高考物理二轮复习考点第九章磁场专题扇形边界磁场问题

合集下载

高考物理二轮复习考点第九章磁场专题矩形边界和正多边形边界磁场问题

高考物理二轮复习考点第九章磁场专题矩形边界和正多边形边界磁场问题

专题9.9 矩形边界和正多边形边界磁场问题一.选择题1.(2020·山东淄博模拟)如图所示,正方形abcd 区域内有垂直于纸面向里的匀强磁场,O 点是cd 边的中点。

一个带正电的粒子(重力忽略不计)从O 点沿纸面以垂直于cd 边的速度射入正方形区域内,经过时间t 0刚好从c 点射出磁场。

现设法使该带电粒子从O 点沿纸面以与Od 成30°的方向(如图中虚线所示),以各种不同的速率射入正方形内,那么下列说法正确的是A .该带电粒子不可能刚好从正方形的某个顶点射出磁场B .若该带电粒子从ab 边射出磁场,它在磁场中经历的时间可能是t 0C .若该带电粒子从bc 边射出磁场,它在磁场中经历的时间可能是032t D .若该带电粒子从cd 边射出磁场,它在磁场中经历的时间一定是053t 【参考答案】AD【名师解析】根据题述一个带正电的粒子(重力忽略不计)从O 点沿纸面以垂直于cd 边的速度射入正方形区域内,经过时间t 0刚好从c 点射出磁场,则时间t 0为带电粒子在磁场中运动的半个周期。

使该带电粒子从O 点沿纸面以与Od 成30°的方向(如图中虚线所示),以各种不同的速率射入正方形内,画出各种可能的运动轨迹,可以看出不可能刚好从正方形的某个顶点射出磁场,选项A 正确。

若该带电粒子从ab 边射出磁场,它在磁场中经历的时间一定小于t 0,选项B 错误。

若该带电粒子从bc 边射出磁场,它在磁场中经历的时间不可能是032t ,可能是t 0,选项C 错误。

若该带电粒子从cd 边射出磁场,它在磁场中运动轨迹为5/6圆弧,经历的时间一定是053t ,选项D 正确。

【技巧点拨】】解答此题,若对各个选项叙述的情景画出轨迹图,有助于正确判断。

2.(2020·陕西宝鸡一模)如图所示,横截面为正方形abcd 的有界匀强磁场,磁场方向垂直纸面向里。

一束电子以大小不同、方向垂直ad 边界的速度飞入该磁场,不计电子重力及相互之间的作用,对于从不同边界射出的电子,下列判断正确的是( )A.从ad边射出的电子在磁场中运动的时间都相等B.从c点离开的电子在磁场中运动时间最长C.电子在磁场中运动的速度偏转角最大为πD.从bc边射出的电子的速度一定大于从ad边射出的电子的速度【参考答案】ACD3. (2020高考四川理综物理)如图所示,正六边形abcdef区域内有垂直于纸面的匀强磁场。

高中物理高频考点《边界磁场问题分析与强化训练》(附详细参考答案)

高中物理高频考点《边界磁场问题分析与强化训练》(附详细参考答案)

边界磁场问题分析与强化训练(附详细参考答案)一、边界磁场问题分析及例题讲解:1.带电粒子在有界磁场中运动的常见情形(1)直线边界(进出磁场具有对称性,如图所示)(2)平行边界(存在临界条件,如图所示)(3)圆形边界(沿径向射入必沿径向射出,如图所示)(4)矩形边界:如图所示,可能会涉及与边界相切、相交等临界问题。

(5)三边形边界:如图所示是正△ABC区域内某正粒子垂直AB方向进入磁场的粒子临界轨迹示意图。

已知边长为2a,D点距A点3a,粒子能从AB间射出的临界轨迹如图甲所示,粒子能从AC间射出的临界轨迹如图乙所示。

2.带电粒子在有界磁场中的常用几何关系(1)四个点:分别是入射点、出射点、轨迹圆心和入射速度直线与出射速度直线的交点。

(2)三个角:速度偏转角、圆心角、弦切角,其中偏转角等于圆心角,也等于弦切角的2倍。

3.几点注意(1)当带电粒子射入磁场时的速度v大小一定,但射入方向变化时,粒子做圆周运动的轨道半径R是确定的。

在确定粒子运动的临界情景时,可以以入射点为定点,将轨迹圆旋转,作出一系列轨迹,从而探索出临界条件。

(2)当带电粒子射入磁场的方向确定,但射入时的速度v大小或磁场的磁感应强度B 变化时,粒子做圆周运动的轨道半径R随之变化.可以以入射点为定点,将轨道半径放缩,作出一系列的轨迹,从而探索出临界条件。

4.求解带电粒子在有界匀强磁场中运动的临界和极值问题的方法由于带电粒子往往是在有界磁场中运动,粒子在磁场中只运动一段圆弧就飞出磁场边界,其轨迹不是完整的圆,因此,此类问题往往要根据带电粒子运动的轨迹作相关图去寻找几何关系,分析临界条件(①带电体在磁场中,离开一个面的临界状态是对这个面的压力为零;②射出或不射出磁场的临界状态是带电体运动的轨迹与磁场边界相切。

),然后应用数学知识和相应物理规律分析求解。

(1)两种思路一是以定理、定律为依据,首先求出所研究问题的一般规律和一般解的形式,然后再分析、讨论临界条件下的特殊规律和特殊解;二是直接分析、讨论临界状态,找出临界条件,从而通过临界条件求出临界值。

高考物理课件 第九章 磁场 专题九课件

高考物理课件 第九章 磁场 专题九课件
【答案】 B
角度 3 电场、磁场与重力场叠加
例 6 (2017·新课标全国卷Ⅰ,16)如图,空间某区域存在匀强
电场和匀强磁场,电场方向竖直向上(与纸面平行),磁场方向垂直 于纸面向里.三个带正电的微粒 a、b、c 电荷量相等,质量分别为 ma、mb、mc.已知在该区域内,a 在纸面内做匀速圆周运动,b 在纸 面内向右做匀速直线运动,c 在纸面内向左做匀速直线运动.下列 选项正确的是( )
例 2 如图所示,一个质量为 m、电荷量为 q 的正离子,在 D
处沿图示方向以一定的速度射入磁感应强度为 B 的匀强磁场中,磁 场方向垂直纸面向里.结果离子正好从距 A 点为 d 的小孔 C 沿垂直 于电场方向进入匀强电场,此电场方向与 AC 平行且向上,最后离 子打在 G 处, 而 G 处距 A 点 2d(AG⊥AC)不计离子重力,离子运 动轨迹在纸面内.求:
【解析】 设质子质量为 m,电荷量为 q,则氘核质量为 2m,
A.E′k=Ek B.E′k>Ek C.E′k<Ek D.条件不足,难以确定
【解析】 设质子的质量为 m,则氘核的质量为 2m.在加速电 场中,由动能定理可得 eU=12mv2,在复合场内,由 Bqv=qE 得 v =EB;同理对于氘核由动能定理可得离开加速电场的速度比质子的 速度小,所以当它进入复合场时所受的洛伦兹力小于电场力,将往 电场力方向偏转,电场力做正功,故动能增大,选项 B 正确.
【解析】 由 A、B 相碰时动量守恒 mv=2mv′,有 v′=v2. 据题意碰后 A、B 合成的大油滴仍受重力与电场力平衡,合外力是 洛伦兹力,所以继续做匀速圆周运动,且有
r=2m2qvB′=2mqvB=R2 T=22πq2Bm=2qπBm 转动半径为R2,周期不变.选项 B 正确. 【答案】 B

高考物理二轮复习:电磁感应定律及综合应用知识点解析及专题练习

高考物理二轮复习:电磁感应定律及综合应用知识点解析及专题练习

专题九电磁感应定律及综合应用电磁感应是电磁学中最为重要的内容,也是高考命题频率最高的内容之一。

题型多为选择题、计算题。

主要考查电磁感应、楞次定律、法拉第电磁感应定律、自感等知识。

本部分知识多结合电学、力学部分出压轴题,其命题形式主要是电磁感应与电路规律的综合应用、电磁感应与力学规律的综合应用、电磁感应与能量守恒的综合应用。

复习中要熟练掌握感应电流的产生条件、感应电流方向的判断、感应电动势的计算,还要掌握本部分内容与力学、能量的综合问题的分析求解方法。

预测高考重点考查法拉第电磁感应定律及楞次定律和电路等效问题.综合试题还是涉及到力和运动、动量守恒、能量守恒、电路分析、安培力等力学和电学知识.主要的类型有滑轨类问题、线圈穿越有界磁场的问题、电磁感应图象的问题等.此除日光灯原理、磁悬浮原理、电磁阻尼、超导技术这些在实际中有广泛的应用问题也要引起重视。

知识点一、法拉第电磁感应定律法拉第电磁感应定律的内容是感应电动势的大小与穿过回路的磁通量的变化率成正比.在具体问题的分析中,针对不同形式的电磁感应过程,法拉第电磁感应定律也相应有不同的表达式或计算式.磁通量变化的形式表达式备注通过n 匝线圈内的磁通量发生变化E =n ·ΔΦΔt(1)当S 不变时,E =nS ·ΔB Δt (2)当B 不变时,E =nB ·ΔS Δt 导体垂直切割磁感线运动E =BLv 当v ∥B 时,E =0导体绕过一端且垂直于磁场方向的转轴匀速转动E =12BL 2ω线圈绕垂直于磁场方向的转轴匀速转动E =nBSω·sin ωt 当线圈平行于磁感线时,E 最大为E =nBSω,当线圈平行于中性面时,E =0知识点二、楞次定律与左手定则、右手定则1.左手定则与右手定则的区别:判断感应电流用右手定则,判断受力用左手定则.2.应用楞次定律的关键是区分两个磁场:引起感应电流的磁场和感应电流产生的磁场.感应电流产生高考物理二轮复习:电磁感应定律及综合应用知识点解析及专题练习的磁场总是阻碍引起感应电流的磁场的磁通量的变化,“阻碍”的结果是延缓了磁通量的变化,同时伴随着能量的转化.3.楞次定律中“阻碍”的表现形式:阻碍磁通量的变化(增反减同),阻碍相对运动(来拒去留),阻碍线圈面积变化(增缩减扩),阻碍本身电流的变化(自感现象).知识点三、电磁感应与电路的综合电磁感应与电路的综合是高考的一个热点内容,两者的核心内容与联系主线如图4-12-1所示:1.产生电磁感应现象的电路通常是一个闭合电路,产生电动势的那一部分电路相当于电源,产生的感应电动势就是电源的电动势,在“电源”内部电流的流向是从“电源”的负极流向正极,该部分电路两端的电压即路端电压,U =R R +rE .2.在电磁感应现象中,电路产生的电功率等于内外电路消耗的功率之和.若为纯电阻电路,则产生的电能将全部转化为内能;若为非纯电阻电路,则产生的电能除了一部分转化为内能,还有一部分能量转化为其他能,但整个过程能量守恒.能量转化与守恒往往是电磁感应与电路问题的命题主线,抓住这条主线也就是抓住了解题的关键.在闭合电路的部分导体切割磁感线产生感应电流的问题中,机械能转化为电能,导体棒克服安培力做的功等于电路中产生的电能.说明:求解部分导体切割磁感线产生的感应电动势时,要区别平均电动势和瞬时电动势,切割磁感线的等效长度等于导线两端点的连线在运动方向上的投影.高频考点一对楞次定律和电磁感应图像问题的考查例1、(多选)(2019·全国卷Ⅰ·20)空间存在一方向与纸面垂直、大小随时间变化的匀强磁场,其边界如图4(a)中虚线MN 所示.一硬质细导线的电阻率为ρ、横截面积为S ,将该导线做成半径为r 的圆环固定在纸面内,圆心O 在MN 上.t =0时磁感应强度的方向如图(a)所示;磁感应强度B 随时间t 的变化关系如图(b)所示.则在t =0到t =t 1的时间间隔内()图4A.圆环所受安培力的方向始终不变B.圆环中的感应电流始终沿顺时针方向C.圆环中的感应电流大小为B0rS4t0ρD.圆环中的感应电动势大小为B0πr24t0【举一反三】(2018年全国II卷)如图,在同一平面内有两根平行长导轨,导轨间存在依次相邻的矩形匀强磁场区域,区域宽度均为l,磁感应强度大小相等、方向交替向上向下。

带电粒子在磁场中的运动(单边界、双边界、三角形、四边形、圆边界、临界问题、多解问题)(解析版)

带电粒子在磁场中的运动(单边界、双边界、三角形、四边形、圆边界、临界问题、多解问题)(解析版)

带电粒子在磁场中的运动(单边界、双边界、三角形、四边形、圆边界、临界问题、多解问题)建议用时:60分钟带电粒子在磁场中的运动A.M带正电,N带负电B.M的速率小于N的速率A.1kBL,0°B3【答案】B【详解】若离子通过下部分磁场直接到达根据几何关系则有:R由:2v qvB mR=可得:qBLv kBLm==根据对称性可知出射速度与当离子在两个磁场均运动一次时,如图乙所示,因为两个磁场的磁感应强度大小均为根据洛伦兹力提供向心力,有:可得:122qBLv kBLm==此时出射方向与入射方向相同,即出射方向与入射方向的夹角为:通过以上分析可知当离子从下部分磁场射出时,需满足:此时出射方向与入射方向的夹角为:A.从ab边射出的粒子的运动时间均相同B.从bc边射出的粒子在磁场中的运动时间最长为C.粒子有可能从c点离开磁场D.若要使粒子离开长方形区域,速率至少为可见从ab射出的粒子做匀速圆周运动的半径不同,对应的圆心角不相同,所以时间也不同,故B.从bc边射出的粒子,其最大圆心角即与A .粒子的速度大小为2qBdmB .从O 点射出的粒子在磁场中的运动时间为C .从x 轴上射出磁场的粒子在磁场中运动的最长时间与最短时间之比为D .沿平行x 轴正方向射入的粒子离开磁场时的位置到得:R d=由洛仑兹力提供向心力可得:Bqv m=得:qBd v m=A 错误;A .如果0v v >,则粒子速度越大,在磁场中运动的时间越长B .如果0v v >,则粒子速度越大,在磁场中运动的时间越短C .如果0v v <,则粒子速度越大,在磁场中运动的时间越长D .如果0v v <,则粒子速度越大,在磁场中运动的时间越短【答案】B该轨迹恰好与y 轴相切,若上移,可知,对应轨迹圆心角可知,粒子在磁场中运动的时间越短,故CD .若0v v <,结合上述可知,飞出的速度方向与x 轴正方向夹角仍然等于A .粒子能通过cd 边的最短时间B .若粒子恰好从c 点射出磁场,粒子速度C .若粒子恰好从d 点射出磁场,粒子速度7.(2024·广西钦州·模拟预测)如图所示,有界匀强磁场的宽度为粒子以速度0v垂直边界射入磁场,离开磁场时的速度偏角为( )A.带电粒子在匀强磁场中做圆周运动的轨道半径为B.带电粒子在匀强磁场中做圆周运动的角速度为C.带电粒子在匀强磁场中运动的时间为D.匀强磁场的磁感应强度大小为【答案】B【详解】A.由几何关系可知,带电粒子在匀强磁场中做圆周运动的轨道半径为:A.该匀强磁场的磁感应强度B.带电粒子在磁场中运动的速率C.带电粒子在磁场中运动的轨道半径D.带电粒子在磁场中运动的时间C.根据几何关系可得:cos30aR = o所以:233R a =故C正确;AB.在磁场中由洛伦兹力提供向心力,即:A.从c点射出的粒子速度偏转角度最大C.粒子在磁场运动的最大位移为10.(2024·四川乐山·三模)如图所示,在一个半径为面向里的匀强磁场,O 为区域磁场圆心。

2020版高考物理一轮复习试题:第九章 磁场 专题69 带电粒子在圆形边界磁场中的运动(含答案)

2020版高考物理一轮复习试题:第九章 磁场 专题69 带电粒子在圆形边界磁场中的运动(含答案)

69带电粒子在圆形边界磁场中的运动[方法点拨] (1)带电粒子进入圆形边界磁场,一般需要连接磁场圆圆心与两圆交点(入射点与出射点)连线,轨迹圆圆心与两交点连线;(2)轨迹圆半径与磁场圆半径相等时会有磁聚焦现象;(3)沿磁场圆半径方向入射的粒子,将沿半径方向出射.1.如图1所示圆形区域内,有垂直于纸面方向的匀强磁场.一束质量和电荷量都相同的带电粒子,以不同的速率,沿着相同的方向,对准圆心O 射入匀强磁场,又都从该磁场中射出.这些粒子在磁场中的运动时间有的较长,有的较短.若带电粒子在磁场中只受磁场力的作用,则在磁场中运动的带电粒子( )图1A .速率越大的运动时间越长B .运动时间越长的周期越大C .速率越小的速度方向变化的角度越小D .运动时间越长的半径越小2.(2018·四川德阳三校联合测试)如图2所示,半径为R 的圆是一圆柱形匀强磁场区域的横截面(纸面),磁感应强度大小为B 、方向垂直于纸面向外,一电荷量为q 、质量为m 的负离子沿平行于直径ab 的方向射入磁场区域,射入点与ab 的距离为R2.已知离子射出磁场与射入磁场时运动方向间的夹角为60°,则离子的速率为(不计重力)( )图2A.qBR 2m B.qBR m C.3qBR 2m D.2qBR m3.如图3所示,空间有一圆柱形匀强磁场区域,O 点为圆心,磁场方向垂直于纸面向外.一带正电的粒子从A 点沿图示箭头方向以速率v 射入磁场,θ=30°,粒子在纸面内运动,经过时间t 离开磁场时速度方向与半径OA 垂直.不计粒子重力.若粒子速率变为v2,其他条件不变,粒子在圆柱形磁场中运动的时间为( )图3A.t 2 B .t C.3t2D .2t 4.(多选)(2017·湖南怀化二模)如图4所示,竖直平面内一半径为R 的圆形区域内有磁感应强度为B 的匀强磁场,方向垂直纸面向外.一束质量为m 、电荷量为q 的带正电粒子沿平行于直径MN 的方向进入匀强磁场,粒子的速度大小不同,重力不计,入射点P 到直径MN 的距离为h (h <R ),则( )图4A .若某粒子经过磁场射出时的速度方向恰好与其入射方向相反,则该粒子的入射速度是qBh mB .恰好能从M 点射出的粒子速度为qBR (R -R 2-h 2)mhC .若h =R 2,粒子从P 点经磁场到M 点的时间是3πm2BqD .当粒子轨道半径r =R 时,粒子从圆形磁场区域最低点射出5.(多选)(2018·福建蒲田八中暑假考)如图5所示,匀强磁场分布在半径为R 的14圆形区域MON 内,Q 为半径ON 上的一点且OQ =22R ,P 点为边界上一点,且PQ 与MO 平行.现有两个完全相同的带电粒子以相同的速度射入磁场(不计粒子重力及粒子间的相互作用),其中粒子1从M 点正对圆心射入,恰从N 点射出,粒子2从P 点沿PQ 射入,下列说法正确的是( )图5A .粒子2一定从N 点射出磁场B .粒子2在P 、N 之间某点射出磁场C .粒子1与粒子2在磁场中的运行时间之比为3∶2D .粒子1与粒子2在磁场中的运行时间之比为2∶16.(多选)(2017·河南郑州、平顶山、濮阳二模)如图6所示,半径为R 的圆形区域内有垂直纸面向里的匀强磁场,磁感应强度为B .M 为磁场边界上一点,有无数个带电荷量为+q 、质量为m 的相同粒子(不计重力)在纸面内向各个方向以相同的速率通过M 点进入磁场,这些粒子射出边界的位置均处于边界的某一段圆弧上,这段圆弧的弧长是圆周长的13.下列说法中正确的是( )图6A .粒子从M 点进入磁场时的速率为v =3qBR2mB .粒子从M 点进入磁场时的速率为v =qBR mC .若将磁感应强度的大小增加到3B ,则粒子射出边界的圆弧长度变为原来的12D .若将磁感应强度的大小增加到62B ,则粒子射出边界的圆弧长度变为原来的137.(多选)(2017·河北衡水中学七调)如图7所示是一个半径为R 的竖直圆形磁场区域,磁感应强度大小为B ,磁感应强度方向垂直纸面向内.有一个粒子源在圆上的A 点不停地发射出速率相同的带正电的粒子,带电粒子的质量均为m ,运动的半径为r ,在磁场中的轨迹所对应的圆心角为α.以下说法正确的是( )图7A .若r =2R ,则粒子在磁场中运动的最长时间为πm6qBB .若r =2R ,粒子沿着与半径方向成45°角斜向下射入磁场,则有关系tan α2=22+17成立C .若r =R ,粒子沿着磁场的半径方向射入,则粒子在磁场中的运动时间为πm3qBD .若r =R ,粒子沿着与半径方向成60°角斜向下射入磁场,则圆心角α为150° 8.(2017·河北石家庄第二次质检)如图8所示,圆心为O 、半径为R 的圆形磁场区域中存在垂直纸面向外的匀强磁场,以圆心O 为坐标原点建立坐标系,在y =-3R 处有一垂直y 轴的固定绝缘挡板,一质量为m 、带电荷量为+q 的粒子,与x 轴成60°角从M 点(-R,0)以初速度v 0斜向上射入磁场区域,经磁场偏转后由N 点离开磁场(N 点未画出)恰好垂直打在挡板上,粒子与挡板碰撞后原速率弹回,再次进入磁场,最后离开磁场.不计粒子的重力,求:图8(1)磁感应强度B 的大小; (2)N 点的坐标;(3)粒子从M 点进入磁场到最终离开磁场区域运动的总时间.答案精析1.D2.D [设离子在匀强磁场中运动轨迹的半径为r ,速率为v .根据题述,离子射出磁场与射入磁场时速度方向之间的夹角为60°,可知离子运动轨迹所对的圆心角为60°,由几何关系知r sin 30°=R .由qvB =m v 2r ,解得v =2qBRm,选项D 正确.]3.C [粒子以速率v 垂直OA 方向射出磁场,由几何关系可知,粒子运动的轨迹半径为r =R =mv qB ,粒子在磁场中运动轨迹所对应的圆心角等于粒子速度的偏转角,即2π3;当粒子速率变为v 2时,粒子运动的轨迹半径减为R2,如图所示,粒子偏转角为π,由粒子在磁场中运动时间t 与轨迹所对应的圆心角成正比和匀速圆周运动周期T =2πm qB可知,粒子减速后在磁场中运动时间为1.5t ,C 项正确.]4.ABD [粒子出射方向与入射方向相反,在磁场中走了半周,其半径r 1=h ,由牛顿第二定律得:qv 1B =m v 12r 1,解得:v 1=qBhm,选项A 正确;粒子从M 点射出,其运动轨迹如图,在△MQO 1中,r 22=(R -R 2-h 2)2+(h -r 2)2解得:r 2=R 2-R R 2-h 2h ,由牛顿第二定律得:qv 2B =m v 22r 2,解得:v 2=qBR (R -R 2-h 2)mh ,选项B 正确;若h =R 2,sin∠POQ =h R =12,解得:∠POQ =π6,由几何关系得粒子在磁场中偏转所对应的圆心角为α=76π,粒子做圆周运动的周期:T =2πmqB,粒子的运动时间:t =α2πT =7πm6qB,选项C 错误;当粒子轨道半径r =R 时,其做匀速圆周运动的轨迹如图所示,圆心为O ′,分别连接两圆心与两交点,则恰好形成一个菱形,由于PO ′∥OJ ,所以粒子从最低点J 点射出,选项D 正确.]5.AD [如图所示,粒子1从M 点正对圆心射入,恰从N 点射出,根据洛伦兹力指向圆心,和MN 的中垂线过圆心,可确定圆心为O 1,半径为R .两个完全相同的带电粒子以相同的速度射入磁场,粒子运动的半径相同.粒子2从P 点沿PQ 射入,根据洛伦兹力指向圆心,圆心O 2应在P 点上方R 处,连接O 2P 、ON 、OP 、O 2N ,O 2PON 为菱形,O 2N 大小为R ,所以粒子2一定从N 点射出磁场,A 正确,B 错误.∠MO 1N =90°,∠PO 2N =∠POQ ,cos ∠POQ =OQOP=22,所以∠PO 2N =∠POQ =45°.两个完全相同的带电粒子以相同的速度射入磁场,粒子运动的周期相同.粒子运动时间与运动轨迹所对的圆心角成正比,所以粒子1与粒子2在磁场中的运行时间之比为2∶1,C 错误,D 正确.] 6.AC7.BD [若r =2R ,粒子在磁场中运动时间最长时,磁场区域的直径是轨迹的一条弦,作出轨迹如图甲所示,因为r =2R ,圆心角θ=60°,粒子在磁场中运动的最长时间t max =60°360°T =16·2πm qB =πm3qB,故A 错误.若r =2R ,粒子沿着与半径方向成45°角斜向下射入磁场,如图乙,根据几何关系,有tanα2=22R r-22R =22R 2R -22R =22+17,故B 正确.若r =R ,粒子沿着磁场的半径方向射入,粒子运动轨迹如图丙所示,圆心角90°,粒子在磁场中运动的时间t =90°360°T =14·2πmqB=πm2qB,故C 错误.若r =R ,粒子沿着与半径方向成60°角斜向下射入磁场,轨迹如图丁所示,图中轨迹圆心与磁场圆心以及入射点和出射点构成菱形,圆心角为150°,故D 正确.] 8.(1)mv 0qR (2)⎝ ⎛⎭⎪⎫32R ,-12R (3)(5+π)R v 0 解析 (1)设粒子在磁场中运动轨迹的半径为r ,根据题设条件画出粒子的运动轨迹如图:由几何关系可以得到:r =R ,由洛伦兹力提供向心力:qv 0B =m v 20r ,得到:B =mv 0qR.(2)由图几何关系可以得到:x =R sin 60°=32R , y =-R cos 60°=-12R . N 点坐标为(32R ,-12R ). (3)粒子在磁场中运动的周期T =2πmqB,由几何知识得到粒子在磁场中运动轨迹的圆心角共为180°,粒子在磁场中运动时间:t 1=T2,粒子在磁场外做匀速直线运动,从出磁场到再次进磁场的时间为:t 2=2s v 0,其中s =3R -12R ,粒子从M 点进入磁场到最终离开磁场区域运动的总时间t =t 1+t 2,联立解得t =(5+π)Rv 0.。

高考物理二轮复习考点第九章磁场专题平行边界磁场问题

高考物理二轮复习考点第九章磁场专题平行边界磁场问题

专题9.5 平行边界磁场问题一.选择题1.(2020·湖南长沙模拟)如图10所示,一个理想边界为PQ、MN的匀强磁场区域,磁场宽度为d,方向垂直纸面向里。

一电子从O点沿纸面垂直PQ以速度v0进入磁场。

若电子在磁场中运动的轨道半径为2d。

O′在MN上,且OO′与MN垂直。

下列判断正确的是( )A.电子将向右偏转B.电子打在MN上的点与O′点的距离为dC.电子打在MN上的点与O′点的距离为3dD.电子在磁场中运动的时间为πd 3v0【参考答案】D2.如图所示,直角坐标系中y轴右侧存在一垂直纸面向里、宽为a的有界匀强磁场,磁感应强度为B,右边界PQ平行y轴,一粒子(重力不计)从原点O以与x轴正方向成θ角的速率v垂直射入磁场,当斜向上射入时,粒子恰好垂直PQ射出磁场,当斜向下射入时,粒子恰好不从右边界射出,则粒子的比荷及粒子恰好不从右边界射出时在磁场中运动的时间分别为( )A.vBa2πa3vB.v2Ba2πa3vC.v2Ba4πa3vD.vBa4πa3v【参考答案】C3.(多选)如图,两个初速度大小相同的同种离子a和b,从O点沿垂直磁场方向进入匀强磁场,最后打到屏P上。

不计重力。

下列说法正确的有( )A.a、b均带正电B.a在磁场中飞行的时间比b的短C.a在磁场中飞行的路程比b的短D.a在P上的落点与O点的距离比b的近【参考答案】AD4.如图所示,在x 轴上方存在垂直于纸面向里的匀强磁场,磁感应强度为B 。

在xOy 平面内,从原点O 处沿与x 轴正方向成θ角(0<θ<π)方向以速率v 发射一个带正电的粒子(重力不计),则下列说法正确的是( )A.当v 一定时,θ越大,粒子在磁场中运动的时间越短B.当v 一定,θ越大时,粒子离开磁场的位置距O 点越远C.当θ一定,v 越大时,粒子在磁场中运动的角速度越大D.当θ一定,v 越大时,粒子在磁场中运动的时间越短【参考答案】A【名师解析】由左手定则可知,带正电的粒子向左偏转,当v 一定时,θ越大,粒子在磁场中做圆周运动的圆心角越小,由周期T =2πm qB ,t =2π-2θ2π·T 可知,粒子的运动时间越短,θ等于90°时,粒子离开磁场的位置距O 点最远,A 正确,B 错误;当θ一定时,粒子在磁场中运动的周期与v 无关,即粒子在磁场中运动的角速度与v 无关,粒子在磁场中运动的时间与v 无关,C 、D 错误。

2020年高考物理100考点最新模拟题千题精练专题3.13扇形边界磁场问题(电磁部分)(含解析)

2020年高考物理100考点最新模拟题千题精练专题3.13扇形边界磁场问题(电磁部分)(含解析)

专题3.13 扇形边界磁场问题一.选择题1.(6分)(2019河南天一大联考6)如图所示,圆心为O的四分之一圆弧区域内存在方向垂直纸面向里的匀强磁场,Q点为OA半径的中点。

现有比荷相同的甲、乙两个带电粒子分别从O点、Q点同时垂直磁场方向和OA进人磁场,结果甲粒子从A点射出磁场,乙粒子从E点射出磁场。

已知sin37°=0.6,cos37°=0.8,不计粒子间的相互作用力和粒子重力,下列说法中正确的是()A.两粒子在磁场中运动的周期相同B.甲、乙两粒子在磁场中做圆周运动的半径之比为C.甲粒子的运动速率大于乙粒子的运动速率D.甲、乙两粒子在磁场中运动的偏转角之比为【参考答案】ABD【名师解析】根据T=和题目中的条件可知,两粒子在磁场中运动的周期相同,故A正确;设四分之一圆弧区域的半径为r,甲、乙两粒子的轨道半径分别为R甲、R乙,做出两粒子在磁场中的运动轨迹,如图所示,由几何关系可得:R甲=,R乙2=r2+(R乙﹣)2,sinθ=,解得R乙=,θ=53℃,由洛仑磁力提供向心力有qvB=m,解得v=,所以粒子甲、乙速率之比为==,故B正确,C错误;乙粒子的偏转角θ乙=53°,甲粒子的偏转角θ甲=180°,故甲、乙两粒子在磁场中运动的偏转角之比为=,故D正确。

2.如图所示,半径为R 的1/4圆形区域内存在着垂直纸面向里的匀强磁场,磁感应强度为B ,磁场的左边垂直x 轴放置一线型粒子发射装置,能在0≤y ≤R 的区间内各处沿x 轴正方向同时发射出速度相同、带正电的同种粒子,粒子质量为m ,电荷量为q ,不计粒子的重力及粒子间的相互作用力,若某时刻粒子被装置发射出后,经过磁场偏转击中y 轴上的同一位置,则下列说法中正确的是( )A. 粒子都击中在O 点处B. 粒子的初速度为C. 粒子在磁场中运动的最长时间为D. 粒子到达y 轴上的最大时间差为【参考答案】D【名师解析】由题意,某时刻发出的粒子都击中的点是y 轴上同一点,由最高点射出的只能击中(0,R ),则击中的同一点就是(0,R ),A 错误;从最低点射出的也击中(0,R ),那么粒子做匀速圆周运动的半径为R ,由洛伦兹力提供向心力得,则速度,B 错误;偏转角最大的时间最长,显然从最低点射出的粒子偏转90°,时间最长,时间,C 错误;从最高点直接射向(0,R )的粒子时间最短,则最长与最短的时间差为,D 正确.【关键点拨】看起来情况比较复杂,但涉及的问题却是常规问题,本题的关键点是粒子源发出的粒子是速度大小和方向均相同,则其做匀速圆周运动的半径相同,在从最低点的特殊情况就能知道相同的半径就是圆弧的半径,再结合周期公式能求出最长和最短时间.3.(2018衡水六调)如图所示,纸面内有宽为L ,水平向右飞行的带电粒子流,粒子质量为m 、电荷量为-q 、速率为v 0,不考虑粒子的重力及相互间的作用,要使粒子都会聚到一点,可以在粒子流的右侧虚线框内设计一匀强磁场区域,则磁场区域的形状及对应的磁感应强度可以是哪一种(其中B 0=qLmv 0,A 、C 、D 选项中曲线均为半径是L 的41圆弧,B 选项中曲线为半径是2L的圆)( )【参考答案】.A【命题意图】本题考查带电粒子在有界匀强磁场中的运动、磁聚焦现象及其相关的知识点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题9.7 扇形边界磁场问题一.选择题1.(2020衡水六调)如图所示,纸面内有宽为L ,水平向右飞行的带电粒子流,粒子质量为m 、电荷量为-q 、速率为v 0,不考虑粒子的重力及相互间的作用,要使粒子都会聚到一点,可以在粒子流的右侧虚线框内设计一匀强磁场区域,则磁场区域的形状及对应的磁感应强度可以是哪一种(其中B 0=qLmv 0,A 、C 、D 选项中曲线均为半径是L 的41圆弧,B 选项中曲线为半径是2L的圆)【参考答案】A【命题意图】本题考查带电粒子在有界匀强磁场中的运动、磁聚焦现象及其相关的知识点。

2.(2020·福建模拟)如图所示,半径为R 的半圆形区域内分布着垂直纸面向里的匀强磁场,磁感应强度为B ,半圆的左边垂直x 轴放置一粒子发射装置,在-R≤y≤R 的区间内各处均沿x 轴正方向同时发射出一个带正电粒子,粒子质量均为m 、电荷量均为q 、初速度均为v ,重力忽略不计,所有粒子均能穿过磁场到达y 轴,其中最后到达y 轴的粒子比最先到达y 轴的粒子晚△t 时间,则( )A.粒子到达y轴的位置一定各不相同B.磁场区域半径R应满足R≤mv qBC.从x轴入射的粒子最先到达y轴D.△t= mqB-R/v,其中角度θ为最后到达y轴的粒子在磁场中运动轨迹所对应的圆心角,满足sinθ=BqR mv【参考答案】BD其中角度θ为从x轴入射的粒子运动轨迹对应的圆心角,满足sinθ=R/r=BqRmv,选项D正确.【点评】此题是相同速率的带电粒子从圆弧形边界进入磁场的情景,从不同位置进入磁场的粒子轨迹半径相同,轨迹所对的圆心角、圆心、弧长不同。

3. 如图所示,长方形abcd长ad=0.6m,宽ab=0.3m,O、e分别是ad、bc的中点,以ad为直径的半圆内有垂直纸面向里的匀强磁场(边界上无磁场),磁感应强度B=0.25T.一群不计重力、质量m=3×10-7kg、电荷量q=+2×10-3C的带电粒子以速度v=5×l02m/s沿垂直ad方向且垂直于磁场射人磁场区域()A.从Od边射入的粒子,出射点全部分布在Oa边B.从aO边射入的粒子,出射点全部分布在ab边C.从Od边射入的粒子,出射点分布在Oa边和ab边D.从aO边射入的粒子,出射点分布在ab边和bc边【参考答案】D【名师解析】粒子进入磁场后做匀速圆周运动,根据洛伦兹力提供向心力,得到 qvB=m2 v r解得,r=mvqB=0.3m由于初速度向右,故圆心在ao之间,但出射点全部不在Oa边,故A错误;从aO边射入的粒子,出射点全部分布在ab和be两条边上,故B错误,D正确;从Od边射入的粒子,出射点分布在ab边和be边上,故C错误;二.计算题1.如图所示,长方形abcd长ad=0.6m,宽ab=0.3m,O、e分别是ad、bc的中点,以ad为直径的半圆内有垂直于纸面向里的匀强磁场(边界上无磁场),磁感应强度B=0.25T.一群不计重力、质量m=3×10-7k g、电荷量q=+2×10-3C的带电粒子.以速度v=5×102m/s沿垂直ad方向且垂直于磁场射入磁场区域,不考虑粒子的重力的相互作用.问:(1)若从O点射入的带电粒子刚好沿Oe直线射出,求空间所加电场的大小和方向.(2)若只有磁场时,某带电粒子从O点射入,求该粒子从长方形abcd射出的位置.带电粒子进入磁场时所受的洛伦兹力向上,则粒子轨迹的圆心为a点.设粒子从ae弧上f点射出磁场∵aO=af=r,Of=r,∴△aOf是等边三角形,∠faO=60°粒子经过磁场速度的偏向角θ=∠faO=60°根据几何知识得:eg=r(1-cos60°)+(r-rsin60°)tan60°=(3-1)r=0.732×0.3m=0.22m故带电粒子从e点上方距离e点0.22m射出磁场.2.匀强磁场区域由一个半径为R的半圆和一个长为2R、宽为R2的矩形组成,磁场的方向如图所示。

一束质量为m、电荷量为+q的粒子(粒子间的相互作用和重力均不计)以速度v从边界AN的中点P垂直于AN和磁场方向射入磁场中。

问:(1)当磁感应强度为多大时,粒子恰好从A点射出?(2)对应于粒子可能射出的各段磁场边界,磁感应强度应满足什么条件?【名师解析】(1)由左手定则判定,粒子向左偏转,只能从PA、AC和CD三段边界射出,如图所示。

当粒子从A点射出时,运动半径r1=R 2。

由qvB1=mv2r1,得B1=2mvqR3.(2020`山东济南期末)如图所示的xOy 平面上,以坐标原点O 为圆心的四分之一圆形区域MON 内分布着磁感应强度为B=2.0×10-3T 的匀强磁场,其中M 、N 点距坐标原点O 的距离为2m ,磁场方向垂直纸面向里.坐标原点O 处有一个粒子源,不断地向xOy 平面发射比荷为q m=5×107C/kg 的带正电粒子,它们的速度大小都是v=1×105m/s ,与x 轴正方向的夹角分布在0~90°范围内. (1)求平行于x 轴射入的粒子,出射点的位置及在磁场中的运动时间; (2)求恰好从M 点射出的粒子,从粒子源O 发射时的速度与x 轴正向的夹角;(3)若粒子进入磁场前经加速使其动能增加为原来的2倍,仍从O 点垂直磁场方向射入第一象限,求粒子在磁场中运动的时间t 与射入时与x 轴正向的夹角θ的关系.【名师解析】(1)平行于x 轴射入的粒子,轨迹如图所示,设出射点为P ,由2v qBv m R=得:57310510210mv R qB -==⨯⨯⨯m=1m 。

有几何关系可知:O 1P= O 1O=1m ,2m ,则△O 1O P 为等腰直角三角形 x=y=1m ,2πα=;故P 点坐标为(1m,1m),运动时间为521022m t qB απππ-==⨯ s 。

(2)由几何关系可知:O 2M=O 2O=1m ,OM=2m ,则△O 2O M 为等腰直角三角形 ∠O 2O M=45°,则从粒子源O发射时的速度与x 轴正向的夹角为45°。

(3)由mv R qB =,212K E mv =可知:2K mE R qB=,2KKE R R E ''==,R ’=2R= 2m .若粒子从M 点出射时OM= R ’, △O 3O M 为正三角形,圆心角3πα=,出射角3πθ=;若粒子从弧MN 上射出时,弦长均为2m ,圆心角均为3πα=,运动时间均为:521023m t s qB απππ-==⨯,故03πθ≤≤时:5103t s π-=⨯若粒子从边OM 出射时,如图,222παθπθ⎛⎫=-=-⎪⎝⎭, 运动时间52(2)102mt qBαππθπ-==-⨯s ,故32ππθ<≤时:5(2)10t πθ-=-⨯s..2019-2020学年高考物理模拟试卷一、单项选择题:本题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的1.物块以60J 的初动能从固定的斜面底端沿斜面向上滑动,当它的动能减少为零时,重力势能增加了40J ,则物块回到斜面底端时的动能为( )A .10JB .20JC .30JD .40J2.位于贵州的“中国天眼”(FAST )是目前世界上口径最大的单天线射电望远镜,通过FAST 可以测量地球与木星之间的距离.当FAST 接收到来自木星的光线传播方向恰好与地球公转线速度方向相同时,测得地球与木星的距离是地球与太阳距离的k 倍.若地球和木星绕太阳的运动均视为匀速圆周运动且轨道共面,则可知木星的公转周期为( ) A .()3241k +年B .()3221k+年C .()321k +年D .32k年3.氢原子的核外电子从n=2的能级跃迁到n=1的能级时,发出的光恰好能使某种金属发生光电效应,则下列各种说法中正确的是( )A .该光是氢原子所有可能发出的光中能量最大的B .氢原子中由高能级跃迁到n=2的能级时发出的光可能使该金属发生光电效应C .该金属发生光电效应产生的光电子的最大能量恰好等于氢原子从n=2的能级跃迁到n=1的能级所放出光子的能量D .氢原子从n=2的能级跃迁到n=1的能级所放出光子的能量等于该金属的逸出功4.中微子失踪之谜是一直困扰着科学家的问题,原来中微子在离开太阳向地球运动的过程中,发生“中微子振荡”转化为一个μ子和一个τ子。

科学家通过对中微子观察和理论分析,终于弄清了中微子失踪之谜,成为“2001年世界十大科技突破”之一。

若中微子在运动中只转化为一个μ子和一个τ子,并已知μ子的运动方向与中微子原来的方向一致,则τ子的运动方向( ) A .一定与中微子方向一致B .一定与中微子方向相反C .可能与中微子方向不在同一直线上D .只能与中微子方向在同一直线上5.靠近地面运行的近地卫星的加速度大小为a 1,地球同步轨道上的卫星的加速度大小为a 2,赤道上随地球一同运转(相对地面静止)的物体的加速度大小为a 3,则( ) A .a 1=a 3>a 2B .a 1>a 2>a 3C .a 1>a 3>a 2D .a 3>a 2>a 16.静电现象在自然界中普遍存在,下列不属于静电现象的是()A.梳过头发的塑料梳子吸起纸屑B.带电小球移至不带电金属球附近,两者相互吸引C.小线圈接近通电线圈过程中,小线圈中产生电流D.从干燥的地毯走过,手碰到金属把手时有被电击的感觉7.如图甲所示,一线圈匝数为100匝,横截面积为0.01m2,磁场与线圈轴线成30°角向右穿过线圈。

若在2s时间内磁感应强度随时间的变化关系如图乙所示,则该段时间内线圈两端a和b之间的电势差U ab为()A.3-V B.2VC.3V D.从0均匀变化到2V8.甲、乙两个质点沿同一直线运动,它们的位移一时间图象如图所示。

对0-t0时间内甲、乙两质点的运动情况,下列说法正确的是A.甲运动得比乙快B.甲运动的位移比乙运动的位移小C.乙先沿负方向运动后沿正方向运动D.甲、乙两质点间的距离先增大后减小9.位于贵州的“中国天眼”是目前世界上口径最大的单天线射电望远镜(FAST).通过FAST测得水星与太阳的视角为θ(水星、太阳分别与观察者的连线所夹的角),如图所示,若最大视角的正弦C值为k,地球和水星绕太阳的运动视为匀速圆周运动,则水星的公转周期为A.3k年B .31k年C .32k年D.321kk⎛⎫⎪-⎝⎭年10.如图,光滑斜劈A上表面水平,物体B叠放在A上面,斜面光滑,AB静止释放瞬间,B的受力图是()A.B.C.D.二、多项选择题:本题共5小题,每小题3分,共15分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,选对但不全的得3分,有选错的得0分11.两个质量相等、电荷量不等的带电粒子甲、乙,以不同的速率沿着HO方向垂直射入匀强电场,电场强度方向竖直向上,它们在圆形区域中运动的时间相同,其运动轨迹如图所示。

相关文档
最新文档