF之间磁场的磁感强度B2为多少?2.如图所示,M、N、P是三个足够长的互相平行的边界,M、N与N、P间距离分别为L1、L2,其间分别有磁感强度为B1、B2的匀强磁场区Ⅰ与区Ⅱ,磁场方向均垂直纸面向里。

带电粒子在磁场中偏转的磁场边界极值问题

带电粒子在磁场中偏转的磁场边界极值问题

带电粒子在磁场中偏转的磁场边界极值问题河北平山古月中学梁军录带电粒子在磁场中的偏转问题可以很好地考察学生物理过程分析、空间想象和应用数学知识解决物理问题的能力,因此一直受到高考命题专家的青睐,成为历年的热门考题,且常作为压轴题出现。

对于带电粒子在已知边界的有界磁场中偏转的问题较为常见,其解题思路(先由几何知识作出带电粒子的运动轨迹圆心,然后求其圆心角,进而确定带电粒子在磁场中的运动时间)大家较为熟悉。

而对带电粒子在“待定”边界的最小有界磁场中偏转的问题则较为少见,这类问题灵活性较强,能更有效地考查学生的发散性思维和灵活应变能力,具有很好的区分度。

通常可采用几何作图方法直接进行求解;当边界较为复杂时也可借助解析法进行求解。

本文首先通过剖析典型的高考真题总结出该类问题的一般解题规律,并针对性地设计创新例题进行训练,从而使学生达到举一反三,融会贯通。

例1(1994年全国高考题)如图1所示,一带电质点,质量为,电量为,以平行于轴的速度v从轴上的点射入图中第一象限所示的区域,为了使该质点能从x轴上的b点以垂直于Ox轴的速度v射出,可在适当的地方加一个垂直于xy平面、磁感应强度为B的匀强磁场,若此磁场仅分布在一个圆形区域内,试求这圆形磁场区域的最小半径。

(重力忽略不计)解析:质点在磁场中作半径为R的圆周运动,洛伦兹里提供向心力,则,可得质点在磁场中作圆周运动的半径为定值。

由题设的质点在有界磁场区域中入射点和出射点方向垂直的条件,可判定带电粒子在磁场中的运动轨迹是半径为R的圆周的1/4圆弧,这段圆弧与粒子射入和射出磁场时的速度方向相切。

过点a作平行于x轴的直线,过b点作平行于y轴的直线,则与这两直线aM、bN相距均为R的点即为带点粒子在磁场中运动轨迹的圆心,图2中虚线圆弧即为带点粒子在有界圆形磁场中运动的轨迹。

由几何关系知:过M、N两点的不同圆周中面积最小的是以MN连线为直径的圆周,所以本题所求的圆形磁场区域的最小半径为例2(创新迁移)如图3所示,一质量为m、带电量为q的粒子以速度从A点沿等边三角形ABC的AB方向射入磁感应强度为B。

边界磁场问题(生)

边界磁场问题(生)

带电体或带电粒子在磁场中运动【基本方法】——关键是确定半径 1.带电粒子在磁场中的匀速圆周运动带电粒子仅受磁场力作用下,初速度的方向与磁场方向垂直时,带电粒子将在磁场中做匀速圆周运动.轨道半径公式:由qBv =m v 2R ,得R =mvqB . 周期公式:T =2πR v =2πm qB.2.圆心的确定(1)基本的思路:圆心一定在与速度方向垂直的直线上,并且也在圆中一根弦的中垂线上,也一定在初末速度延长线和反向延长线的角平分线上。

(2)两种方法: 方法一:已知入射方向和出射方向时,可通过入射点和出射点分别作垂直于入射方向和出射方向的直线,两条直线的交点就是圆弧轨迹的圆心,如图(1)所示,P 为入射点,M 为出射点.方法二:已知入射点和出射点的位置时,可以通过入射点作入射方向的垂线,连接入射点和出射点,作其中垂线,这两条垂线的交点就是圆弧轨迹的圆心,如图(2)所示,P 为入射点,M 为出射点. 3.半径的确定和计算利用平面几何关系,求出该圆的半径,往往用到以下重要的几何特点:(1)粒子速度的偏向角(φ)等于粒子旋转的圆心角(α),因为速度总是与半径垂直,所以速度方向改变了多少,半径的旋转也跟着改变了多少.并等于弦AB 与切线的夹角(弦切角θ)的2倍,如图所示,即φ=α=2θ=ωt.(2)相对的弦切角(θ)相等,与相邻的弦切角(θ′)互补,即θ+θ′=180° 4.运动时间的确定粒子在磁场中运动一周的时间为T ,当粒子运动的圆弧所对应的圆心角为α时,其运动时间为t =α2πT(或t =α360°T).(一)直线型磁场边界问题结论一:直线形磁场边界,带电粒子射入、射出磁场时,与边界夹角相等,如图所示,∠θ=∠α.【例1】如图所示,直角三角形ABC 区域中存在一匀强磁场,比荷相同的两个粒子(不计重力)沿AB 方向射入磁场,分别从AC 边上的P 、Q 两点射出,则( ) A .从P 点射出的粒子速度大 B .从Q 点射出的粒子速度大 C .从Q 点射出的粒子在磁场中运动的时间长 D .两个粒子在磁场中运动的时间一样长【例2】如图,A 、C 两点分别位于x 轴和y 轴上,∠OCA =30°,OA 的长度为L.在△OCA 区域内有垂直于xOy 平面向里的匀强磁场.质量为m 、电荷量为q 的带正电粒子,以平行于y 轴的方向从OA 边射入磁场.已知粒子从某点射入时,恰好垂直于OC 边射出磁场,且粒子在磁场中运动的时间为t 0.不计重力. (1)求磁场的磁感应强度的大小;(2)若粒子先后从两不同点以相同的速度射入磁场,恰好从OC 边上的同一点射出磁场,求该粒子这两次在磁场中运动的时间之和;(3)若粒子从某点射入磁场后,其运动轨迹与AC 边相切,且在磁场内运动的时间为035t ,求粒子此次入射速度的大小.(二) 圆形磁场边界问题 结论一:圆形磁场边界,沿径向射入磁场,必然背离圆心射出磁场,如图所示. 结论二:轨迹圆与磁场圆相交,两圆圆心连线将是两个圆的对称轴,是∠AO ′B 的角平分线【例3】如图所示,在一个圆形区域内,两个方向相反且都垂直于纸面的匀强磁场分布在以直径A 2A 4为边界的两个半圆形区域Ⅰ和Ⅱ中,直径A 2A 4与直径A 1A 3之间的夹角为θ=60°.一质量为m 、电荷量为q 的带正电粒子(不计重力)以某一速度从Ⅰ区的边缘点A 1处沿与A 1A 3成β=30°角的方向射入磁场,随后该粒子以垂直于A 2A 4的方向经过圆心O 进入Ⅱ区,最后再从A 4处射出磁场.已知该粒子从射入到射出磁场所用的时间为t ,求:(1)粒子在磁场区域Ⅰ和Ⅱ中运动的轨道半径R 1与R 2的比值; (2)Ⅰ区和Ⅱ区中磁场的磁感应强度B 1和B 2的大小.【例4】在直径为d 的圆形区域内存在着垂直纸面向里的匀强磁场,磁感应强度大小为B ,比荷分别为2211m q m q 、的带正负电荷的粒子从圆形区域的A 点沿与直径AC 成θ=15º角射入磁场,速度大小分别为v 1、v 2,如图所示,且粒子射出磁场时,速度方向都改变了90º,粒子的重力忽略不计,两粒子在磁场中运动的半径分别用r 1、r 2表示,运动时间分别用t 1、t 2表示,则下列说法正确的是:( )d r d r A 46,42.21==221121m q m q v v B ==,则如果.33212211==v v m q m q C 则如果,. 21t t D =恒有不论比荷和速度如何,.【例5】如图所示,圆形区域内有垂直于纸面向里的匀强磁场,一个带电粒子以速度v 从A 点沿直径AOB 方向射入磁场,经过Δt 时间从C 点射出磁场,OC 与OB 成60°角.现将带电粒子的速度变为v/3,仍从A 点沿原方向射入磁场,不计重力,则粒子在磁场中的运动时间变为( )A.12Δt B .2Δt C.13Δt D .3Δt【拓展训练1】一圆筒的横截面如图所示,其圆心为O 。

2012高考物理专题:带电粒子在场中的运动(磁场边界问题)

2012高考物理专题:带电粒子在场中的运动(磁场边界问题)

2012高考物理专题:带电粒子在场中的运动(磁场边界问题)专题一:带电粒子在场中的运动练习1、如图所示的坐标系,x 轴沿水平方向,y 轴沿竖直方向。

在x 轴上方空间的第一、第二象限内,既无电场也无磁场,在第三象限,存在沿y 轴正方向的匀强电场和垂直xy 平面(纸面)向里的匀强磁场,在第四象限,存在沿y 轴负方向、场强大小与第三象限电场场强相等的匀强电场。

一质量为m 、电荷量为q 的带电质点,从y 轴上y=h 处的P 1点以一定的水平初速度沿x 轴负方向进入第二象限。

然后经过x 轴上x=-2h 处的P 2点进入第三象限,带电质点恰好能做匀速圆周运动。

之后经过y 轴上y=-2h 处的P 3点进入第四象限。

已知重力加速度为g 。

试求:1)粒子到达P2点时速度的大小和方向2)第三象限空间中电场强度和磁感应强度的大小3)带电质点在第四象限空间运动过程中最小速度的大小和方向。

练习2. 如图,在xoy 平面内,MN 和x 轴之间有平行于y 轴的匀强电场和垂直于xoy 平面的匀强磁场。

y 轴上离坐标原点4L 的A 点处有一电子枪,可以沿+x 方向射出速度为v 0的电子(质量为m ,电量为e )。

如果电场和磁场同时存在,电子将做匀速直线运动。

如果撤去电场,只保留磁场,电子将从x 轴上距坐标原点3L 的C 点离开磁场。

不计重力的影响,求:(1)磁感应强度B 和电场强度E 的大小和方向;(2)如果撤去磁场,只保留电场,电子将从D 点(图中未标出)离开电场。

求D 点的坐标; (3)电子通过D 点时的动能。

练习3.如图所示的平行板器件中,存在相互垂直的匀强磁场和匀强电场,磁场的磁感应强度B 1 = 0.40T ,方向垂直纸面向里,电场强度E = 2.0×105V/m ,PQ 为板间中线.紧靠平行板右侧边缘xOy 坐标系的第一象限内,有垂直纸面的正三角形匀强磁场区域,磁感应强度B 2 = 0.25 T 。

一束带电量q = 8.0×10-19 C ,质量m = 8.0×10-26 kg 的正离子从P 点射入平行板间,不计重力,沿中线PQ 做直线运动,穿出平行板后从y 轴上坐标为(0,0.2m )的Q 点垂直y 轴射向三角形磁场区,离子通过x 轴时的速度方向与x 轴正方向夹角为60°。

高中物理高频考点《边界磁场问题分析与强化训练》(附详细参考答案)

高中物理高频考点《边界磁场问题分析与强化训练》(附详细参考答案)

边界磁场问题分析与强化训练(附详细参考答案)一、边界磁场问题分析及例题讲解:1.带电粒子在有界磁场中运动的常见情形(1)直线边界(进出磁场具有对称性,如图所示)(2)平行边界(存在临界条件,如图所示)(3)圆形边界(沿径向射入必沿径向射出,如图所示)(4)矩形边界:如图所示,可能会涉及与边界相切、相交等临界问题。

(5)三边形边界:如图所示是正△ABC区域内某正粒子垂直AB方向进入磁场的粒子临界轨迹示意图。

已知边长为2a,D点距A点3a,粒子能从AB间射出的临界轨迹如图甲所示,粒子能从AC间射出的临界轨迹如图乙所示。

2.带电粒子在有界磁场中的常用几何关系(1)四个点:分别是入射点、出射点、轨迹圆心和入射速度直线与出射速度直线的交点。

(2)三个角:速度偏转角、圆心角、弦切角,其中偏转角等于圆心角,也等于弦切角的2倍。

3.几点注意(1)当带电粒子射入磁场时的速度v大小一定,但射入方向变化时,粒子做圆周运动的轨道半径R是确定的。

在确定粒子运动的临界情景时,可以以入射点为定点,将轨迹圆旋转,作出一系列轨迹,从而探索出临界条件。

(2)当带电粒子射入磁场的方向确定,但射入时的速度v大小或磁场的磁感应强度B 变化时,粒子做圆周运动的轨道半径R随之变化.可以以入射点为定点,将轨道半径放缩,作出一系列的轨迹,从而探索出临界条件。

4.求解带电粒子在有界匀强磁场中运动的临界和极值问题的方法由于带电粒子往往是在有界磁场中运动,粒子在磁场中只运动一段圆弧就飞出磁场边界,其轨迹不是完整的圆,因此,此类问题往往要根据带电粒子运动的轨迹作相关图去寻找几何关系,分析临界条件(①带电体在磁场中,离开一个面的临界状态是对这个面的压力为零;②射出或不射出磁场的临界状态是带电体运动的轨迹与磁场边界相切。

),然后应用数学知识和相应物理规律分析求解。

(1)两种思路一是以定理、定律为依据,首先求出所研究问题的一般规律和一般解的形式,然后再分析、讨论临界条件下的特殊规律和特殊解;二是直接分析、讨论临界状态,找出临界条件,从而通过临界条件求出临界值。

磁场边界条件

磁场边界条件

磁场边界条件磁场边界条件是电磁学中的重要概念之一,它描述了磁场在介质或空间中的传播和转换规律。

磁场边界条件在解决电磁问题时起着关键作用,能帮助我们理解和分析各种电磁现象。

一、磁场边界条件的基本概念磁场边界条件是指在两个不同介质或空间中,磁场在界面上的行为规律。

根据不同的情况,可以有不同的磁场边界条件,主要包括磁感应强度的切向连续性和法向连续性。

1. 磁感应强度的切向连续性:在两个介质或空间的界面上,磁感应强度的切向分量在界面上是连续的。

这意味着磁场的切向分量在穿过界面时保持不变,不会发生跳跃或间断现象。

2. 磁感应强度的法向连续性:在两个介质或空间的界面上,磁感应强度的法向分量在界面上也是连续的。

这意味着磁场的法向分量在穿过界面时也保持不变,不会有突变或断裂。

二、常见的磁场边界条件根据具体情况,磁场边界条件可以有不同的形式和表达方式。

下面介绍几种常见的磁场边界条件。

1. 自由磁场边界条件:在自由空间中,磁场边界条件可以简化为磁感应强度的法向分量为零。

这意味着磁场在自由空间的边界上不存在法向分量,也就是说磁场不会通过自由空间的边界。

2. 介质边界条件:当磁场从一种介质进入另一种介质时,磁场边界条件可以表示为磁感应强度的法向分量和切向分量在界面上的关系。

根据不同介质的特性,可以有不同的表达形式。

3. 导体边界条件:当磁场与导体相互作用时,磁场边界条件可以表示为磁感应强度的切向分量在导体表面上为零。

这意味着磁场在导体表面的切向分量为零,也就是说磁场不会穿透导体。

4. 磁壁边界条件:在磁壁上,磁感应强度的切向分量和法向分量都为零。

这意味着磁场在磁壁上既没有切向分量,也没有法向分量,也就是说磁场在磁壁上完全消失。

三、磁场边界条件的应用磁场边界条件在电磁学中的应用非常广泛,可以帮助我们解决各种与磁场有关的问题。

以下是磁场边界条件的一些常见应用。

1. 磁场传播问题:当磁场在不同介质中传播时,磁场边界条件可以帮助我们确定磁场的传播方向和传播规律。

有界磁场(六类)

有界磁场(六类)
圆心在过入射点跟跟速 度方向垂直的直线上 ①速度较小时,作圆弧 运动后从原边界飞出; ②速度增为某临界值时, 粒子作部分圆周运动其 轨迹与另一边界相切 ③速度较大时粒子作部 分圆周运动后从另一边 界飞出
圆心在磁场原边界上 ①速度较小时,作半圆 运动后从原边界飞出 ②速度增为某临界值时, 粒子作半圆周运动,轨 迹与另一边界相切 ③速度较大时,粒子作 部分圆周运动后,从另 一边界飞出
y Rr 3mv 2qB
二、在条形(平行)边界磁场区中的运动
例2质子以某一速度垂直射入宽度为d的匀强磁场中,穿 出磁场时速度方向与入射方向的夹角为θ, 求带电粒子在 磁场中的运动半径R。
θ
解:如图所示作辅助线,由 几何知识可得
d sin R
θ
d

R
d sin
练习1如图, 匀强磁场的磁感应强度为B,宽度为d, 边界为CD和EF.一电子从CD边界外侧以速率v0垂 直匀强磁场射入,入射方向与CD边界间夹角为θ . 已知电子质量为m,电荷量为e。为使电子能从磁场

其中
CD tan30 OD CD cot 30 5 3cm OD
OA 10 3cm
10 3) 即A点坐标为 (0,
拓展:能求出粒子运动的周期吗?
在反向单边有界磁场区中的运动
练习4在xoy平面内有两个方向相反的匀强磁场。在y轴左 边的磁感应强度为B,右边的磁感应强度为2B。一质量为 m、电量为q的电子以速度v与x轴正方向成60°斜向上的 从原点射出。求电子每运动一个周期在y轴上前进的距离。
r2 1 由图中几何关系 r2+sinθ=a 得:r2=3a π r2 最长时间 t= v 由以上各式联立得: πa m t= 3 2qU

专题322多边形边界磁场问题(解析版)

专题322多边形边界磁场问题(解析版)

高考物理100考点最新模拟题千题精练(选修3-1)第三部分 磁场专题3.22 多边形边界磁场问题一.选择题1.(2020新高考信息卷9)“如图,等腰梯形abcd 区域内,存在垂直该平面向外的匀强磁场,ab =cd =2L ,bc =L ,∠bad =30°,磁感应强度大小为B ,磁场外有一粒子源O ,能沿同一方向发射速度大小不等的同种带电粒子,带电粒子的质量为m ,电荷量为q ,不计重力。

现让粒子以垂直于ad 的方向正对b 射入磁场区域,发现带电粒子恰好都能从cd 之间飞出磁场。

则( )A .粒子源发射的粒子均为带正电的粒子B .粒子在磁场中运动的最短时间为π4m qBC .带电粒子的发射速度取值范围为(31)qBL qBL v m+<< D .带电粒子的发射速度取值范围为(31)qBL qBL v m -<< 【参考答案】AC【名师解析】粒子在电场中向右偏转,根据左手定则可知,粒子带正电,故A 正确;当粒子从c 点飞出时,其运动的速度最大,轨迹所对应的圆心角最小,则运动时间最短,运动轨迹如图甲所示,根据几何知识可知,粒子在磁场中运动的半径R 1=L ,其轨迹对应的圆心角为90°,因为洛伦兹力提供向心力,即qvB=m v 2R ,所以R =mv qB ,则粒子的速度11qBR qBL v m m==,粒子在磁场中运动的最短时间1π42m t T qB ==,故B 错误。

当粒子的运动轨迹和cd 相切时,粒子的速率是最小的,其运动轨迹如图乙所示,令粒子的半径为R 2,根据几何知识有R 2+2R 2=L +3L ,则231R +=,所以粒子的速度22(31)qBR qBL v m +==,则要使粒子从cd (31)qBL qBL v m +<,故C 正确,D 错误。

2. (2016高考四川理综物理)如图所示,正六边形abcdef 区域内有垂直于纸面的匀强磁场。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(1)模型概述带电粒子在有界磁场中的偏转问题一直是高考的热点,此类模型较为复杂,常见的磁场边界有单直线边界、双直线边界、矩形边界和圆形边界等.因为是有界磁场,则带电粒子运动的完整圆周往往会被破坏,可能存在最大、最小面积、最长、最短时间等问题.(2)模型分类 Ⅰ.单直线边界型当粒子源在磁场中,且可以向纸面内各个方向以相同速率发射同种带电粒子时以图8-2-11(甲)中带负电粒子的运动为例.图8-2-11 规律要点 ①最值相切:当带电粒子的运动轨迹小于12圆周且与边界相切时(如图中a 点),切点为带电粒子不能射出磁场的最值点(或恰能射出磁场的临界点).②最值相交:当带电粒子的运动轨迹大于或等于12圆周时,直径与边界相交的点(如图8-2-11(甲)中的b 点)为带电粒子射出边界的最远点(距O 最远).Ⅱ.双直线边界型当粒子源在一条边界上向纸面内各个方向以相同速率发射同一种粒子时,以图8-2-11(乙)中带负电粒子的运动为例.规律要点①最值相切:粒子能从另一边界射出的上、下最远点对应的轨道分别与两直线相切.如图8-2-11(乙)所示.②对称性:过粒子源S 的垂线为ab 的中垂线.在如图(乙)中,a 、b 之间有带电粒子射出,可求得ab =22dr -d 2最值相切规律可推广到矩形区域磁场中.Ⅲ.圆形边界(1)圆形磁场区域规律要点 ①相交于圆心:带电粒子沿指向圆心的方向进入磁场,则出磁场时速度矢量的反向延长线一定过圆心,即两速度矢量相交于圆心,如图8-2-12(甲).②直径最小:带电粒子从直径的一个端点射入磁场,则从该直径的另一端点射出时,磁场区域面积最小.如图8-2-12(乙)所示.(2)环状磁场区域规律要点①径向出入:带电粒子沿(逆)半径方向射入磁场,若能返回同一边界,则一定逆(沿)半径方向射出磁场.②最值相切:当带电粒子的运动轨迹与圆相切时,粒子有最大速度v m 而磁场有最小磁感应强度B .如图8-2-12(丙).图8-2-12图8-2-13【典例】 如8-2-13所示,两个同心圆,半径分别为r 和2r ,在两圆之间的环形区域内存在垂直纸面向里的匀强磁场,磁感应强度为B .圆心O 处有一放射源,放出粒子的质量为m ,带电量为q ,假设粒子速度方向都和纸面平行.(1)图中箭头表示某一粒子初速度的方向,OA 与初速度方向夹角为60°,要想使该粒子经过磁场第一次通过A 点,则初速度的大小是多少(2)要使粒子不穿出环形区域,则粒子的初速度不能超过多少解析 (1)如图所示,设粒子在磁场中的轨道半径为R 1,则由几何关系得R 1=3r 3,又qv 1B =m v 12R 1得v 1=3Bqr 3m .(2)设粒子轨迹与磁场外边界相切时,粒子在磁场中的轨道半径为R 2,则由几何关系有(2r -R 2)2=R 22+r 2可得R 2=3r 4,又qv 2B =m v 22R 2,可得v 2=3Bqr4m故要使粒子不穿出环形区域,粒子的初速度不能超过3Bqr4m .答案 (1)3Bqr 3m (2)3Bqr4m对应学生用书P140图8-2-141.(2011·海南卷,10改编)如图8-2-14所示空间存在方向垂直于纸面向里的匀强磁场,图中的正方形为其边界.一细束由两种粒子组成的粒子流沿垂直于磁场的方向从O 点入射.这两种粒子带同种电荷,它们的电荷量、质量均不同,但其比荷相同,且都包含不同速率的粒子.不计重力,下列说法正确的是( ).A .入射速度不同的粒子在磁场中的运动时间一定不同B .入射速度相同的粒子在磁场中的运动轨迹一定相同C .在磁场中运动时间相同的粒子,其运动轨迹一定相同D .在磁场中运动时间越长的粒子,其轨迹所对的圆心角一定越小解析 带电粒子进入磁场后,在洛伦兹力的作用下做匀速圆周运动,根据qvB =mv 2r 得轨道半径r =mvqB ,粒子的比荷相同.故不同速度的粒子在磁场中运动的轨道半径不同,轨迹不同,相同速度的粒子,轨道半径相同,轨迹相同,故B 正确.带电粒子在磁场中做圆周运动的周期T =2πr v =2πmqB ,故所有带电粒子的运动周期均相同.若带电粒子从磁场左边界射出磁场,则这些粒子在磁场中运动时间是相同的,但不同速度轨迹不同,故A 、C 错误.根据θt =2πT 得θ=2πT t ,所以t 越长,θ越大,故D 错误.答案 B 2.(2011·浙江卷,20改编)利用如图8-2-15所示装置可以选择一定速度范围内的带电粒子.图中板MN 上方是磁感应强度大小为B 、方向垂直纸面向里的匀强磁场,板上有两条宽度分别为2d 和d 的缝,两缝近端相距为L .一群质量为m 、电荷量为q ,具有不同速度的粒子从宽度为2d 的缝垂直于板MN 进入磁场,对于能够从宽度为d 的缝射出的粒子,下列说法正确的是( ).图8-2-15A .粒子带正电B .射出粒子的最大速度为2mqB 3d +LC .保持d 和L 不变,增大B ,射出粒子的最大速度与最小速度之差增大D .保持d 和B 不变,增大L ,射出粒子的最大速度与最小速度之差增大解析 利用左手定则可判定只有负电荷进入磁场时才向右偏,故选项A 错误.利用qvB =mv 2r 知r =mv qB ,能射出的粒子满足L 2≤r ≤L +3d 2,因此对应射出粒子的最大速度v max =qBr max m =qB 3d +L 2m ,选项B 错误.最小速度v min =qBr min m -qBL 2m ,Δv =v max -v min =3qBd2m ,由此式可判定选项C正确,选项D错误.答案C3.(2011·广东卷,35)如图8-2-16(a)所示,在以O为圆心,内外半径分别为R1和R2的圆环区域内,存在辐射状电场和垂直纸面的匀强磁场,内外圆间的电势差U为常量,R1=R0,R2=3R0.一电荷量为+q,质量为m的粒子从内圆上的A点进入该区域,不计重力.(1)已知粒子从外圆上以速度v1射出,求粒子在A点的初速度v0的大小.(2)若撤去电场,如图8-2-16(b),已知粒子从OA延长线与外圆的交点C以速度v2射出,方向与OA延长线成45°角,求磁感应强度的大小及粒子在磁场中运动的时间.(3)在图8-2-16(b)中,若粒子从A点进入磁场,速度大小为v3,方向不确定,要使粒子一定能够从外圆射出,磁感应强度应小于多少图8-2-16解析(1)根据动能定理,qU=12mv12-12mv02,所以v0=v12-2qUm.(2)如图所示,设粒子在磁场中做匀速圆周运动的半径为R,由几何知识可知R2+R2=(R2-R1)2,解得R=2R0.根据洛伦兹力公式和牛顿第二定律qv2B=mv22R.解得B=mv2q2R0=2mv22qR0.根据公式tT=θ2π,2πR=v2T,qv2B=mv22R,解得t=T4=2πm4Bq=2πm4×mv22R0=2πR02v2.(3)考虑临界情况,如图所示①qv3B1′=mv32R0,解得B1′=mv3qR0,②qv 3B 2′=m v 322R 0,解得B 2′=mv 32qR 0,综合得:B ′<mv 32qR 0.答案 (1) v 12-2qU m (2)2mv 22qR 0 2πR 02v 2 (3)mv 32qR 0图8-2-174.(2011·课标全国卷,25)如图8-2-17所示,在区域Ⅰ(0≤x ≤d )和区域Ⅱ(d <x ≤2d )内分别存在匀强磁场,磁感应强度大小分别为B 和2B ,方向相反,且都垂直于Oxy 平面.一质量为m 、带电荷量q (q >0)的粒子a 于某时刻从y 轴上的P 点射入区域Ⅰ,其速度方向沿x 轴正向.已知a 在离开区域Ⅰ时,速度方向与x 轴正向的夹角为30°;此时,另一质量和电荷量均与a 相同的粒子b 也从P 点沿x 轴正向射入区域Ⅰ,其速度大小是a 的13.不计重力和两粒子之间的相互作用力.求:(1)粒子a 射入区域Ⅰ时速度的大小;(2)当a 离开区域Ⅱ时,a 、b 两粒子的y 坐标之差.解析 (1)设粒子a 在Ⅰ内做匀速圆周运动的圆心为C (在y 轴上).半径为R a 1,粒子速率为v a ,运动轨迹与两磁场区域边界的交点为P ′,如图所示.由洛伦兹力公式和牛顿第二定律得qv a B =m v a2R a 1①由几何关系得∠PCP ′=θ②R a 1=d sin θ ③ 式中,θ=30°,由①②③式得v a =2dqB m ④ (2)设粒子a 在Ⅱ内做圆周运动的圆心为O a ,半径为R a 2,射出点为P a (图中未画出轨迹),∠P ′O a P a =θ′.由洛伦兹力公式和牛顿第二定律得qv a (2B )=m v a 2R a 2⑤由①⑤式得R a 2=R a 12⑥C 、P ′和O a 三点共线,且由⑥式知O a 点必位于x =32d ⑦ 的平面上.由对称性知,P a 点与P ′点纵坐标相同,即 y Pa =R a 1cos θ+h ⑧式中,h 是C 点的y 坐标.设b 在Ⅰ中运动的轨道半径为R b 1,由洛伦兹力公式和牛顿第二定律得q ⎝⎛⎭⎫v a 3B =m R b 1⎝⎛⎭⎫v a 32⑨当a 到达P a 点时,b 位于P b 点,转过的角度为α.如果b 没有飞出Ⅰ,则t T a 2=θ′2π⑩t T b 1=α2π式中,t 是a 在区域Ⅱ中运动的时间,而T a 2=2πR a 2v aT b 1=2πR b 1v a 3由⑤⑨⑩式得α=30°由①③⑨式可见,b 没有飞出Ⅰ.P b 点的y 坐标为 y Pb =R b 1(2+cos α)+h由①③⑧⑨式及题给条件得,a 、b 两粒子的y 坐标之差为y Pa -y Pb =23(3-2)d答案 (1)2dqB m (2)23(3-2)d第3讲 带电粒子在复合场中的运动对应学生用书P141复合场 复合场是指电场、磁场和重力场并存,或其中某两场并存,或分区域存在.从场的复合形式上一般可分为如下四种情况:①相邻场;②重叠场;③交替场;④交变场.带电粒子在复合场中的运动分类 1.静止或匀速直线运动当带电粒子在复合场中所受合外力为零时,将处于静止状态或做匀速直线运动. 2.匀速圆周运动当带电粒子所受的重力与电场力大小相等,方向相反时,带电粒子在洛伦兹力的作用下,在垂直于匀强磁场的平面内做匀速圆周运动.3.较复杂的曲线运动当带电粒子所受合外力的大小和方向均变化,且与初速度方向不在同一条直线上,粒子做非匀变速曲线运动,这时粒子运动轨迹既不是圆弧,也不是抛物线.4.分阶段运动带电粒子可能依次通过几个情况不同的复合场区域,其运动情况随区域发生变化,其运电场磁场同区域应用实例装置 原理图 规律速度选择器若qv 0B =Eq ,即v 0=EB ,粒子做匀速直线运动磁流体发电机等离子体射入,受洛伦兹力偏转,使两极板带正、负电,两极电压为U时稳定,qUd=qv0B,U=vBd电磁流量计UD q=qvB所以v=UDB所以Q=vS=UDBπ⎝⎛⎭⎫D22质谱仪、回旋加速器《见第2讲》复合场中重力是否考虑的三种情况(1)对于微观粒子,如电子、质子、离子等,因为其重力一般情况下与电场力或磁场力相比太小,可以忽略.而对于一些实际物体,如带电小球、液滴、金属块等,一般应考虑其重力.(2)在题目中明确说明的按说明要求是否考虑重力.(3)不能直接判断是否考虑重力的,在进行受力分析与运动分析时,要由分析结果确定是否考虑重力.图8-3-11.如图8-3-1是磁流体发电机的原理示意图,金属板M、N正对着平行放置,且板面垂直于纸面,在两板之间接有电阻R.在极板间有垂直于纸面向里的匀强磁场.当等离子束(分别带有等量正、负电荷的离子束)从左向右进入极板时,下列说法中正确的是().①N板的电势高于M板的电势②M板的电势高于N板的电势③R中有由b向a方向的电流④R中有由a向b方向的电流A.①②B.③④C.②④D.①③解析本题考查洛伦兹力的方向的判断,电流形成的条件等知识点.根据左手定则可知正电荷向上极板偏转,负电荷向下极板偏转,则M板的电势高于N板的电势.M板相当于电源的正板,那么R中有由a向b方向的电流.答案C图8-3-22.如图8-3-2所示,有一混合正离子束先后通过正交的电场、磁场区域Ⅰ和匀强磁场区域Ⅱ,如果这束正离子流在区域Ⅰ中不偏转,进入区域Ⅱ后偏转半径r相同,则它们一定具有相同的().A.动能B.质量C.电荷量D.比荷答案D图8-3-33.(2012·南昌高三调研)某空间存在水平方向的匀强电场(图中未画出),带电小球沿如图8-3-3所示的直线斜向下由A点沿直线向B点运动,此空间同时存在由A指向B的匀强磁场,则下列说法正确的是().A.小球一定带正电B.小球可能做匀速直线运动C.带电小球一定做匀加速直线运动D.运动过程中,小球的机械能减少解析本题考查带电体在复合场中的运动问题.由于重力方向竖直向下,空间存在磁场,且直线运动方向斜向下,与磁场方向相同,故不受磁场力作用,电场力必水平向右,但电场具体方向未知,故不能判断带电小球的电性,选项A错误;重力和电场力的合力不为零,故不是匀速直线运动,所以选项B错误;因为重力与电场力的合力方向与运动方向相同,故小球一定做匀加速运动,选项C正确;运动过程中由于电场力做正功,故机械能增大,选项D错误.答案C4.如图8-3-4所示,在空间中存在垂直纸面向里的匀强磁场,其竖直边界AB,CD 的宽度为d,在边界AB左侧是竖直向下、场强为E的匀强电场.现有质量为m、带电量为+q的粒子(不计重力)从P点以大小为v0的水平初速度射入电场,随后与边界AB成45°射入磁场.若粒子能垂直CD边界飞出磁场,穿过小孔进入如图所示两竖直平行金属板间的匀强电场中减速至零且不碰到正极板.(1)请画出粒子上述过程中的运动轨迹,并求出粒子进入磁场时的速度大小v;(2)求匀强磁场的磁感应强度B;(3)求金属板间的电压U的最小值.图8-3-4解析(1)轨迹如图所示v=v0cos 45°=2v0(2)粒子在匀强磁场中做匀速圆周运动设其轨道半径R ,由几何关系可知R =dsin 45°=2d qvB =m v 2R 解得B =mv 0qd(3)粒子进入板间电场至速度减为零的过程,由动能定理有-qU =0-12mv 2 解得U =mv 02q .答案 (1)轨迹见解析图2v 0 (2)mv 0qd (3)mv 02q对应学生用书P142考点一 带电粒子在分离复合场中的运动 “电偏转”和“磁偏转”的比较垂直进入磁场(磁偏转)垂直进入电场(电偏转)情景图受力F B =qv 0B 大小不变,方向总指向圆心,方向变化,F B 为变力 F E =qE ,F E 大小、方向不变,为恒力运动规律 匀速圆周运动r =mv 0Bq ,T =2πmBq类平抛运动v x =v 0,v y =Eqm t x =v 0t ,y =Eq2m t 2续表运动时间 t =θ2πT =θm Bqt =Lv 0,具有等时性动能不变变化【典例1】 在竖直平面内,图8-3-5以虚线为界分布着如图8-3-5所示的匀强电场和匀强磁场,其中匀强电场的方向竖直向下,大小为E ;匀强磁场的方向垂直纸面向里,磁感应强度大小为B .虚线与水平线之间的夹角为θ=45°,一个带负电荷的粒子在O 点以速度v 0水平射入匀强磁场,已知带电粒子所带的电荷量为q ,质量为m (重力忽略不计,电场、磁场区域足够大).求:(1)带电粒子第1次通过虚线时距O 点的距离;(2)带电粒子从O 点开始到第3次通过虚线时所经历的时间; (3)带电粒子第4次通过虚线时距O 点的距离. 解析 带电粒子运动的轨迹如图所示(1)据qv 0B =m v 02r 得r =mv 0qB ,又由几何知识可知:d 1=2r ,解得d 1=2mv 0qB .(2)在磁场中运动时间为t 1=T 4=πm2qB在电场中a =qEm运动时间为t 2=2v 0a =2mv 0qE再一次在磁场中运动t 3=3πm2qB ,所以总时间t =2πm qB +2mv 0qE .(3)再次进入电场中从C 到D 做类平抛运动(如图所示)x =v 0t 4,y =at 422,x =y ,得x =2mv 02qE所以距O 点距离为Δd =2d 1-2x =22mv 0qB -22mv 02qE .答案 (1)2mv 0qB (2)2πm qB +2mv 0qE (3)22mv 0qB -22mv 02qE——解决带电粒子在分离复合场中运动问题的思路方法【变式1】在如图8-3-6所示的空图8-3-6间坐标系中,y 轴的左侧有一匀强电场,场强大小为E ,场强方向与y 轴负方向成30°,y 轴的右侧有一垂直纸面向里的匀强磁场,磁感应强度为B (未画出).现有一质子在x 轴上坐标为x 0=10 cm 处的A 点,以一定的初速度v 0第一次沿x 轴正方向射入磁场,第二次沿x 轴负方向射入磁场,回旋后都垂直于电场方向射入电场,最后又进入磁场.求:(1)质子在匀强磁场中的轨迹半径R ; (2)质子两次在磁场中运动时间之比;(3)若第一次射入磁场的质子经电场偏转后,恰好从第二次射入磁场的质子进入电场的位置再次进入磁场,试求初速度v 0和电场强度E 、磁感应强度B 之间需要满足的条件.解析 (1)质子两次运动的轨迹如图所示,由几何关系可知x 0=R sin 30° 解得R =2x 0=20 cm.(2)第一次射入磁场的质子,轨迹对应的圆心角为θ1=210° 第二次射入磁场的质子,轨迹对应的圆心角为θ2=30°故质子两次在磁场中运动时间之比为t 1∶t 2=θ1∶θ2=7∶1. (3)质子在磁场中做匀速圆周运动时,由ev 0B =m v 02R 得R =mv 0eB设第一次射入磁场的质子,从y 轴上的P 点进入电场做类平抛运动,从y 轴上的Q 点进入磁场,由几何关系得,质子沿y 轴的位移为Δy =2R质子的加速度a =eEm沿电场方向Δy cos 30°=12at 2 垂直电场方向Δy sin 30°=v 0t解得v 0=3E6B .答案 (1)20 cm (2)7∶1 (3)v 0=3E6B 考点二 带电粒子在叠加复合场中的运动 带电粒子(体)在复合场中的运动问题求解要点(1)受力分析是基础.在受力分析时是否考虑重力必须注意题目条件.(2)运动过程分析是关键.在运动过程分析中应注意物体做直线运动,曲线运动及圆周运动、类平抛运动的条件.(3)构建物理模型是难点.根据不同的运动过程及物理模型选择合适的物理规律列方程求解.【典例2】如图8-3-7所示,与水平面成37°的倾斜轨道AC ,其延长线在D 点与半圆轨道DF 相切,全部轨道为绝缘材料制成且位于竖直面内,整个空间存在水平向左的匀强电场,MN 的右侧存在垂直纸面向里的匀强磁场(C 点处于MN 边界上).一质量为0.4 kg 的带电小球沿轨道AC 下滑,至C 点时速度为v C =1007 m/s ,接着沿直线CD 运动到D 处进入半圆轨道,进入时无动能损失,且恰好能通过F 点,在F 点速度v F =4 m/s(不计空气阻力,g =10 m/s 2,cos 37°=.求:图8-3-7(1)小球带何种电荷(2)小球在半圆轨道部分克服摩擦力所做的功;(3)小球从F 点飞出时磁场同时消失,小球离开F 点后的运动轨迹与直线AC (或延长线)的交点为(G 点未标出),求G 点到D 点的距离.解析 (1)正电荷(2)依题意可知小球在CD 间做匀速直线运动在D 点速度为v D =v C =1007m/s在CD 段受重力、电场力、洛伦兹力且合力为0,设重力与电场力的合力为F =qv C B又F =mg cos 37°=5 N 解得qB =F v C=720在F 处由牛顿第二定律可得qv F B +F =mv F 2R把qB =720代入得R =1 m小球在DF 段克服摩擦力做功W f ,由动能定理可得-W f -2FR =mv F 2-v D 22 W f = J(3)小球离开F 点后做类平抛运动,其加速度为a =Fm 由2R =at 22得t = 4mR F =2 25 s 交点G 与D 点的距离GD =v F t =1.6 2 m =2.26 m.答案 见解析 【变式2】 (2011·广东六校联合体联考)图8-3-8 如图8-3-8所示,竖直平面内有相互垂直的匀强电场和匀强磁场,电场强度E 1=2 500N/C ,方向竖直向上;磁感应强度B =103T ,方向垂直纸面向外;有一质量m =1×10-2kg 、电荷量q =4×10-5C 的带正电小球自O 点沿与水平线成45°角以v 0=4 m/s 的速度射入复合场中,之后小球恰好从P 点进入电场强度E 2=2 500 N/C ,方向水平向左的第二个匀强电场中.不计空气阻力,g 取10 m/s 2.求:(1)O 点到P 点的距离s 1;(2)带电小球经过P 点的正下方Q 点时与P 点的距离s 2.解析 (1)带电小球在正交的匀强电场和匀强磁场中受到的重力G =mg = N 电场力F 1=qE 1= N即G =F 1,故带电小球在正交的电磁场中由O 到P 做匀速圆周运动根据牛顿第二定律得qv 0B =m v 02R解得:R =mv 0qB =1×10-2×44×10-5×103m =1 m 由几何关系得:s 1=2R = 2 m.(2)带电小球在P 点的速度大小仍为v 0=4 m/s ,方向与水平方向成45°.由于电场力F 2=qE 2= N ,与重力大小相等,方向相互垂直,则合力的大小为F =210 N ,方向与初速度方向垂直,故带电小球在第二个电场中做类平抛运动建立如图所示的x 、y 坐标系,沿y 轴方向上,带电小球的加速度a =Fm =102m/s 2,位移y =12at 2沿x 轴方向上,带电小球的位移x =v 0t由几何关系有:y =x 即:12at 2=v 0t ,解得:t =25 2 sQ 点到P 点的距离s 2=2x =2×4×25 2 m =3.2 m.答案 (1) 2 m (2)3.2 m对应学生用书P14411.带电粒子“在复合场中运动的轨迹”模型(1)模型概述当带电粒子沿不同方向进入电场或磁场时,粒子做各种各样的运动,形成了异彩纷呈的轨迹图形.对带电粒子而言“受力决定运动,运动描绘轨迹,轨迹涵盖方程”.究竟如何构建轨迹模型,至关重要.首先应根据电场力和洛伦兹力的性质找出带电粒子所受到的合力,再由物体做曲线运动的条件确定曲线形式.(2)模型分类 ①“拱桥”型图8-3-9【典例1】 如图8-3-9所示,在x 轴上方有垂直于xOy 平面的匀强磁场,磁感应强度为B ,在x 轴下方有沿y 轴负方向的匀强电场,场强为E ,一质量为m 、电荷量为q 的粒子从坐标原点O 沿着y 轴正方向射出,射出之后,第三次到达x 轴时,它与O 点的距离为L ,求此时粒子射出时的速度和运动的总路程(重力不计).解析 画出粒子运动轨迹如图所示,形成“拱桥”图形.由题可知粒子轨道半径R =L4.由牛顿运动定律知粒子运动速率为v =BqR m =BqL4m设粒子进入电场后沿y 轴负方向做减速运动的最大路程为y ,由动能定理知12mv 2=qEy ,得y =qB 2L 232mE所以粒子运动的总路程为x =qB 2L 216mE +12πL . ②“心连心”型图8-3-10【典例2】 如图8-3-10所示,一理想磁场以x 轴为界,下方磁场的磁感应强度是上方磁感应强度B 的两倍.今有一质量为m 、电荷量为+q 的粒子,从原点O 沿y 轴正方向以速度v 0射入磁场中,求此粒子从开始进入磁场到第四次通过x 轴的位置和时间(重力不计).解析 由r =mv Bq 知粒子在x 轴上方做圆周运动的轨道半径r 1=mv 0Bq ,在x 轴下方做圆周运动的轨道半径r 2=mv 02Bq ,所以r 1=2r 2现作出带电粒子的运动的轨迹如图所示,形成“心连心”图形,所以粒子第四次经过x 轴的位置和时间分别为x =2r 1=2mv 0Bqt =T 1+T 2=2πm Bq +2πm 2Bq =3πmBq③“葡萄串”型【典例3】 如图8-3-11甲所示 ,互相平行且水平放置的金属板,板长L =1.2 m ,两板距离d =0.6 m ,两板间加上U = V 恒定电压及随时间变化的磁场,磁场变化规律如图8-3-11乙所示,规定磁场方向垂直纸面向里为正.当t =0时,有一质量为m =×10-6kg 、电荷量q =+×10-4C 的粒子从极板左侧以v 0=×103m/s 沿与两板平行的中线OO ′射入,取g =10 m/s 2、π=.求:图8-3-11(1)粒子在0~×10-4s 内位移的大小x ; (2)粒子离开中线OO ′的最大距离h ; (3)粒子在板间运动的时间t ;(4)画出粒子在板间运动的轨迹图.解析 (1)由题意知:Eq =U d q =×10-5N ①而mg =×10-5N ② 显然Eq =mg ③ 故粒子在0~×10-4s 时间内做匀速直线运动,因为Δt =×10-4s , 所以x =v 0Δt =0.4 m ④(2)在×10-4~×10-4s 时间内,电场力与重力平衡,粒子做匀速圆周运动,因为T =2πm qB =×10-4s ⑤ 故粒子在×10-4~×10-4s 时间内恰好完成一个周期圆周运动⑥由牛顿第二定律得:qv 0B =mv 02R ⑦R =mv 0qB =0.064 m ⑧h =2R =0.128 m<d2.所以粒子离开中线OO ′的最大距离h =0.128 m .⑨ (3)板长L =1.2 m =3 x ⑩t =2T +3Δt =×10-4s(4)轨迹如图对应学生用书P145图8-3-121.(2011·大纲全国卷,25)如图8-3-12所示,与水平面成45°角的平面MN 将空间分成Ⅰ和Ⅱ两个区域.一质量为m 、电荷量为q (q >0)的粒子以速度v 0从平面MN 上的P 0点水平向右射入Ⅰ区.粒子在Ⅰ区运动时,只受到大小不变、方向竖直向下的电场作用,电场强度大小为E ;在Ⅱ区运动时,只受到匀强磁场的作用,磁感应强度大小为B ,方向垂直于纸面向里.求粒子首次从Ⅱ区离开时到出发点P 0的距离.粒子的重力可以忽略.解析 带电粒子进入电场后, 在电场力的作用下做类平抛运动,其加速度方向竖直向下,设其大小为a , 由牛顿运动定律得qE =ma ①设经过时间t 0粒子从平面MN 上的点P 1进入磁场,由运动学公式和几何关系得v 0t 0=12at 02②粒子速度大小v 1=v 02+at 02③设速度方向与竖直方向的夹角为α,则tan α=v 0at 0④此时粒子到出发点P 0的距离为 s 0=2v 0t 0⑤此后,粒子进入磁场,在洛伦兹力作用下做匀速圆周运动,圆周半径为r 1=mv 1qB ⑥设粒子首次离开磁场的点为P 2,弧P 1P 2所对的圆心角为2β,则点P 1到点P 2的距离为 s 1=2r 1sin β⑦ 由几何关系得 α+β=45°⑧联立①②③④⑥⑦⑧式得s 1=2mv 0qB ⑨点P 2与点P 0相距l =s 0+s 1⑩联系①②⑤⑨⑩解得l =2mv 0q⎝⎛⎭⎫2v 0E +1B 答案 2mv 0q ⎝⎛⎭⎫2v 0E +1B图8-3-132.(2011·安徽卷,23)如图8-3-13所示,在以坐标原点O 为圆心、半径为R 的半圆形区域内,有相互垂直的匀强电场和匀强磁场,磁感应强度为B ,磁场方向垂直于xOy 平面向里.一带正电的粒子(不计重力)从O 点沿y 轴正方向以某一速度射入,带电粒子恰好做匀速直线运动,经t 0时间从P 点射出.(1)求电场强度的大小和方向;(2)若仅撤去磁场,带电粒子仍从O 点以相同的速度射入,经t 02时间恰从半圆形区域的边界射出.求粒子运动加速度的大小;(3)若仅撤去电场,带电粒子仍从O 点射入,但速度为原来的4倍,求粒子在磁场中运动的时间.解析 (1)因为带电粒子进入复合场后做匀速直线运动,则qv 0B =qE ① R =v 0t 0②由①②联立解得E =BRt 0,方向沿x 轴正方向.(2)若仅撤去磁场,带电粒子在电场中做类平抛运动,沿y 轴正方向做匀速直线运动y =v 0·t 02=R 2③沿x 轴正方向做匀加速直线运动x =12at 2④由几何关系知x = R 2-R 24=32R ⑤解得a =43Rt 02(3)仅有磁场时,入射速度v ′=4v ,带电粒子在匀强磁场中做匀速圆周运动,设轨道半径为r ,由牛顿第二定律有qv ′B =m v ′2r ⑥ 又qE =ma ⑦可得r =3R3⑧由几何知识sin α=R2r ⑨即sin α=32,α=π3⑩带电粒子在磁场中运动周期T =2πmqB则带电粒子在磁场中运动时间t ′=2α2πT ,所以t ′=3π18t 0. 答案 见解析 3.(2011·重庆卷,25)某仪器用电场和磁场来控制电子在材料表面上方的运动.如图8-3-14所示,材料表面上方矩形区域PP ′N ′N 充满竖直向下的匀强电场,宽为d ;矩形区域NN ′M ′M 充满垂直纸面向里的匀强磁场,磁感应强度为B ,长为3s ,宽为s ;NN ′为磁场与电场之间的薄隔离层.一个电荷量为e 、质量为m 、初速为零的电子,从P 点开始被电场加速经隔离层垂直进入磁场,电子每次穿越隔离层,运动方向不变,其动能损失是每次穿越前动能的10%,最后电子仅能从磁场边界M ′N ′飞出.不计电子所受重力.图8-3-14(1)求电子第二次与第一次圆周运动半径之比. (2)求电场强度的取值范围.(3)A 是M ′N ′的中点,若要使电子在A 、M ′间垂直于AM ′飞出,求电子在磁场区域中运动的时间.解析 (1)设圆周运动的半径分别为R 1、R 2、…R n 、R n +1…,第一和第二次圆周运动速率分别为v 1和v 2,动能分别为E k1和E k2.由:E k2=,R 1=mv 1Be ,R 2=mv 2Be ,E k1=12mv 12,E k2=12mv 22,得R 2∶R 1=. (2)设电场强度为E ,第一次到达隔离层前的速率为v ′.由eEd =12mv ′2,×12mv ′2=12mv 12,R 1≤s得E ≤5B 2es 29md ,又由:R n =-1R 1, 2R 1(1+++…++…)>3s得E >B 2es 280md ,故B 2es 280md <E ≤5B 2es 29md .(3)设电子在匀强磁场中,圆周运动的周期为T ,运动的半圆周个数为n ,运动总时间为t .由题意,有错误!+R n +1=3s ,R 1≤s ,R n +1=,R n +1≥错误!,得n =2,又由T =错误!.得:t =5πm 2eB .答案 (1) (2)B 2es 280md <E ≤5B 2es 29md (3)5πm2eB。

相关文档
最新文档