高考物理最新磁场专题训练题组(含答案) (6)(2020年九月整理).doc
高考物理带电粒子在磁场中的运动题20套(带答案)含解析

高考物理带电粒子在磁场中的运动题20套(带答案)含解析一、带电粒子在磁场中的运动专项训练1.如图所示,xOy 平面处于匀强磁场中,磁感应强度大小为B ,方向垂直纸面向外.点3,0P L ⎛⎫ ⎪ ⎪⎝⎭处有一粒子源,可向各个方向发射速率不同、电荷量为q 、质量为m 的带负电粒子.不考虑粒子的重力.(1)若粒子1经过第一、二、三象限后,恰好沿x 轴正向通过点Q (0,-L ),求其速率v 1;(2)若撤去第一象限的磁场,在其中加沿y 轴正向的匀强电场,粒子2经过第一、二、三象限后,也以速率v 1沿x 轴正向通过点Q ,求匀强电场的电场强度E 以及粒子2的发射速率v 2;(3)若在xOy 平面内加沿y 轴正向的匀强电场E o ,粒子3以速率v 3沿y 轴正向发射,求在运动过程中其最小速率v.某同学查阅资料后,得到一种处理相关问题的思路:带电粒子在正交的匀强磁场和匀强电场中运动,若所受洛伦兹力与电场力不平衡而做复杂的曲线运动时,可将带电粒子的初速度进行分解,将带电粒子的运动等效为沿某一方向的匀速直线运动和沿某一时针方向的匀速圆周运动的合运动. 请尝试用该思路求解. 【答案】(1)23BLq m (2221BLq32230B E E v B +⎛⎫ ⎪⎝⎭【解析】 【详解】(1)粒子1在一、二、三做匀速圆周运动,则2111v qv B m r =由几何憨可知:()2221133r L r L ⎛⎫=-+ ⎪ ⎪⎝⎭得到:123BLqv m=(2)粒子2在第一象限中类斜劈运动,有:133L v t=,212qE h t m = 在第二、三象限中原圆周运动,由几何关系:12L h r +=,得到289qLB E m=又22212v v Eh =+,得到:2221BLqv =(3)如图所示,将3v 分解成水平向右和v '和斜向的v '',则0qv B qE '=,即0E v B'= 而'223v v v ''=+ 所以,运动过程中粒子的最小速率为v v v =''-'即:22003E E v v B B ⎛⎫=+- ⎪⎝⎭2.欧洲大型强子对撞机是现在世界上最大、能量最高的粒子加速器,是一种将质子加速对撞的高能物理设备,其原理可简化如下:两束横截面积极小,长度为l -0质子束以初速度v 0同时从左、右两侧入口射入加速电场,出来后经过相同的一段距离射入垂直纸面的圆形匀强磁场区域并被偏转,最后两质子束发生相碰。
2020年高考物理《磁场、带电粒子在磁场中的运动》专题训练卷及答案解析

2020年高考物理专题训练卷磁场、带电粒子在磁场中的运动一、选择题1.如图所示,A、B、C三根平行通电直导线均为m,通入的电流大小均相等,其中C中的电流方向与A、B中的电流方向反向,A、B放置在粗糙的水平面上,C静止在空中,三根导线的截面处于一个等边三角形的三个顶点,且三根导线均保持静止,重力加速度为g,则A导线受到B导线的作用力大小和方向为A.33mg,方向由A指向B B.33mg,方向由B指向AC.3mg,方向由A指向BD.3mg,方向由B指向A解析三根导线的截面处于一个等边三角形的三个顶点,通入的电流大小均相等,则F BC=F AC=F AB,又反向电流相互排斥,对电流C受力分析如图。
由平衡条件可得:2F AC cos 30°=mg,解得:F AC=33mg,则F AB=33mg,同向电流相互吸引,A导线受到B导线的作用力方向由A指向B。
综上答案为A。
答案 A2.如图所示,两个完全相同、所在平面互相垂直的导体圆环P、Q中间用绝缘细线连接,通过另一绝缘细线悬挂在天花板上,当P、Q中同时通有图示方向的恒定电流时,关于两线圈的转动(从上向下看)以及细线中张力的变化,下列说法正确的是A.P顺时针转动,Q逆时针转动,转动时P与天花板连接的细线张力不变B.P逆时针转动,Q顺时针转动,转动时两细线张力均不变C.P、Q均不动,P与天花板连接的细线和与Q连接的细线张力均增大D.P不动,Q逆时针转动,转动时P、Q间细线张力不变解析根据安培定则,P产生的磁场方向垂直于纸面向外,Q产生的磁场水平向右,根据同名磁极相互排斥的特点,从上往下看,P将顺时针转动,Q逆时针转动;转动后P、Q 两环的电流的方向相反,两环靠近部分的电流方向相同,所以两个线圈相互吸引,细线张力减小。
由整体法可知,P与天花板连接的细线张力总等于两环的重力之和,大小不变;故A 正确,BCD错误。
故选A。
答案 A3.(多选)3条在同一平面(纸面)内的长直绝缘导线搭成一等边三角形。
2020年高考磁场专题复习卷(附答案)

2020年高考磁场专题复习卷(附答案)一、单选题(共14题;共28分)1.在滑冰场上,甲、乙两小孩分别坐在滑冰板上,原来静止不动,在相互猛推一下后分别向相反方向运动.假定两板与冰面间的动摩擦因数相同.已知甲在冰上滑行的距离比乙远,这是由于()A. 在推的过程中,甲推乙的力小于乙推甲的力B. 在推的过程中,甲推乙的时间小于乙推甲的时间C. 在刚分开时,甲的初速度大于乙的初速度D. 在分开后,甲的加速度的大小小于乙的加速度的大小2.如图所示,在边长为2a的正三角形区域内存在方向垂直于纸面向里的匀强磁场,一个质量为m、电荷量为﹣q的带电粒子(重力不计)从AB边的中点O以速度v进入磁场,粒子进入磁场时的速度方向垂直于磁场且与AB边的夹角为60°,若要使粒子能从AC边穿出磁场,则匀强磁场的大小B需满足()A. B>B. B<C. B>D. B<3.平面OM和平面ON之间的夹角为,其横截面纸面如图所示,平面OM上方存在匀强磁场,磁感应强度大小为B,方向垂直于纸面向外一带电粒子的质量为m,电荷量为粒子沿纸面以大小为v的速度从OM的某点向左上方射入磁场,速度与OM成角已知粒子在磁场中的运动轨迹与ON只有一个交点,并从OM上另一点射出磁场不计重力粒子离开磁场的射点到两平面交线O的距离为A. B. C. D.4.关于电场强度、磁感应强度,下列说法中正确的是()A. 由真空中点电荷的电场强度公式E=k 可知,当r趋近于零时,其电场强度趋近于无限大B. 电场强度的定义式E= 适用于任何电场C. 由安培力公式F=BIL可知,一小段通电导体在某处不受安培力,说明此处一定无磁场D. 通电导线在磁场中受力越大,说明磁场越强5.如图,在同一水平面内有两根平行长导轨,导轨间存在依次相邻的矩形匀强磁场区域,区域宽度均为l,磁感应强度大小相等、方向交替向上向下,一边长为的正方形金属线框在导轨上向左匀速运动,线框中感应电流i随时间t变化的正确图线可能是()A. B. C. D.6.如图所示,某种带电粒子由静止开始经电压为U1的电场加速后,射入水平放置、电势差为U2的两块导体板间的匀强电场中,带电粒子沿平行于两板的方向从两板正中间射入,穿过两板后又垂直于磁场方向射入边界线竖直的匀强磁场中,则粒子射入磁场和射出磁场的M、N两点间的距离d随着U1或U2的变化情况为(不计重力,不考虑边缘效应)()A. 仅增大U1d将增大B. 仅增大U1 d将减小C. 仅增大U2 d将增大D. 仅增大U2 d将减小7.如图所示,有界匀强磁场边界线SP∥MN,速率不同的同种带电粒子从S点沿SP方向同时射入磁场.其中穿过a点的粒子速度v1与MN垂直;穿过b点的粒子速度v2与MN成60°角,设粒子从S到A、B 所需时间分别为t1、t2,则t1∶t2为(重力不计)( )A. 1∶3B. 4∶3C. 1∶1D. 3∶28.如图所示,竖直悬挂的金属棒AB原来处于静止状态.金属棒CD棒竖直放置在水平磁场中,CD与AB通过导线连接组成回路,由于CD棒的运动,导致AB棒向右摆动,则CD棒的运动可能为()A. 水平向右平动B. 水平向左平动C. 垂直纸面向里平动D. 垂直纸面向外平动9.如图5所示,MN为两个匀强磁场的分界面,两磁场的磁感应强度大小的关系为B1=2B2,一带电荷量为+q、质量为m的粒子从O点垂直MN进入B1磁场,则经过多长时间它将向下再一次通过O点( )A. B. C. D.10.下列说法中正确的是()A. 磁场中某一点的磁感应强度可以这样测定:把一小段通电导线放在该点时受到的磁场力F与该导线的长度L、通过的电流I乘积的比值.即B=B. 通电导线放在磁场中的某点,该点就有磁感应强度,如果将通电导线拿走,该点的磁感应强度就为零C. 磁感应强度B= 只是定义式,它的大小取决于场源以及磁场中的位置,与F、I、L以及通电导线在磁场中的方向无关D. 通电导线所受磁场力的方向就是磁场的方向11.如图所示,在加有匀强磁场的区域中,一垂直于磁场方向射入的带电粒子轨迹如图所示,由于带电粒子与沿途的气体分子发生碰撞,带电粒子的能量逐渐减小,从图中可以看出()A. 带电粒子带正电,是从B点射入的B. 带电粒子带负电,是从B点射入的C. 带电粒子带负电,是从A点射入的D. 带电粒子带正电,是从A点射入的12.春天,水边上的湿地是很松软的,人在这些湿地上行走时容易下陷,在人下陷时()A. 人对湿地地面的压力大小等于湿地地面对他的支持力大小B. 人对湿地地面的压力大于湿地地面对他的支持力C. 人对湿地地面的压力小于湿地地面对他的支持力D. 下陷的加速度方向未知,不能确定以上说法哪一个正确13.如图甲所示有界匀强磁场Ⅰ的宽度与图乙所示圆形匀强磁场Ⅱ的半径相等,一不计重力的粒子从左边界的M点以一定初速度水平向右垂直射入磁场Ⅰ,从右边界射出时速度方向偏转了θ角,该粒子以同样的初速度沿半径方向垂直射入磁场Ⅱ,射出磁场时速度方向偏转了2θ角.己知磁场I、Ⅱ的磁感应强度大小分别为B1、B2,则B1与B2的比值为()A. 2cosθB. sinθC. cosθD. tanθ14.回旋加速器是加速带电粒子的装置,其核心部分是分别与高频交流电源两极相连接的两个D形金属盒,两盒间的狭缝中形成周期性变化的电场,使粒子在通过狭缝时都能得到加速,两D形金属盒处于垂直于盒底的匀强磁场中,如图所示.设D形盒半径为R.若用回旋加速器加速质子时,匀强磁场的磁感应强度为B,高频交流电频率为f,则下列说法正确的是()A. 质子在匀强磁场每运动一周被加速一次B. 质子被加速后的最大速度与加速电场的电压大小有关C. 质子被加速后的最大速度不可能超过2πfRD. 不改变B和f,该回旋加速器也能用于加速α粒子二、多选题(共4题;共12分)15.如图所示,M、N为两块带等量异种电荷的平行金属板,两板间电压可取从零到某一最大值之间的各种数值。
高二物理-磁场专题训练及答案(全套)

中学物理磁场专题训练一、磁场、安培力练习题一、选择题1.关于磁场和磁感线的描述,正确的说法有[]A.磁极之间的相互作用是通过磁场发生的,磁场和电场一样,也是一种物质B.磁感线可以形象地表现磁场的强弱与方向C.磁感线总是从磁铁的北极动身,到南极终止D.磁感线就是细铁屑在磁铁四周排列出的曲线,没有细铁屑的地方就没有磁感线2.一束带电粒子沿水平方向飞过小磁针上方,并与磁针指向平行,能使磁针的S极转向纸内,如图1所示,那么这束带电粒子可能是[]A.向右飞行的正离子束B.向左飞行的正离子束C.向右飞行的负离子束D.问左飞行的负离子束3.铁心上有两个线圈,把它们和一个干电池连接起来,已知线圈的电阻比电池的内阻大得多,如图2所示的图中,哪一种接法铁心的磁性最强[]4.关于磁场,以下说法正确的是[]A.电流在磁场中某点不受磁场力作用,则该点的磁感强度肯定为零B.磁场中某点的磁感强度,依据公式B=F/I·l,它跟F,I,l都有关C.磁场中某点的磁感强度的方向垂直于该点的磁场方向D.磁场中任一点的磁感强度等于磁通密度,即垂直于磁感强度方向的单位面积的磁通量5.磁场中某点的磁感应强度的方向[]A.放在该点的通电直导线所受的磁场力的方向B.放在该点的正检验电荷所受的磁场力的方向C.放在该点的小磁针静止时N极所指的方向D.通过该点磁场线的切线方向6.下列有关磁通量的论述中正确的是[]A.磁感强度越大的地方,穿过线圈的磁通量也越大B.磁感强度越大的地方,线圈面积越大,则穿过线圈的磁通量越大C.穿过线圈的磁通量为零的地方,磁感强度肯定为零D.匀强磁场中,穿过线圈的磁感线越多,则磁通量越大7.如图3所示,条形磁铁放在水平桌面上,其中心正上方固定一根直导线,导线与磁铁垂直,并通以垂直纸面对外的电流,[]A.磁铁对桌面的压力减小、不受桌面摩擦力的作用B.磁铁对桌面的压力减小、受到桌面摩擦力的作用C.磁铁对桌面的压力增大,个受桌面摩擦力的作用D.磁铁对桌面的压力增大,受到桌面摩擦力的作用8.如图4所示,将通电线圈悬挂在磁铁N极旁边:磁铁处于水平位置和线圈在同一平面内,且磁铁的轴线经过线圈圆心,线圈将[]A.转动同时靠近磁铁B.转动同时离开磁铁C.不转动,只靠近磁铁D.不转动,只离开磁铁9.通电矩形线圈平面垂直于匀强磁场的磁感线,则有[]A.线圈所受安培力的合力为零B.线圈所受安培力以任一边为轴的力矩为零C.线圈所受安培力以任一对角线为轴的力矩不为零D.线圈所受安培力必定使其四边有向外扩展形变的效果二、填空题10.匀强磁场中有一段长为0.2m的直导线,它与磁场方向垂直,当通过3A的电流时,受到60×10-2N的磁场力,则磁场的磁感强度是______特;当导线长度缩短一半时,磁场的磁感强度是_____特;当通入的电流加倍时,磁场的磁感强度是______特.11.如图5所示,abcd是一竖直的矩形导线框,线框面积为S,放在磁场中,ab边在水平面内且与磁场方向成60°角,若导线框中的电流为I,则导线框所受的安培力对某竖直的固定轴的力矩等于______.12.一矩形线圈面积S=10-2m2,它和匀强磁场方向之间的夹角θ1=30°,穿过线圈的磁通量Ф=1×103Wb,则磁场的磁感强度B______;若线圈以一条边为轴的转180°,则穿过线圈的磁能量的改变为______;若线圈平面和磁场方向之间的夹角变为θ2=0°,则Ф=______.三、计算题13.如图6所示,ab,cd为两根相距2m的平行金属导轨,水平放置在竖直向下的匀强磁场中,通以5A的电流时,棒沿导轨作匀速运动;当棒中电流增加到8A时,棒能获得2m/s2的加速度,求匀强磁场的磁感强度的大小;14.如图7所示,通电导体棒AC静止于水平导轨上,棒的质量为m长为l,通过的电流强度为I,匀强磁场的磁感强度B的方向与导轨平面成θ角,求导轨受到AC棒的压力和摩擦力各为多大?一、磁场、安培力练习题答案一、选择题1.AB 2.BC 3.D 4.D5.CD 6.D 7.A 8.A 9.AB二、填空题三、计算题13.1.2T 14.mg-BIlcosθ,BI lsinθ二、洛仑兹力练习题一、选择题1.如图1所示,在垂直于纸面对内的匀强磁场中,垂直于磁场方向放射出两个电子1和2,其速度分别为v1和v2.假如v2=2v1,则1和2的轨道半径之比r1:r2及周期之比T1:T2分别为 [ ] A.r1:r2=1:2,T1:T2=1:2B.r1:r2=1:2,T1:T2=1:1C.r1:r2=2:1,T1:T2=1:1D.r1:r2=1:1,T1:T2=2:12.如图2所示,ab是一弯管,其中心线是半径为R的一段圆弧,将它置于一给定的匀强磁场中,磁场方向垂直于圆弧所在平面,并且指向纸外、有一束粒子对准a端射入弯管,粒子有不同的质量、不同的速度,但都是一价正离子. [ ]A.只有速度大小肯定的粒子可以沿中心线通过弯管B.只有质量大小肯定的粒子可以沿中心线通过弯管C.只有动量大小肯定的粒子可以沿中心线通过弯管D.只有能量大小肯定的粒子可以沿中心线通过弯管3.电子以初速V0垂直进入磁感应强度为B的匀强磁场中,则 [ ]A.磁场对电子的作用力始终不变B.磁场对电子的作用力始终不作功C.电子的动量始终不变D.电子的动能始终不变它们以相同的速度沿垂直于磁场方向射入匀强磁场(磁场方向垂直纸面对里).在图3中,哪个图正确地表示出这三束粒子的运动轨迹?[ ]5.一个带电粒子,沿垂直于磁场的方向射入一匀强磁场,粒子的一段径迹如图4所示,径迹上的每一小段可近似看成圆弧.由于带电粒子使沿途的空气电离,粒子的能量渐渐减小(带电量不变).从图中可以确定 [ ]A.粒子从a到b,带正电B.粒子从b到a,带正电C.粒子从a到b,带负电 D.粒子从b到a,带负电6.三个相同的带电小球1、2、3,在重力场中从同一高度由静止起先落下,其中小球1通过一附加的水平方向匀强电场,小球2通过一附加的水平方向匀强磁场.设三个小球落到同一高度时的动能分别为E1、E2和E3,忽视空气阻力,则 [ ]A.E1=E2=E3B.E1>E2=E3C.E1<E2=E3D.E1>E2>E37.真空中同时存在着竖直向下的匀强电场和垂直纸面对里的匀强磁场,三个带有等量同种电荷的油滴a、b、c在场中做不同的运动.其中a静止,b向右做匀速直线运动,c向左做匀速直线运动,则三油滴质量大小关系为 [ ]A.a最大 B.b最大C.c最大 D.都相等8.一个带正电荷的微粒(重力不计)穿过图5中匀强电场和匀强磁场区域时,恰能沿直线运动,则欲使电荷向下偏转时应采纳的方法是[ ]A.增大电荷质量B.增大电荷电量C.削减入射速度D.增大磁感强度E.减小电场强度二、填空题9.一束离子能沿入射方向通过相互垂直的匀强电场和匀强磁场区域,然后进入磁感应强度为B′的偏转磁场内做半径相同的匀速圆周运动(图6),则这束离子必定有相同的______,相同的______.10.为使从炙热灯丝放射的电子(质量m、电量e、初速为零)能沿入射方向通过相互垂直的匀强电场(场强为E)和匀强磁场(磁感强度为B)区域,对电子的加速电压为______.11.一个电子匀强磁场中运动而不受到磁场力的作用,则电子运动的方向是______.12.一质量为m、电量为q的带电粒子在磁感强度为B的匀强磁场中作圆周运动,其效果相当于一环形电流,则此环形电流的电流强度I=______.三、计算题13.一个电视显像管的电子束里电子的动能E K=12000eV.这个显像管的位置取向刚好使电子水平地由南向北运动.已知地磁场的竖直向下重量B=5.5×10-5T,试问(1)电子束偏向什么方向?(2)电子束在显像管里由南向北通过y=20cm路程,受洛仑兹力作用将偏转多少距离?电子质量m=9.1×10-31kg,电量e=1.6×10-19C.14.如图7所示,一质量m、电量q带正电荷的小球静止在倾角30°、足够长的绝缘光滑斜面.顶端时对斜面压力恰为零.若快速把电场方向改为竖直向下,则小球能在斜面上滑行多远?洛仑兹力练习题答案一、选择题1.B 2.C 3.BD 4.C5.B 6.B 7.C 8.C二、填空题三、计算题三、单元练习题一、选择题1.安培的分子环流假设,可用来说明 [ ]A.两通电导体间有相互作用的缘由B.通电线圈产生磁场的缘由C.永久磁铁产生磁场的缘由D.铁质类物体被磁化而具有磁性的缘由2.如图1所示,条形磁铁放在水平桌面上,在其正中心的上方固定一根长直导线,导线与磁铁垂直,给导线通以垂直纸面对外的电流,则[ ]A.磁铁对桌面压力减小,不受桌面的摩擦力作用B.磁铁对桌面压力减小,受到桌面的摩擦力作用C.磁铁对桌面压力增大,不受桌面的摩擦力作用D.磁铁对桌面压力增大,受到桌面的摩擦力作用3.有电子、质子、氘核、氚核,以同样速度垂直射入同一匀强磁场中,它们都作匀速圆周运动,则轨道半径最大的粒子是 [ ]A.氘核 B.氚核C.电子D.质子4.两个电子以大小不同的初速度沿垂直于磁场的方向射入同一匀强磁场中.设r1、r2为这两个电子的运动轨道半径,T1、T2是它们的运动周期,则 [ ]A.r1=r2,T1≠T2B.r1≠r2,T1≠T2C.r1=r2,T1=T2 D.r1≠r2,T1=T25.在垂直于纸面的匀强磁场中,有一原来静止的原子核.该核衰变后,放出的带电粒子和反冲核的运动轨迹分别如图2中a、b所示.由图可以判定 [ ]A.该核发生的是α衰变B.该核发生的是β衰变C.磁场方向肯定是垂直纸面对里D.磁场方向向里还是向外不能判定6.如图3有一混合正离子束先后通过正交电场磁场区域Ⅰ和匀强磁场区域Ⅱ,假如这束正离子束流在区域Ⅰ中不偏转,进入区域Ⅱ后偏转半径又相同,则说明这些正离子具有相同的 [ ] A.速度 B.质量C.电荷 D.荷质比7.设空间存在竖直向下的匀强电场和垂直纸面对里的匀强磁场,如图4所示,已知一离子在电场力和洛仑兹力的作用下,从静止起先自A点沿曲线ACB运动,到达B点时速度为零,C点是运动的最低点,忽视重力,以下说法中正确的是 [ ]A.这离子必带正电荷B.A点和B点位于同一高度C.离子在C点时速度最大D.离子到达B点后,将沿原曲线返回A点8.如图5所示,在正交的匀强电场和磁场的区域内(磁场水平向内),有一离子恰能沿直线飞过此区域(不计离子重力) [ ]A.若离子带正电,E方向应向下B.若离子带负电,E方向应向上C.若离子带正电,E方向应向上D.不管离子带何种电,E方向都向下9.一根通有电流I的直铜棒用软导线挂在如图6所示匀强磁场中,此时悬线中的张力大于零而小于铜棒的重力.欲使悬线中张力为零,可采纳的方法有 [ ]A.适当增大电流,方向不变B.适当减小电流,并使它反向C.电流大小、方向不变,适当增加磁场D.使原电流反向,并适当减弱磁场10.如图7所示,一金属直杆MN两端接有导线,悬挂于线圈上方,MN与线圈轴线均处于竖直平面内,为使MN垂直纸面对外运动,可以[ ]A.将a、c端接在电源正极,b、d端接在电源负极B.将b、d端接在电源正极,a、c端接在电源负极C.将a、d端接在电源正极,b、c端接在电源负极D.将a、c端接在沟通电源的一端,b、d接在沟通电源的另一端11.带电为+q的粒子在匀强磁场中运动,下面说法中正确的是 [ ]A.只要速度大小相同,所受洛仑兹力就相同B.假如把+q改为-q,且速度反向大小不变,则洛仑兹力的大小,方向均不变C.洛仑兹力方向肯定与电荷速度方向垂直,磁场方向肯定与电荷运动方向垂直D.粒子只受到洛仑兹力作用,其运动的动能、动量均不变12.关于磁现象的电本质,下列说法中正确的是 [ ]A.有磁必有电荷,有电荷必有磁B.一切磁现象都起源于电流或运动电荷,一切磁作用都是电流或运动电荷之间通过磁场而发生的相互作用C.除永久磁铁外,一切磁场都是由运动电荷或电流产生的D.依据安培的分子环流假说,在外界磁场作用下,物体内部分子电流取向大致相同时,物体就被磁化,两端形成磁极二、填空题13.一质子及一α粒子,同时垂直射入同一匀强磁场中.(1)若两者由静止经同一电势差加速的,则旋转半径之比为______;(2)若两者以相同的动进入磁场中,则旋转半径之比为______;(3)若两者以相同的动能进入磁场中,则旋转半径之比为______;(4)若两者以相同速度进入磁场,则旋转半径之比为______.14.两块长5d,相距d的水平平行金属板,板间有垂直于纸面的匀强磁场.一大群电子从平行于板面的方向、以等大小的速度v从左端各处飞入(图8).为了不使任何电子飞出,板间磁感应强度的最小值为______.15.如图9所示,M、N为水平位置的两块平行金属板,板间距离为d,两板间电势差为U.当带电量为q、质量为m的正离子流以速度V0沿水平方向从两板左端的中心O点处射入,因受电场力作用,离子作曲线运动,偏向M板(重力忽视不计).今在两板间加一匀强磁场,使从中心O处射入的正离流在两板间作直线运动.则磁场的方向是______,磁感应强度B=______.16.如图10所示,质量为m,带电量为+q的粒子,从两平行电极板正中心垂直电场线和磁感线以速度v飞入.已知两板间距为d,磁感强度为B,这时粒子恰能直线穿过电场和磁场区域(重力不计).今将磁感强度增大到某值,则粒子将落到极板上.当粒子落到极板上时的动能为______.17.如图11所示,绝缘光滑的斜面倾角为θ,匀强磁场B方向与斜面垂直,假如一个质量为m,带电量为-q的小球A在斜面上作匀速圆周运动,则必需加一最小的场强为______的匀强电场.18.三个带等量正电荷的粒子a、b、c(所受重力不计)以相同的初动能水平射入正交的电场磁场中,轨迹如图12,则可知它们的质量m a、m b、m c大小次序为______,入射时的初动量大小次序为______.19.一初速为零的带电粒子,经过电压为U的电场加速后垂直进入磁感强度为B的匀强磁场中,已知带电粒子的质量是m,电量是q,则带电粒子所受的洛仑兹力为______,轨道半径为______.20.如图13在x轴的上方(y≥0)存在着垂直于纸面对外的匀强磁场,磁感强度为B.在原点O有一个离子源向x轴上方的各个方向放射出质量为m、电量为q的正离子,速率都为v,对那些在xy平面内运动的离子,在磁场中可能到达的最大x=______,最大y=______.三、计算题21.以速率v垂直于屏S经过小孔O射入存在着匀强磁场的真空室中,如图14所示,磁感强度B的方向与离子的运动方向垂直,并垂直于纸面对里.(1)求离子进入磁场后到达屏S上时的位置与O点的距离.(2)假如离子进入磁场后经过时间t到达位置P,试证明:直线OP与离子入射方向之间的夹角θ跟t的关系是22.如图16所示,AB为一段光滑绝缘水平轨道,BCD为一段光滑的圆弧轨道,半径为R,今有一质量为m、带电为+q的绝缘小球,以速度v0从A点向B点运动,后又沿弧BC做圆周运动,到C点后由于v0较小,故难运动到最高点.假如当其运动至C点时,突然在轨道区域加一匀强电场和匀强磁场,使其能运动到最高点此时轨道弹力为0,且贴着轨道做匀速圆周运动,求:(1)匀强电场的方向和强度;(2)磁场的方向和磁感应强度.单元练习题答案一、选择题1.CD 2.A 3.B 4.D 5.BD 6.AD7.ABC 8.AD 9.AC 10.ABD 11.B 12.BD二、填空题三、计算题21.(1)2mv/qB。
高考物理带电粒子在磁场中的运动题20套(带答案)及解析

高考物理带电粒子在磁场中的运动题20套(带答案)及解析一、带电粒子在磁场中的运动专项训练1.如图所示,两条竖直长虚线所夹的区域被线段MN 分为上、下两部分,上部分的电场方向竖直向上,下部分的电场方向竖直向下,两电场均为匀强电场且电场强度大小相同。
挡板PQ 垂直MN 放置,挡板的中点置于N 点。
在挡板的右侧区域存在垂直纸面向外的匀强磁场。
在左侧虚线上紧靠M 的上方取点A,一比荷qm=5×105C/kg 的带正电粒子,从A 点以v 0=2×103m/s 的速度沿平行MN 方向射入电场,该粒子恰好从P 点离开电场,经过磁场的作用后恰好从Q 点回到电场。
已知MN 、PQ 的长度均为L=0.5m ,不考虑重力对带电粒子的影响,不考虑相对论效应。
(1)求电场强度E 的大小; (2)求磁感应强度B 的大小;(3)在左侧虚线上M 点的下方取一点C ,且CM=0.5m ,带负电的粒子从C 点沿平行MN 方向射入电场,该带负电粒子与上述带正电粒子除电性相反外其他都相同。
若两带电粒子经过磁场后同时分别运动到Q 点和P 点,求两带电粒子在A 、C 两点射入电场的时间差。
【答案】(1) 16/N C (2) 21.610T -⨯ (3) 43.910s -⨯ 【解析】 【详解】(1)带正电的粒子在电场中做类平抛运动,有:L=v 0t2122L qE t m = 解得E=16N/C(2)设带正电的粒子从P 点射出电场时与虚线的夹角为θ,则:0tan v qE t mθ=可得θ=450粒子射入磁场时的速度大小为2v 0粒子在磁场中做匀速圆周运动:2v qvB m r=由几何关系可知2r L = 解得B=1.6×10-2T(3)两带电粒子在电场中都做类平抛运动,运动时间相同;两带电粒子在磁场中都做匀速圆周运动,带正电的粒子转过的圆心角为32π,带负电的粒子转过的圆心角为2π;两带电粒子在AC两点进入电场的时间差就是两粒子在磁场中的时间差;若带电粒子能在匀强磁场中做完整的圆周运动,则其运动一周的时间22r mTv qBππ==;带正电的粒子在磁场中运动的时间为:4135.910s4t T-==⨯;带负电的粒子在磁场中运动的时间为:4212.010s4t T-==⨯带电粒子在AC两点射入电场的时间差为4123.910t t t s-∆=-=⨯2.如图所示,在xOy坐标系中,第Ⅰ、Ⅱ象限内无电场和磁场。
高考物理带电粒子在磁场中的运动题20套(带答案)及解析

高考物理带电粒子在磁场中的运动题20套(带答案)及解析一、带电粒子在磁场中的运动专项训练1.如图所示,在两块水平金属极板间加有电 压U 构成偏转电场,一束比荷为510/qC kg m=的带正电的粒子流(重力不计),以速度v o =104m/s 沿 水平方向从金属极板正中间射入两板.粒子经电 场偏转后进入一具有理想边界的半圆形变化磁场 区域,O 为圆心,区域直径AB 长度为L =1m , AB 与水平方向成45°角.区域内有按如图所示规 律作周期性变化的磁场,已知B 0=0. 5T ,磁场方向 以垂直于纸面向外为正.粒子经偏转电场后,恰好从下极板边缘O 点与水平方向成45°斜向下射入磁场.求:(1)两金属极板间的电压U 是多大?(2)若T o =0.5s ,求t =0s 时刻射人磁场的带电粒子在磁场中运动的时间t 和离开磁场的位置.(3)要使所有带电粒子通过O 点后的运动过程中 不再从AB 两点间越过,求出磁场的变化周期B o ,T o 应满足的条件.【答案】(1)100V (2)t=5210s π-⨯,射出点在AB 间离O 点0.042m (3)5010s 3T π-<⨯【解析】试题分析:(1)粒子在电场中做类平抛运动,从O 点射出使速度代入数据得U=100V (2)粒子在磁场中经过半周从OB 中穿出,粒子在磁场中运动时间射出点在AB 间离O 点(3)粒子运动周期,粒子在t=0、….时刻射入时,粒子最可能从AB 间射出如图,由几何关系可得临界时 要不从AB 边界射出,应满足得考点:本题考查带电粒子在磁场中的运动2.如图所示为电子发射器原理图,M 处是电子出射口,它是宽度为d 的狭缝.D 为绝缘外壳,整个装置处于真空中,半径为a 的金属圆柱A 可沿半径向外均匀发射速率为v 的电子;与A 同轴放置的金属网C 的半径为2a.不考虑A 、C 的静电感应电荷对电子的作用和电子之间的相互作用,忽略电子所受重力和相对论效应,已知电子质量为m ,电荷量为e.(1)若A 、C 间加速电压为U ,求电子通过金属网C 发射出来的速度大小v C ;(2)若在A 、C 间不加磁场和电场时,检测到电子从M 射出形成的电流为I ,求圆柱体A 在t 时间内发射电子的数量N.(忽略C 、D 间的距离以及电子碰撞到C 、D 上的反射效应和金属网对电子的吸收)(3)若A 、C 间不加电压,要使由A 发射的电子不从金属网C 射出,可在金属网内环形区域加垂直于圆平面向里的匀强磁场,求所加磁场磁感应强度B 的最小值. 【答案】(1)22e eUv v m=+4alt N ed π=(3) 43mv B ae = 【解析】 【分析】(1)根据动能定理求解求电子通过金属网C 发射出来的速度大小;(2)根据=neI t求解圆柱体A 在时间t 内发射电子的数量N ;(3)使由A 发射的电子不从金属网C 射出,则电子在 CA 间磁场中做圆周运动时,其轨迹圆与金属网相切,由几何关系求解半径,从而求解B. 【详解】(1)对电子经 CA 间的电场加速时,由动能定理得221122e e U mv mv =- 解得:22e eUv v m=+ (2)设时间t 从A 中发射的电子数为N ,由M 口射出的电子数为n , 则 =ne I t224d dNn N a aππ==⨯解得4altN edπ=(3)电子在 CA 间磁场中做圆周运动时,其轨迹圆与金属网相切时,对应的磁感应强度为B .设此轨迹圆的半径为 r ,则222(2)a r r a -=+2v Bev m r=解得:43mvB ae=3.如图,光滑水平桌面上有一个矩形区域abcd ,bc 长度为2L ,cd 长度为1.5L ,e 、f 分别为ad 、bc 的中点.efcd 区域存在竖直向下的匀强磁场,磁感应强度为B ;质量为m 、电荷量为+q 的绝缘小球A 静止在磁场中f 点.abfe 区域存在沿bf 方向的匀强电场,电场强度为26qB Lm;质量为km 的不带电绝缘小球P ,以大小为qBL m 的初速度沿bf 方向运动.P 与A发生弹性正碰,A 的电量保持不变,P 、A 均可视为质点.(1)求碰撞后A 球的速度大小;(2)若A 从ed 边离开磁场,求k 的最大值;(3)若A 从ed 边中点离开磁场,求k 的可能值和A 在磁场中运动的最长时间. 【答案】(1)A 21k qBL v k m =⋅+(2)1(3)57k =或13k =;32m t qB π=【解析】 【分析】 【详解】(1)设P 、A 碰后的速度分别为v P 和v A ,P 碰前的速度为qBL v m= 由动量守恒定律:P A kmv kmv mv =+ 由机械能守恒定律:222P A 111222kmv kmv mv =+ 解得:A 21k qBL v k m=⋅+(2)设A 在磁场中运动轨迹半径为R , 由牛顿第二定律得: 2A A mv qvB R= 解得:21kR L k =+ 由公式可得R 越大,k 值越大如图1,当A 的轨迹与cd 相切时,R 为最大值,R L = 求得k 的最大值为1k =(3)令z 点为ed 边的中点,分类讨论如下:(I )A 球在磁场中偏转一次从z 点就离开磁场,如图2有222()(1.5)2LR L R =+-解得:56L R = 由21k R L k =+可得:57k =(II )由图可知A 球能从z 点离开磁场要满足2LR ≥,则A 球在磁场中还可能经历一次半圆运动后回到电场,再被电场加速后又进入磁场,最终从z 点离开.如图3和如图4,由几何关系有:2223()(3)22L R R L =+- 解得:58L R =或2L R = 由21k R L k =+可得:511k =或13k = 球A 在电场中克服电场力做功的最大值为2226m q B L W m=当511k =时,A 58qBL v m =,由于2222222A 12521286qB L q B L mv m m ⋅=>当13k =时,A 2qBL v m =,由于2222222A 1286qB L q B L mv m m⋅=<综合(I )、(II )可得A 球能从z 点离开的k 的可能值为:57k =或13k =A球在磁场中运动周期为2m TqBπ=当13k=时,如图4,A球在磁场中运动的最长时间34t T=即32m tqBπ=4.如图所示,一匀强磁场磁感应强度为B;方向向里,其边界是半径为R的圆,AB为圆的一直径.在A点有一粒子源向圆平面内的各个方向发射质量m、电量-q的粒子,粒子重力不计.(1)有一带电粒子以的速度垂直磁场进入圆形区域,恰从B点射出.求此粒子在磁场中运动的时间.(2)若磁场的边界是绝缘弹性边界(粒子与边界碰撞后将以原速率反弹),某粒子沿半径方向射入磁场,经过2次碰撞后回到A点,则该粒子的速度为多大?(3)若R=3cm、B=0.2T,在A点的粒子源向圆平面内的各个方向发射速度均为3×105m/s、比荷为108C/kg的粒子.试用阴影图画出粒子在磁场中能到达的区域,并求出该区域的面积(结果保留2位有效数字).【答案】(1)(2)(3)【解析】【分析】(1)根据洛伦兹力提供向心力,求出粒子的半径,通过几何关系得出圆弧所对应的圆心角,根据周期公式,结合t=T求出粒子在磁场中运动的时间.(2)粒子径向射入磁场,必定径向反弹,作出粒子的轨迹图,通过几何关系求出粒子的半径,从而通过半径公式求出粒子的速度.(3)根据粒子的半径公式求出粒子的轨道半径,作出粒子轨迹所能到达的部分,根据几何关系求出面积.【详解】(1)由得r1=2R粒子的运动轨迹如图所示,则α=因为周期.运动时间.(2)粒子运动情况如图所示,β=.r2=R tanβ=R由得(3)粒子的轨道半径r3==1.5cm粒子到达的区域为图中的阴影部分区域面积为S=πr32+2×π(2r3)2−r32=9.0×10-4m2【点睛】本题考查了带电粒子在磁场中的运动问题,需掌握粒子的半径公式和周期公式,并能画出粒子运动的轨迹图,结合几何关系求解.该题对数学几何能力要求较高,需加强这方面的训练.5.如图所示,MN为绝缘板,CD为板上两个小孔,AO为CD的中垂线,在MN的下方有匀强磁场,方向垂直纸面向外(图中未画出),质量为m电荷量为q的粒子(不计重力)以某一速度从A点平行于MN的方向进入静电分析器,静电分析器内有均匀辐向分布的电场(电场方向指向O点),已知图中虚线圆弧的半径为R,其所在处场强大小为E,若离子恰好沿图中虚线做圆周运动后从小孔C垂直于MN进入下方磁场.()1求粒子运动的速度大小;()2粒子在磁场中运动,与MN 板碰撞,碰后以原速率反弹,且碰撞时无电荷的转移,之后恰好从小孔D 进入MN 上方的一个三角形匀强磁场,从A 点射出磁场,则三角形磁场区域最小面积为多少?MN 上下两区域磁场的磁感应强度大小之比为多少?()3粒子从A 点出发后,第一次回到A 点所经过的总时间为多少?【答案】(1)EqRm;(2)212R ;11n +;(3)2πmR Eq 。
高中物理磁场练习题(含解析)

D.库仑通过与万有引力类比,在实验的基础上验证得出库仑定律
4.电磁炮是利用电磁系统中电磁场产生的安培力来对金属炮弹进行加速,使其达到打击目标所需的巨大动能,如图甲所示。原理图可简化为如图乙所示,其中金属杆表示炮弹,磁场方向垂直轨道平面向上,则当弹体中通过如图乙所示的电流时,炮弹加速度的方向为( )
高中物理磁场练习题
学校:___________姓名:___________班级:___________
一、单选题
1.假设一个力单独作用的效果跟某几个力共同作用的效果相同,这个力就叫作那几个力的合力,以下概念的建立方法与合力相同的是( )
A.瞬时速度B.交流电的有效值
C.电场强度D.磁通量
2.如图所示,匀强磁场方向垂直纸面向里,匀强电场方向竖直向下,有一正离子恰能沿直线从左向右水平飞越此区域。不计重力,则( )
16.“用霍尔元件测量磁场”的实验中,把载流子为带负电的电子e的霍尔元件接入电路如图,电流为I,方向向左,长方体霍尔元件长宽高分别为 、 、 ,处于竖直向上的恒定匀强磁场中。
(1)前后极板M、N,电势较高的是___________。(选填“M板”或“N板”)
(2)某同学在实验时,改变电流的大小,记录了不同电流下对应的 值,如下表
14.如图所示,面积为10m2的正方形导线框处于磁感应强度为 的匀强磁场中。在线框平面以ad边为轴转过180°的过程中,线圈中________感应电流产生(选填“有”或“无”),整个过程中,磁通量变化量为________Wb。
四、实验题
15.奥斯特研究电和磁的关系的实验中,通电导线附近的小磁针发生偏转的原因是______ 实验时为使小磁针发生明显偏转,通电前导线应放置在其上方,并与小磁针保持______ 选填“垂直”、“平行”、“任意角度” .元电荷的电量是______C.
高考物理带电粒子在磁场中的运动题20套(带答案)及解析

高考物理带电粒子在磁场中的运动题20套(带答案)及解析一、带电粒子在磁场中的运动专项训练1.某控制带电粒子运动的仪器原理如图所示,区域PP′M′M 内有竖直向下的匀强电场,电场场强E =1.0×103V/m ,宽度d =0.05m ,长度L =0.40m ;区域MM′N′N 内有垂直纸面向里的匀强磁场,磁感应强度B =2.5×10-2T ,宽度D =0.05m,比荷qm=1.0×108C/kg 的带正电的粒子以水平初速度v 0从P 点射入电场.边界MM′不影响粒子的运动,不计粒子重力.(1) 若v 0=8.0×105m/s ,求粒子从区域PP′N′N 射出的位置;(2) 若粒子第一次进入磁场后就从M′N′间垂直边界射出,求v 0的大小; (3) 若粒子从M′点射出,求v 0满足的条件.【答案】(1)0.0125m (2) 3.6×105m/s. (3) 第一种情况:v 0=54.00.8()10/21nm s n -⨯+ (其中n =0、1、2、3、4)第二种情况:v 0=53.20.8()10/21nm s n -⨯+ (其中n =0、1、2、3).【解析】 【详解】(1) 粒子以水平初速度从P 点射入电场后,在电场中做类平抛运动,假设粒子能够进入磁场,则竖直方向21··2Eq d t m= 得2mdt qE=代入数据解得t =1.0×10-6s 水平位移x =v 0t 代入数据解得x =0.80m因为x 大于L ,所以粒子不能进入磁场,而是从P′M′间射出, 则运动时间t 0=Lv =0.5×10-6s , 竖直位移201··2Eq y t m==0.0125m 所以粒子从P′点下方0.0125m 处射出.(2) 由第一问可以求得粒子在电场中做类平抛运动的水平位移x =v 0 2mdqE粒子进入磁场时,垂直边界的速度 v 1=qE m ·t =2qEd m设粒子与磁场边界之间的夹角为α,则粒子进入磁场时的速度为v =1v sin α在磁场中由qvB =m 2v R得R =mv qB 粒子第一次进入磁场后,垂直边界M′N′射出磁场,必须满足x +Rsinα=L 把x =v 02md qE 、R =mv qB 、v =1v sin α、12qEdv m =代入解得 v 0=L·2Eqmd-E B v 0=3.6×105m/s.(3) 由第二问解答的图可知粒子离MM′的最远距离Δy =R -Rcosα=R(1-cosα)把R =mv qB 、v =1v sin α、12qEdv m=代入解得12(1cos )12tan sin 2mEd mEd y B q B q ααα-∆==可以看出当α=90°时,Δy 有最大值,(α=90°即粒子从P 点射入电场的速度为零,直接在电场中加速后以v 1的速度垂直MM′进入磁场运动半个圆周回到电场)1max 212mv m qEd mEdy qB qB m B q∆=== Δy max =0.04m ,Δy max 小于磁场宽度D ,所以不管粒子的水平射入速度是多少,粒子都不会从边界NN′射出磁场.若粒子速度较小,周期性运动的轨迹如下图所示:粒子要从M′点射出边界有两种情况, 第一种情况: L =n(2v 0t +2Rsinα)+v 0t把2md t qE =、R =mv qB 、v 1=vsinα、12qEd v m= 代入解得 0221221L qE n E v n md n B=-⋅++v 0= 4.00.821n n -⎛⎫⎪+⎝⎭×105m/s(其中n =0、1、2、3、4)第二种情况:L =n(2v 0t +2Rsinα)+v 0t +2Rsinα 把2md t qE =、R =mv qB 、v 1=vsinα、12qEd v m=代入解得02(1)21221L qE n E v n md n B+=-⋅++v 0= 3.20.821n n -⎛⎫⎪+⎝⎭×105m/s(其中n =0、1、2、3).2.如图所示,在长度足够长、宽度d=5cm 的区域MNPQ 内,有垂直纸面向里的水平匀强磁场,磁感应强度B=0.33T .水平边界MN 上方存在范围足够大的竖直向上的匀强电场,电场强度E=200N/C .现有大量质量m=6.6×10﹣27kg 、电荷量q=3.2×10﹣19C 的带负电的粒子,同时从边界PQ 上的O 点沿纸面向各个方向射入磁场,射入时的速度大小均为V=1.6×106m/s ,不计粒子的重力和粒子间的相互作用.求:(1)求带电粒子在磁场中运动的半径r ;(2)求与x 轴负方向成60°角射入的粒子在电场中运动的时间t ;(3)当从MN 边界上最左边射出的粒子离开磁场时,求仍在磁场中的粒子的初速度方向与x 轴正方向的夹角范围,并写出此时这些粒子所在位置构成的图形的曲线方程. 【答案】(1)r=0.1m (2)43.310t s -=⨯ (3)3060~ 曲线方程为222x y R +=(30.1,0.120R m m x m =≤≤)【解析】 【分析】 【详解】(1)洛伦兹力充当向心力,根据牛顿第二定律可得2v qvB m r=,解得0.1r m =(2)粒子的运动轨迹如图甲所示,由几何关系可知,在磁场中运动的圆心角为30°,粒子平行于场强方向进入电场,粒子在电场中运动的加速度qE a m= 粒子在电场中运动的时间2v t a= 解得43.310t s -=⨯(3)如图乙所示,由几何关系可知,从MN 边界上最左边射出的粒子在磁场中运动的圆心角为60°,圆心角小于60°的粒子已经从磁场中射出,此时刻仍在磁场中的粒子运动轨迹的圆心角均为60°,则仍在磁场中的粒子的初速度方向与x 轴正方向的夹角范围为30°~60° 所有粒子此时分别在以O 点为圆心,弦长0.1m 为半径的圆周上,曲线方程为22x y R += 30.1,0.1R m m x m ⎛⎫=≤≤ ⎪ ⎪⎝⎭【点睛】带电粒子在组合场中的运动问题,首先要运用动力学方法分析清楚粒子的运动情况,再选择合适方法处理.对于匀变速曲线运动,常常运用运动的分解法,将其分解为两个直线的合成,由牛顿第二定律和运动学公式结合求解;对于磁场中圆周运动,要正确画出轨迹,由几何知识求解半径3.如图所示,半径r=0.06m的半圆形无场区的圆心在坐标原点O处,半径R=0.1m,磁感应强度大小B=0.075T的圆形有界磁场区的圆心坐标为(0,0.08m),平行金属板MN的极板长L=0.3m、间距d=0.1m,极板间所加电压U=6.4x102V,其中N极板收集到的粒子全部中和吸收.一位于O处的粒子源向第一、二象限均匀地发射速度为v的带正电粒子,经圆形磁场偏转后,从第一象限出射的粒子速度方向均沿x轴正方向,已知粒子在磁场中的运动半径R0=0.08m,若粒子重力不计、比荷q m=108C/kg、不计粒子间的相互作用力及电场的边缘效应.sin53°=0.8,cos53°=0.6.(1)求粒子的发射速度v的大小;(2)若粒子在O点入射方向与x轴负方向夹角为37°,求它打出磁场时的坐标:(3)N板收集到的粒子占所有发射粒子的比例η.【答案】(1)6×105m/s;(2)(0,0.18m);(3)29%【解析】【详解】(1)由洛伦兹力充当向心力,即qvB=m2vR可得:v=6×105m/s;(2)若粒子在O点入射方向与x轴负方向夹角为37°,作出速度方向的垂线与y轴交于一点Q,根据几何关系可得PQ=0.0637cos=0.08m,即Q为轨迹圆心的位置;Q到圆上y轴最高点的距离为0.18m-0.0637sin=0.08m,故粒子刚好从圆上y轴最高点离开;故它打出磁场时的坐标为(0,0.18m);(3)如上图所示,令恰能从下极板右端出射的粒子坐标为y,由带电粒子在电场中偏转的规律得:y =12at2…①a=qEm=qUmd…②t=Lv …③由①②③解得:y=0.08m设此粒子射入时与x轴的夹角为α,则由几何知识得:y=r sinα+R0-R0cosα可知tanα=43,即α=53°比例η=53180︒×100%=29%4.如图,平面直角坐标系中,在,y>0及y<-32L区域存在场强大小相同,方向相反均平行于y轴的匀强电场,在-32L<y<0区域存在方向垂直于xOy平面纸面向外的匀强磁场,一质量为m,电荷量为q的带正电粒子,经过y轴上的点P1(0,L)时的速率为v0,方向沿x轴正方向,然后经过x轴上的点P2(32L,0)进入磁场.在磁场中的运转半径R=52L(不计粒子重力),求:(1)粒子到达P2点时的速度大小和方向;(2)EB;(3)粒子第一次从磁场下边界穿出位置的横坐标;(4)粒子从P1点出发后做周期性运动的周期.【答案】(1)53v0,与x成53°角;(2)043v;(3)2L;(4)()4053760Lvπ+.【解析】【详解】(1)如图,粒子从P1到P2做类平抛运动,设到达P2时的y方向的速度为v y,由运动学规律知32L=v0t1,L=2yvt1可得t1=32Lv,v y=43v0故粒子在P2的速度为v220yv v+=53v0设v与x成β角,则tanβ=yvv=43,即β=53°;(2)粒子从P1到P2,根据动能定理知qEL=12mv2-12mv02可得E=289mvqL粒子在磁场中做匀速圆周运动,根据qvB=m2vR解得:B=mvqR=5352m vq L⨯⨯=023mvqL解得:043vEB=;(3)粒子在磁场中做圆周运动的圆心为O′,在图中,过P2做v的垂线交y=-32L直线与Q′点,可得:P2O′=3253Lcos=52L=r故粒子在磁场中做圆周运动的圆心为O′,因粒子在磁场中的轨迹所对圆心角α=37°,故粒子将垂直于y=-32L直线从M点穿出磁场,由几何关系知M的坐标x=32L+(r-r cos37°)=2L;(4)粒子运动一个周期的轨迹如上图,粒子从P1到P2做类平抛运动:t1=32Lv在磁场中由P2到M动时间:t2=372 360rvπ︒⨯=37120Lvπ从M运动到N,a=qEm=289vL则t3=va=158Lv则一个周期的时间T=2(t1+t2+t3)=()4053760Lvπ+.5.如图:竖直面内固定的绝缘轨道abc,由半径R=3 m的光滑圆弧段bc与长l=1.5 m的粗糙水平段ab在b点相切而构成,O点是圆弧段的圆心,Oc与Ob的夹角θ=37°;过f点的竖直虚线左侧有方向竖直向上、场强大小E=10 N/C的匀强电场,Ocb的外侧有一长度足够长、宽度d =1.6 m的矩形区域efgh,ef与Oc交于c点,ecf与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m2=3×10-3 kg、电荷量q=3×l0-3 C的带正电小物体Q静止在圆弧轨道上b点,质量m1=1.5×10-3 kg的不带电小物体P从轨道右端a以v0=8 m/s的水平速度向左运动,P、Q碰撞时间极短,碰后P以1 m/s的速度水平向右弹回.已知P与ab间的动摩擦因数μ=0.5,A、B均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g=10m/s2.求:(1)碰后瞬间,圆弧轨道对物体Q的弹力大小F N;(2)当β=53°时,物体Q刚好不从gh边穿出磁场,求区域efgh内所加磁场的磁感应强度大小B1;(3)当区域efgh内所加磁场的磁感应强度为B2=2T时,要让物体Q从gh边穿出磁场且在磁场中运动的时间最长,求此最长时间t及对应的β值.【答案】(1)24.610NF N-=⨯ (2)11.25B T= (3)127s360tπ=,001290143ββ==和【解析】【详解】解:(1)设P碰撞前后的速度分别为1v和1v',Q碰后的速度为2v从a 到b ,对P ,由动能定理得:221011111-22m gl m v m v μ=- 解得:17m/s v =碰撞过程中,对P ,Q 系统:由动量守恒定律:111122m v m v m v '=+取向左为正方向,由题意11m/s v =-', 解得:24m/s v =b 点:对Q ,由牛顿第二定律得:2222N v F m g m R-=解得:24.610N N F -=⨯(2)设Q 在c 点的速度为c v ,在b 到c 点,由机械能守恒定律:22222211(1cos )22c m gR m v m v θ-+=解得:2m/s c v =进入磁场后:Q 所受电场力22310N F qE m g -==⨯= ,Q 在磁场做匀速率圆周运动由牛顿第二定律得:2211c c m v qv B r =Q 刚好不从gh 边穿出磁场,由几何关系:1 1.6m r d == 解得:1 1.25T B = (3)当所加磁场22T B =,2221m cm v r qB == 要让Q 从gh 边穿出磁场且在磁场中运动的时间最长,则Q 在磁场中运动轨迹对应的圆心角最大,则当gh 边或ef 边与圆轨迹相切,轨迹如图所示:设最大圆心角为α,由几何关系得:22cos(180)d r r α-︒-= 解得:127α=︒运动周期:222m TqB π=则Q 在磁场中运动的最长时间:222127127•s 360360360m t T qB παπ===︒此时对应的β角:190β=︒和2143β=︒6.在平面直角坐标系x0y 中,第I 象限内存在垂直于坐标平面向里的匀强磁场,在A (L ,0)点有一粒子源,沿y 轴正向发射出速率分别为υ、5υ、9υ的同种带电粒子,粒子质量为m ,电荷量为q .在B (0,L )、C (0,3L )、D (0,5L )放一个粒子接收器,B 点的接收器只能吸收来自y 轴右侧到达该点的粒子,C 、D 两点的接收器可以吸收沿任意方向到达该点的粒子.已知速率为υ的粒子恰好到达B 点并被吸收,不计粒子重力.(1)求第I 象限内磁场的磁感应强度B 1;(2)计算说明速率为5v 、9v 的粒子能否到达接收器;(3)若在第Ⅱ象限内加上垂直于坐标平面的匀强磁场,使所有粒子均到达接收器,求所加磁场的磁感应强度B 2的大小和方向. 【答案】(1)1mvB qL=(2)故速率为v 5的粒子被吸收,速率为9v 的粒子不能被吸收(3)2217'(173)m B qL=-2(17317)'mvB +=),垂直坐标平面向外【解析】 【详解】(1)由几何关系知,速率为v 的粒子在第Ⅰ象限内运动的半径为R L =①由牛顿运动定律得21v qvB m R=②得1mv B qL=③ (2)由(1)中关系式可得速率为v 5、9v 的粒子在磁场中的半径分别为5L 、9L . 设粒子与y 轴的交点到O 的距离为y ,将5R L =和9R L =分别代入下式222()R L y R -+=④得这两种粒子在y 轴上的交点到O 的距离分别为3L 17L ⑤故速率为v 5的粒子被吸收,速率为9v 的粒子不能被吸收.⑥(3)若速度为9v 的粒子能到达D 点的接收器,则所加磁场应垂直坐标平面向外⑦ 设离子在所加磁场中的运动半径为1R ,由几何关系有15172917L L R L L= 又221(9)9v q vB m R ⋅=⑨解得2217(517)mv B qL=-(或2(51717)mvB +=)⑩若粒子到达C 点的接收器,所加磁场应垂直于坐标平面向里同理:21732917L LR L L-=222(9)9'v q vB m R ⋅=解得2217'(173)m B qL=-2(17317)'4mvB qL +=)7.长为L 的平行板电容器沿水平方向放置,其极板间的距离为d ,电势差为U ,有方向垂直纸面向里的磁感应强度大小为B 的匀强磁场.荧光屏MN 与电场方向平行,且到匀强电、磁场右侧边界的距离为x ,电容器左侧中间有发射质量为m 带+q 的粒子源,如图甲所示.假设a 、b 、c 三个粒子以大小不等的初速度垂直于电、磁场水平射入场中,其中a 粒子沿直线运动到荧光屏上的O 点;b 粒子在电、磁场中向上偏转;c 粒子在电、磁场中向下偏转.现将磁场向右平移与电场恰好分开,如图乙所示.此时,a 、b 、c 粒子在原来位置上以各自的原速度水平射入电场,结果a 粒子仍恰好打在荧光屏上的O 点;b 、c 中有一个粒子也能打到荧光屏,且距O 点下方最远;还有一个粒子在场中运动时间最长,且打到电容器极板的中点.求:(1)a粒子在电、磁场分开后,再次打到荧光屏O点时的动能;(2)b,c粒子中打到荧光屏上的点与O点间的距离(用x、L、d表示);(3)b,c中打到电容器极板中点的那个粒子先、后在电场中,电场力做功之比.【答案】(1)242222222akL B dq m UEmB d= (2)1()2xy dL=+ (3)11224==5UqyW dUqW yd【解析】【详解】据题意分析可作出abc三个粒子运动的示意图,如图所示.(1) 从图中可见电、磁场分开后,a粒子经三个阶段:第一,在电场中做类平抛运动;第二,在磁场中做匀速圆周运动;第三,出磁场后做匀速直线运动到达O点,运动轨迹如图中Ⅰ所示.Uq Bqv d=, BdU v =, L LBd t v U==, 222122a Uq L B qdy t dm mU ==, 21()2a a k U U qy E m d Bd=- 242222222a k L B d q m U E mB d =(2) 从图中可见c 粒子经两个阶段打到荧光屏上.第一,在电场中做类平抛运动;第二,离开电场后做匀速直线运动打到荧光屏上,运动轨迹如图中Ⅱ所示.设c 粒子打到荧光屏上的点到O 点的距离为y ,根据平抛运动规律和特点及几何关系可得12=122dy L L x +, 1()2x y d L =+(3) 依题意可知粒子先后在电场中运动的时间比为t 1=2t 2如图中Ⅲ的粒子轨迹,设粒子先、后在电场中发生的侧移为y 1,y 22111·2Uq y t md =,11y Uq v t md =122221·2y Uq t m y t d v +=,22158qU y t md=, 124=5y y , 11224==5Uqy W d Uq W y d8.如图所示,虚线OL 与y 轴的夹角θ=450,在OL 上侧有平行于OL 向下的匀强电场,在OL 下侧有垂直纸面向外的匀强磁场,一质量为m 、电荷量为q (q >0)的粒子以速率v 0从y 轴上的M (OM =d )点垂直于y 轴射入匀强电场,该粒子恰好能够垂直于OL 进入匀强磁场,不计粒子重力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
磁场专题训练大连市物理名师工作室 门贵宝【例1】根据安培假说的物理思想:磁场来源于运动电荷.如果用这种思想解释地球磁场的形成,根据地球上空并无相对地球定向移动的电荷的事实.那么由此推断,地球总体上应该是:(A )A.带负电;B.带正电;C.不带电;D.不能确定解析:因在地球的内部地磁场从地球北极指向地球的南极,根据右手螺旋定则可判断出地球表现环形电流的方向应从东到西,而地球是从西向东自转,所以只有地球表面带负电荷才能形成上述电流,故选A.【例2】如图所示,正四棱柱abed 一a'b'c'd'的中心轴线00'处有一无限长的载流直导线,对该电流的磁场,下列说法中正确的是(AC ) A.同一条侧棱上各点的磁感应强度都相等B.四条侧棱上的磁感应强度都相同C.在直线ab 上,从a 到b ,磁感应强度是先增大后减小D.棱柱内任一点的磁感应强度比棱柱侧面上所有点都大【例3】如图所示,一根通电直导线放在磁感应强度B=1T 的匀强磁场中,在以导线为圆心,半径为r 的圆周上有a,b,c,d 四个点,若a 点的实际磁感应强度为0,则下列说法中正确的是(AC )A.直导线中电流方向是垂直纸面向里的B.C 点的实际磁感应强度也为0C. d 点实际磁感应强度为2T ,方向斜向下,与B 夹角为450D.以上均不正确解析:题中的磁场是由直导线电流的磁场和匀强磁场共同形成的,磁场中任一点的磁感应强度应为两磁场分别产生的磁感应强度的矢量和.a 处磁感应强度为0,说明直线电流在该处产生的磁感应强度大小与匀强磁场B 的大小相等、方向相反,可得直导线中电流方向应是垂直纸面向里.在圆周上任一点,由直导线产生的磁感应强度大小均为B =1T ,方向沿圆周切线方向,可知C 点的磁感应强度大小为2T ,方向向右.d 点的磁感应强度大小为2T ,方向与B 成450斜向右下方.【例4】如图所示,A 为通电线圈,电流方向如图所示,B 、C 为与A 在同一平面内的两同心圆,φB 、φC 分别为通过两圆面的磁通量的大小,下述判断中正确的是( )A .穿过两圆面的磁通方向是垂直纸面向外B .穿过两圆面的磁通方向是垂直纸面向里C .φB >φCD .φB <φC解析:由安培定则判断,凡是垂直纸面向外的磁感线都集中在是线圈内,因磁感线是闭合曲线,则必有相应条数的磁感线垂直纸面向里,这些磁总线分布在线圈是外,所以B 、C 两圆面都有垂直纸面向里和向外的磁感线穿过,垂直纸面向外磁感线条数相同,垂直纸面向里的磁感线条数不同,B 圆面较少,c 圆面较多,但都比垂直向外的少,所以 B 、C 磁通方B ·a ·b ·c ·d向应垂直纸面向外,φB>φC,所以A、C正确.分析磁通时要注意磁感线是闭合曲线的特点和正反两方向磁总线条数的多少,不能认为面积大的磁通就大.答案:AC【例5】如图4所示,一水平放置的矩形闭合线圈abcd在细长磁铁N极附近下落,保持bc边在纸外,ad边在纸内,由图中的位置Ⅰ经过位置Ⅱ到位置Ⅲ,且位置Ⅰ和Ⅲ都很靠近位置Ⅱ,在这个过程中,线圈中的磁通量()A.是增加的;B.是减少的C.先增加,后减少;D.先减少,后增加解析:要知道线圈在下落过程中磁通量的变化情况,就必须知道条形磁铁在磁极附近磁感线的分布情况.条形磁铁在 N极附近的分布情况如图所示,由图可知线圈中磁通量是先减少,后增加.D选项正确.点评:要知道一个面上磁通量,在面积不变的条件下,也必须知道磁场的磁感线的分布情况.因此,牢记条形磁铁、蹄形磁铁、通电直导线、通电螺线管和通电圆环等磁场中磁感线的分布情况在电磁学中是很必要的.【例16】如图所示边长为100cm的正方形闭合线圈置于磁场中,线圈AB、CD两边中点连线OO/的左右两侧分别存在方向相同、磁感强度大小各为B1=0.6T,B2=0.4T的匀强磁场。
若从上往下看,线圈逆时针转过370时,穿过线圈的磁通量改变了多少?解析:在原图示位置,由于磁感线与线圈平面垂直,因此Φ1=B1×S/2+B2×S/2=(0.6×1/2+0.4×1/2)Wb=0.5Wb当线圈绕OO/轴逆时针转过370后,(见图中虚线位置):Φ2=B1×S n/2+B2×S n/2=B1×Scos370/2+B2×Scos370/2=0.4Wb磁通量变化量ΔΦ=Φ2-Φ1=(0.4-0.5)Wb=-0.1Wb所以线圈转过370后。
穿过线圈的磁通量减少了0.1Wb.【例7】从太阳或其他星体上放射出的宇宙射线中含有高能带电粒子,若到达地球,对地球上的生命将带来危害.对于地磁场对宇宙射线有无阻挡作用的下列说法中,正确的是(B)A.地磁场对直射地球的宇宙射线的阻挡作用在南北两极最强,赤道附近最弱B.地磁场对直射地球的宇宙射线的阻挡作用在赤道附近最强,南北两极最弱C.地磁场对宇宙射线的阻挡作用各处相同D.地磁场对宇宙射线无阻挡作用解析:因在赤道附近带电粒子运动方向与地磁场近似垂直,而在两极趋于平行.【例8】超导是当今高科技的热点之一,当一块磁体靠近超导体时,超导体中会产生强大的电流,对磁体有排斥作用,这种排斥力可使磁体悬浮在空中,磁悬浮列车就采用了这项技术,磁体悬浮的原理是(D)①导体电流的磁场方向与磁体的磁场方向相同.②超导体电流的磁场方向与磁体的磁场方向相反.③超导体使磁体处于失重状态.④超导体对磁体的磁力与磁体的重力相平衡.A.①③B.①④C.②③D.②④解析:场方向与原磁场方向相反,对磁体产生排斥作用力,这个力与磁体的重力达平衡.【例9】.如图所示,用弯曲的导线环把一铜片和锌片相连装在一绝缘的浮标上,然后把浮标浸在盛有稀硫酸的容器中,设开始设置时,环平面处于东西方向上.放手后,环平面将最终静止在方向上.解析:在地表附近地磁场的方向是大致由南向北的,此题中由化学原理可推ZnCu知在环中有环形电流由等效法可假定其为一个垂直于纸面的条形磁体,而条形磁体所受地磁场的力的方向是南北方向的.【例10】如图所示,一条形磁铁放在水平桌面上在其左上方固定一根与磁铁垂直的长直导线,当导线通以如图所示方向电流时()A.磁铁对桌面的压力减小,且受到向左的摩擦力作用B.磁铁对桌面的压力减小,且受到向右的摩擦力作用C.磁铁对桌面的压力增大,且受到向左的摩擦力作用D.磁铁对桌面的压力增大,且受到向右的摩擦力作用解析:导线所在处磁场的方向沿磁感线的切线方向斜向下,对其沿水平竖直方向分解,如图10—15所示.对导线:B x产生的效果是磁场力方向竖直向上.B y产生的效果是磁场力方向水平向左.根据牛顿第三定律:导线对磁铁的力有竖直向下的作用力,因而磁铁对桌面压力增大;导线对磁铁的力有水平向右的作用力.因而磁铁有向右的运动趋势,这样磁铁与桌面间便产生了摩擦力,桌面对磁铁的摩擦力沿水平方向向左.答案:C【例11】如图所示,在光滑的水平桌面上,有两根弯成直角相同金属棒,它们的一端均可绕固定转轴O自由转动,另一端b互相接触,组成一个正方形线框,正方形边长为L,匀强磁场的方向垂直桌面向下,磁感强度为B.当线框中通以图示方向的电流时,两金属棒b点的相互作用力为f此时线框中的电流为多少?解析:由于对称性可知金属棒在O点的相互作用力也为f,所以Oa边和ab边所受安培力的合力为2f,方向向右,根据左手定则可知Oa边和ab边所受安培力F1、F2分别与这两边垂直,由力的合成法则可求出F1= F2=2fcos450=2f=BIL,I=2f/BL点评:本题也利用了对称性说明O点的作用力为f,当对左侧的金属棒作受力分析时,受到的两个互相垂直的安培力F1、F2(这两个安培力大小相等为F)的合力是水平向右的,大小为2F,与O、b两点受到的作用力2f相平衡。
【例12】质量为m的通电细杆ab置于倾角为θ的平行导轨上,导轨宽度为d,杆ab 与导轨间的摩擦因数为μ.有电流时aB恰好在导轨上静止,如图所示,如图10—19所示是沿ba方向观察时的四个平面图,标出了四种不同的匀强磁场方向,其中杆与导轨间摩擦力可能为零的是()解析:杆的受力情况为:答案:AB【例13】如图所示,电源电动势E =2V ,r =0.5Ω,竖直导轨电阻可略,金属棒的质量m =0.1kg ,R=0.5Ω,它与导体轨道的动摩擦因数μ=0.4,有效长度为0.2 m,靠在导轨的外面,为使金属棒不下滑,我们施一与纸面夹角为600且与导线垂直向外的磁场,(g=10 m/s 2)求:(1)此磁场是斜向上还是斜向下? (2)B 的范围是多少?解析:导体棒侧面受力图如图所示:由平衡条件得:B 最小时摩擦力沿导轨向上,则有 μF N +BILcos300=mg, F N =BILsin300 解得B =2.34 T当B 最大时摩擦力沿导轨向下,则有BILcos300=mg +μF NF N =BILsin300 解得B=3. 75 T B 的范围是2.34 T -- 3. 75 T【例14】在倾角为θ的斜面上,放置一段通有电流强度为I,长度为L ,质量为m 的导体棒a ,(通电方向垂直纸面向里),如图所示,棒与斜面间动摩擦因数μ< tan θ.欲使导体棒静止在斜面上,应加匀强磁场,磁场应强度B 最小值是多少?如果要求导体棒a 静止在斜面上且对斜面无压力,则所加匀强磁场磁感应强度又如何?解析:(1)设当安培力与斜面成α角时B 最小,则由平衡条件得:mgsin θ=μF N +BILcos α, F N =mgcos θ+BILsin α.解得()()()2sin cos sin cos ,cos sin 1sin mg mg B IL IL θμθθμθαμαμαβ--==+++1tan βμ=其中 ∴当α+β=900时, min 2sin cos .1mg B IL θμθμ-=+ (2)当F N =0时,则BIL =mg ,∴BIL=mg,由左手定则知B 方向水平向左.【例15】如图所示,一半径为R 的绝缘圆筒中有沿轴线方向的匀强磁场,磁感应强度为B ,一质量为m ,带电荷量为q 的正粒子(不计重力)以速度为v 从筒壁的A 孔沿半径方向进入筒内,设粒子和筒壁的碰撞无电荷量和能量的损α ⊕a ·O失,那么要使粒子与筒壁连续碰撞,绕筒壁一周后恰好又从A 孔射出,问:(1)磁感应强度B 的大小必须满足什么条件?(2)粒子在筒中运动的时间为多少?解析:(1)粒子射入圆筒后受洛仑兹力的作用而发生偏转,设第一次与B 点碰撞,撞后速度方向又指向O 点,设粒子碰撞n-1次后再从A 点射出,则其运动轨迹是n 段相等的弧长. 设第一段圆弧的圆心为O /,半径为r,则θ=2π/2n=π/n.,由几何关系得tan r R n π=,又由r=mv/Bq,联立得:( 1.2.3)tan mvB n Rq n π== (2)粒子运动的周期为:T=2πm/qB,将B 代入得2tan Rn T v ππ=弧AB 所对的圆心角22222n n n πππϕθπ-⎛⎫⎛⎫=-=-= ⎪ ⎪⎝⎭⎝⎭ 粒子由A 到B 所用的时间()/2122tan tan 22n R n R t T n v n nv n πϕππππππ--==⋅⋅⋅=⋅ (n=3.4.5……)故粒子运动的总时间为()/2tan n Rt nt v n ππ-== (n=3.4.5……)【例16】如图所示,空间存在着垂直向外的水平的匀强磁场和竖直向上的匀强电场,磁感应强度为B ,电场强度为E.在这个场区内,有一带正电的液滴a 在电场力和重力作用下处于静止.现从场中某点由静止释放一个带负电的液滴b(图中未画出),当它的运动方向变为水平方向时恰与a 相撞,撞后两液滴合为一体,并沿水平方向做匀速直线运动.已知液滴b 的质量是a 质量的2倍,b 所带电荷量是a 所带电荷量的4倍,且相撞前a,b 间的静电力忽略不计. (1)求两液滴相撞后共同运动的速度大小;(2)画出液滴b 在相撞前运动的轨迹示意图;(3)求液滴b 开始下落时距液滴a 的高度h.解析:液滴在匀强磁场、匀强电场中运动.同时受到洛伦兹力、电场力和重力作用,‘(1)可设a 液滴质量为m 、电量为q,b 液滴质量为2m 、电量为一4q.平衡时,有qE=mg ……①,a 、b 相撞合为一体时,质量为3m,电量为-3q,速度为v ,由题意知处于平衡状态,重力3mg,电场力3qE 均竖直向下,所以洛伦兹力必定竖直向上,满足3qvB=3mg+3qE ……②由①、②两式,可得撞后速度v=2E/B(2)对b 液滴开始时重力2mg,电场力4qE 均竖直向下,所以开始Bφ⌒O /╯ θ · ·E · · · · · · · a · · · · B向下加速,由左手定则,洛伦兹力向右,可见b 液滴从初始位置沿一曲线向右下方运动,当与a 相撞前b 的速度已水平向右,其轨迹示意图如图所示.(3)对b,从开始运动至与a 相撞之前,由动能定理:w e +w G =△E K ,即(4qE +2mg)h=½(2m )v 02a,b 相撞时,可看做动量守恒,有2mv 0=3mv由以上几式可得v 0=3E/B 再由上两式得2220034262mv v E h qE mg g g B ⎛⎫=== ⎪+⎝⎭。