有界磁场问题及磁场中的临界问题
有界磁场问题及磁场中的临界问题

有界磁场问题直线边界磁场1、如图所示,在y<0的区域内存在匀强磁场,磁场方向垂直于xy平面并指向纸面向里,磁感强度为B.一带负电的粒子(质量为m、电荷量为q)以速度v0从O点射入磁场,入射方向在xy平面内,与x轴正向的夹角为θ.求:(1)该粒子射出磁场的位置(2)该粒子在磁场中运动的时间.(粒子所受重力不计)2、如图所示直线MN上方有磁感应强度为B的匀强磁场。
正、负电子同时从同一点O以与MN成30°角的同样速度v 射入磁场(电子质量为m,电荷为e),它们从磁场中射出时相距多远?射出的时间差是多少?圆形边界磁场1、如图所示,带负电的粒子垂直磁场方向进入圆形匀强磁场区域,出磁场时速度偏离原方向60°角,已知带电粒子质量m=3×10-20kg,电量q=10-13C,速度v0=105m/s,磁场区域的半径R=3×10-1m,不计重力,求磁场的磁感应强度。
2、如图所示,虚线所围区域内有方向垂直纸面向里的匀强磁场,磁感应强度为B。
一束电子沿圆形区域的直径方向以速度v射入磁场,电子束经过磁场区后,其运动的方向与原入射方向成θ角。
设电子质量为m,电荷量为e,不计电子之间的相互作用力及所受的重力。
求:(1)电子在磁场中运动轨迹的半径R;(2)电子在磁场中运动的时间t;(3)圆形磁场区域的半径r。
磁场中的临界问题放缩法找临界1、在真空中宽d的区域内有匀强磁场B,质量为m,电量为e,速率为v的电子从边界CD外侧垂直射入磁场,入射方向与CD夹角θ,为了使电子能从磁场的另一侧边界EF射出,v应满足的条件是:()A.v>eBd/m(1+sinθ)B.v>eBd/m(1+cosθ)C.v>eBd/msinθD.v<eBd/mcosθ2、如图所示,一足够长的矩形区域abcd内充满方向垂直纸面向里的、磁感应强度为B的匀强磁场,在ad 边中点O方向垂直磁场射入一速度方向跟ad边夹角θ=300、大小为v0的带电粒子,已知粒子质量为m、电量为q,ab边足够长,ad边长为L,粒子的重力不计。
高中 高考物理专项复习 磁场 有界磁场中的临界极值问题

[解析] (1)带电粒子在磁场中做匀速圆周运动,设半径为 R1, 运动速度为 v0。粒子能从左边界射出,临界情况如图甲所示,由几 何条件知 R1+R1cos 30° =d mv2 0 又 qv0B= R 1 2(2- 3)Bqd Bqd 解得 v0= = m m(1+cos 30° ) 所以粒子能从左边界射出时的最大速度为 2(2- 3)Bqd vm=v0= m
[ 典题 2]
(2016· 长沙质检 ) 如图所
示, 真空室内存在匀强磁场,磁场方向 垂直于纸面向里, 磁感应强度的大小 B = 0.60 T ,磁场内有一块平面感光板 ab,板面与磁场方向平行,在距 ab 玻璃 l=16 cm 处,有一个点状 的 α 放射源 S,它向各个方向发射 α 粒子,α 粒子的速度都是 v= q 3.0×10 m/s,已知 α 粒子的比荷m=5.0×107 C/kg,现只考虑在图P′直线上, 将半径放缩作轨迹, 从而探索出临界条件,这种方法称为“放缩法”。
[典题 1]
(2016· 浙江联考)如图甲所示,在空间中存在垂直纸
面向里的磁感应强度为 B 的匀强磁场,其边界 AB、CD 相距为 d, 在左边界的 Q 点处有一质量为 m、 带电量为 q 的负粒子沿与左边界 成 30° 的方向射入磁场,粒子重力不计。求:
考点二
“平移法”解决有界磁场中的临界问题
1.适用条件 (1)速度大小一定,方向不同 带电粒子进入匀强磁场时,它们在 磁场中做匀速圆周运动的半径相同,若 射入初速度为 v0,则圆周运动半径为 R mv0 = qB 。如图所示。
(2)轨迹圆圆心,共圆 带电粒子在磁场中做匀速圆周运动的圆心在以入射点 P 为 mv0 圆心、半径 R= qB 的圆(这个圆在下面的叙述中称为“轨迹圆 心圆”)上。 2.方法界定 mv0 将一半径为 R= qB 的圆沿着“轨迹圆心圆”平移,从而 探索出临界条件,这种方法称为“平移法” 。
(详细解析、评注)带电粒子在有界磁场中运动的临界(极限)问题解析

带电粒子在有界磁场中运动的临界问题当某种物理现象变化为另一种物理现象或物体从一种状态变化为另一种状态时,发生这种质的飞跃的转折状态通常称为临界状态。
粒子进入有边界的磁场,由于边界条件的不同,而出现涉及临界状态的临界问题,如带电粒子恰好不能从某个边界射出磁场,可以根据边界条件确定粒子的轨迹、半径、在磁场中的运动时间等。
如何分析这类相关的问题是本文所讨论的内容。
一、带电粒子在有界磁场中运动的分析方法1.圆心的确定方法一:洛伦兹力F指向圆心,根据F⊥v,画出粒子运动轨迹中任意两点(一般是射入和射出磁场两点),先作出切线找出v的方向,再确定F的方向,沿两个洛伦兹力F的方向画其延长线,两延长线的交点即为圆心,方法二:或利用圆心位置必定在圆中一根弦的中垂线上,作出圆心位置,如图1所示。
2.半径的确定和计算利用平面几何关系!!!!,求出该圆的可能半径(或圆心角),并注意以下两个重要的几何特点:①粒子速度的偏转角φ等于转过的粒子轨迹圆心角α,并等于AB弦与切线的夹角(弦切角)θ的2倍,如图2所示,即φ=α=2θ。
②相对的弦切角θ相等,与相邻的弦切角θ′互补,即θ+θ′=180°。
3.粒子在磁场中运动时间的确定若要计算转过任一段圆弧所用的时间,则必须确定粒子转过的圆弧所对的圆心角,利用圆心角α与弦切角的关系,或者利用四边形内角和等于360°计算出圆心角α的大小,并由表达式,确定通过该段圆弧所用的时间,其中T即为该粒子做圆周运动的周期,转过的圆心角越大,所用时间t越长,注意t与运动轨迹的长短无关。
4.带电粒子在两种典型有界磁场中运动情况的分析①穿过矩形磁场区:如图3所示,一定要先画好辅助线(半径、速度及延长线)。
a、带电粒子在穿过磁场时的偏向角由sinθ=L/R求出;(θ、L和R见图标)b、带电粒子的侧移由R2=L2-(R-y)2解出;(y见所图标)c、带电粒子在磁场中经历的时间由得出。
②穿过圆形磁场区:如图4所示,画好辅助线(半径、速度、轨迹圆的圆心、连心线)。
带电粒子在磁场中运动的临界问题

带电粒子在磁场中运动的临界问题一、“矩形”有界磁场中的临界问题【例1】如图所示,一足够长的矩形区域abcd 内充满方向垂直纸面向里、磁感应强度为B 的匀强磁场,在ad 边中点O ,方向垂直磁场向里射入一速度方向跟ad 边夹角θ=30°、大小为v 0的带正电粒子,已知粒子质量为m ,电量为q ,ad 边长为L ,ab 边足够长,粒子重力不计,求(1)粒子能从ab 边上射出磁场的v 0大小范围。
(2)若粒子速度不受上述v 0大小的限制,求粒子在磁场中运动的最长时间。
解析: (1)①假设粒子以最小的速度恰好从左边偏转出来时的速度为v 1,圆心在O 1点,如图 (甲),轨道半径为R 1,对应圆轨迹与ab 边相切于Q 点,由几何知识得:R 1+R 1sin θ=0.5L由牛顿第二定律得1211R v m B qv =; 得m qBLv =1②假设粒子以最大速度恰好从右边偏转出来,设此时的轨道半径为R 2,圆心在O 2点,如图 (乙),对应圆轨迹与dc 边相切于P 点。
由几何知识得:R 2=L由牛顿第二定律得2222R v m B qv =;得m qBLv =2粒子能从ab 边上射出磁场的v 0应满足mqBLv m qBL ≤≤3(2)如图 (丙)所示,粒子由O 点射入磁场,由P 点离开磁场,该圆弧对应运行时间最长。
粒子在磁场内运行轨迹对应圆心角为πα35=。
而απ2T t m = 由Rv mqvB 2=,得qB mv R =,qBmT π2= qBmt m 35π=【练习1】如图所示,宽度为d 的有界匀强磁场,磁感应强度为B ,MM ′和NN ′是它的两条边界线,现有质量m 、电荷量为q 的带电粒子沿图示方向垂直磁场射入,要使粒子不能从边界NN ′射出,粒子最大的入射速度v 可能是( )A .小于mqBdB .小于()mqBd22+C .小于mqBd2 D .小于()mqBd22—解析:BD二、“角形磁场区”情景下的临界问题【例2】如图所示,在坐标系xOy 平面内,在x =0和x =L 范围内分布着匀强磁场和匀强电场,磁场的下边界AB 与y 轴成45°,其磁感应强度为B ,电场的上边界为x 轴,其电场强度为E .现有一束包含着各种速率的同种粒子由A 点垂直y 轴射入磁场,带电粒子的比荷为q /m .一部分粒子通过磁场偏转后由边界AB 射出进入电场区域.不计粒子重力,求: (1)能够由AB 边界射出的粒子的最大速率;(2)粒子在电场中运动一段时间后由y 轴射出电场,射出点与原点的最大距离. 解: (1)由于AB 与初速度成45°,所以粒子由AB 线射出磁场时速度方向与初速度成45°角.粒子在磁场中做匀速圆周运动,速率越大,圆周半径越大.速度最大的粒子刚好由B 点射出. 由牛顿第二定律Rv mB qv 2=由几何关系可知 r =L ,得 mqBLv =(2)粒子从B 点垂直电场射入后,在竖直方向做匀速运动,在水平方向做匀加速运动. 在电场中,由牛顿第二定律Eq =ma 此粒子在电场中运动时221at L =d =vt ,得mEqLBL d 2=【例3】如图所示,M 、N 为两块带异种电荷正对的金属板,其中M 板的表面为圆弧面,P 为M 板中点;N 板的表面为平面,Q 为N 板中点的一个小孔.PQ 的连线通过圆弧的圆心且与N 板垂直.PQ 间距为d ,两板间电压数值可由从0到某最大值之间变化,图中只画了三条代表性电场线.带电量为+q ,质量为m 的粒子,从点P 由静止经电场加速后,从小孔Q 进入N 板右侧的匀强磁场区域,磁感应强度大小为B ,方向垂直纸面向外,CD 为磁场边界线,它与N 板的夹角为α=45°,孔Q 到板的下端C 的距离为L .当M 、N 两板间电压取最大值时,粒子恰垂直打在CD 板上. 不计粒子重力,求:(1)两板间电压的最大值Um ;(2)CD 板上可能被粒子打中的区域长度x ; (3)粒子在磁场中运动的最长时间tm .解: (1)M 、N 两板间电压取最大值时,粒子恰垂直打在CD 板上,所以圆心在C 点,如图所示. C H =QC =L ,故半径R 1=L又1211R v m B qv = 2121mv qU m =得mL qB U m 222=(2)设轨迹与CD 板相切于K 点,半径为R 2在△AKC 中:2245sin R L R -=︒,得()L R 122-=因KC 长等于()L R 122-=,所以,CD 板上可能被粒子打中的区域长度x 为HK :()L R R x 2221-=-=(3)打在QE 段之间的粒子在磁场中运动时间最长,均为半周期:qBm T t m π==21三、“圆形磁场区”情景下的临界问题 【例4】(2012,揭阳调考)如图,相距为R 的两块平行金属板M 、N 正对放置,s 1、s 2分别为M 、N 板上的小孔,s 1、s 2、O 三点共线且水平,且s 2O =R 。
带电粒子在有界磁场中运动的临界问题

带电粒子在有界磁场中运动的临界问题此类问题的解题关键是寻找临界点,寻找临界点的有效方法是:方法:轨迹圆的缩放:当入射粒子的入射方向不变而速度大小可变时,粒子做圆周运动的圆心一定在入射点所受洛伦兹力所表示的射线上,但位置(半径R)不确定,用圆规作出一系列大小不同的轨迹图,从圆的动态变化中即可发现“临界点”1、一个质量为m,带电量为+q的粒子(不计重力),从O点处沿+y方向以初速度v0射入一个边界为矩形的匀强磁场中,磁场方向垂直于xy平面向里,它的边界分别是y=0,y=a,x=-1.5a,如图所示,那么当B满足条件_________时,粒子将从上边界射出:当B满足条件_________时,粒子将从左边界射出:当B满足条件_________时,粒子将从下边界射出。
2、如图所示真空中宽为d的区域内有强度为B的匀强磁场方向如图,质量m带电-q的粒子以与CD成θ角的速度V0垂直射入磁场中。
要使粒子必能从EF射出,则初速度V0应满足什么条件?EF上有粒子射出的区域?3、如图所示,一足够长的矩形区域abcd内充满方向垂直纸面向里的、磁感应强度为B的匀强磁场,在ad 边中点O ,方向垂直磁场向里射入一速度方向跟ad 边夹角θ= 30°、大小为v 0的带正电粒子,已知粒子质量为m ,电量为q ,ad 边长为L ,ab 边足够长,粒子重力不计,求:(1)粒子能从ab 边上射出磁场的v 0大小范围.(2)如果带电粒子不受上述v 0大小范围的限制,求粒子在磁场中运动的最长时间4、在边长为a 2的ABC ∆内存在垂直纸面向里的磁感强度为B 的匀强磁场,有一带正电q ,质量为m 的粒子从距A点a 3的D点垂直AB方向进入磁场,如图5所示,若粒子能从AC间离开磁场,求粒子速率应满足什么条件及粒子从AC间什么范围内射出.小结:带电粒子在磁场中以不同的速度运动时,圆周运动的半径随着速度的变化而变化,因此可以将半径放缩,运用“放缩法”探索出临界点的轨迹,使问题得解;对于范围型问题,求解时关键寻找引起范围的“临界轨迹”及“临界半径R0”,然后利用粒子运动的实际轨道半径R 与R0的大小关系确定范围。
带电粒子在匀强磁场中的运动-临界、极值及多解问题

•
例题
有些题目只告诉了磁感应的大小,而未具体 指出磁感应强度的方向,此时必须要考虑磁
感应强度方向不确定而形成多解
电场力方向一定指向圆心,而洛伦兹力方向可能指向圆心,也可能背离圆心, 从而形成两种情况.
• 2.方法界定将一半径为 的圆绕着入射点旋转, 从而探索出临界条件,这种方法称为“旋转法”.
•
旋转法”模型示例
带电粒子在磁场中运动的多解问题
• 带电粒子电性不确定形成多解 • 受洛伦兹力作用的带电粒子,可能带正电荷,也可
能带负电荷,在相同的初速度的条件下,正、负粒 子在磁场中运动轨迹不同,导致形成多解.
•
“放缩圆”模型示例
“旋转法”解决有界磁场中的临界问题
• 1.适用条件(1)速度大小一定,方向不同带电粒子 进入匀强磁场时,他们在磁场中做匀速圆周运动的 半径相同,若射入初速度为v0,则圆周半径为 . 如图所示.(2)轨迹圆圆心——共圆带电粒子在磁 场中做匀速圆周运动的圆心在以入射点P为圆心、 半径 的圆上.
临界状态不唯一形成多解
• 带电粒子在洛伦兹力作用下飞越有界磁场 时,由于粒子运动轨迹是圆弧状,因此, 他可能直接穿过去了,也可能转过180°从 入射界面反向飞出,于是形成了多解.如图 所示.
•
Байду номын сангаас
带电粒子在匀强磁场中的运动临界、极值及多解问题
• 1.有界磁场中临界问题的处 理方法
• 2.带电粒子在磁场中运动的 多解问题
1.有界磁场中临界问题的处理方法
• “放缩法”解决有界磁场中的临界问题 • 1.适用条件 • (1)速度方向一定,大小不同粒子源发射速度方向一定、大小
带电粒子在磁场中运动的临界值与多解专题课件

例 7 如图所示,宽度为 d 的有界匀强磁 场,磁感应强度为 B,MM′和 NN′是它的 两条边界.现有质量为 m,电荷量为 q 的带电 粒子沿图示方向垂直磁场射入.要使粒子不能 从边界 NN′射出,则粒子入射速率 v 的最大 值可能是多少.
【答案】 (2+ 2)Bmqd(q 为正电荷)或(2- 2)Bmqd(q 为负电
(四)三角形边界磁场 例 4 如图,直角三角形 abc 内有方向垂直 纸面向外的匀强磁场,磁感应强度的大小为 B, ∠a=30°,ac=2L,P 为 ac 的中点.在 P 点 有一粒子源可沿平行 cb 方向发出动能不同的 同种正粒子,粒子的电荷量为 q、质量为 m, 且粒子动能最大时,恰好垂直打在 ab 上.不考 虑重力,下列判断正确的是( )
(一)单面边界磁场 例 1 (多选)如图所示,S 处有一电子源, 可向纸面内任意方向发射电子,平板 MN 垂 直于纸面,在纸面内的长度 L=9.1 cm,中 点 O 与 S 间的距离 d=4.55 cm,MN 与 SO 直线的夹角为θ,板所在平面有电子源的一侧 区域有方向垂直于纸面向外的匀强磁场,磁感应强度 B=2.0×10 -4 T,电子质量 m=9.1×10-31 kg,电量 e=-1.6×10-19 C,不 计电子重力,电子源发射速度 v=1.6×106 m/s 的一个电子,该 电子打在板上可能位置的区域的长度为 l,则( )
已知粒子在磁场中做圆周运动的半径介于a2到 a 之间,从发射粒 子到粒子全部离开磁场经历的时间,恰好为粒子在磁场中做圆周 运动周期的四分之一.求最后离开磁场的粒子从粒子源射出时:
(1)速度的大小; (2)速度方向与 y 轴正方向夹角的正弦值.
【答案】
(1)(2- 26)amqB
6- 6 (2) 10
带电粒子在磁场中的临界条件

①速度较小时,作圆弧 运动后从原边界飞出; ②速度增加为某临界值 时,粒子作部分圆周运 动其轨迹与另一边界相 切;③速度较大时粒子 作部分圆周运动后从另 一边界飞出
量变积累到一定程度发生质变,出现临界状态
(2)带电粒子在矩形边界磁场中的运动
vB
o
圆心在磁场原边界上
①速度较小时粒子作半圆 运动后从原边界飞出;② 速度在某一范围内时从侧 面边界飞出;③速度较大 时粒子作部分圆周运动从 对面边界飞出。
运动的半径r相同,O为这些轨迹圆周的公共点。
P
P
M
P
2r
2r
r
O
O
O
Q
rN
Q
Q 答案:MN ( 3 1)r
练1、如图,真空室内存在方向垂直纸面向里,大小B=0.6T
的匀强磁场,内有与磁场方向平行的板ab,在距ab距离
为l=16cm处,有一点状的放射源S向各个方向发射α粒子,
α粒子的速度都是v=3.0×106 m/s,已知 α粒子的电荷与质
向里的匀强磁场,磁感应强度为B,许多质量为m,带 电量为+q的粒子,以相同的速率 v 沿位于纸面内的各个 方向,由小孔O射入磁场区域,不计重力,不计粒子间 的相互影响。下列图中阴影部分表示带电粒子可能经过
的区域,其中R=mv/qB,哪个图是正确的?(A )
A.
B.
2R
2R
O
O
B
M
2R
R
N
M
R
2R
N
C.
解:(1)如图所示,带电粒子在电场中加速,由动能定理得: 带电粒子在磁场中偏转,由牛顿第二定律得:BqV m V 2
qEL
1 2
mV
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有界磁场问题
直线边界磁场
1、如图所示,在y<0的区域内存在匀强磁场,磁场方向垂直于xy平面并指向纸面向里,磁感强度为B.一带负电的粒子(质量为m、电荷量为q)以速度v0从O点射入磁场,入射方
向在xy平面内,与x轴正向的夹角为θ.求:
(1)该粒子射出磁场的位置
(2)该粒子在磁场中运动的时间.(粒子所受重力不计)
2、如图所示直线MN上方有磁感应强度为B的匀强磁场。
正、负电子同时从同一点O以与MN成30°角的同样速度v 射入磁场(电子质量为m,电荷为e),它们从磁场中射出
时相距多远?射出的时间差是多少?
圆形边界磁场
1、如图所示,带负电的粒子垂直磁场方向进入圆形匀强磁场区域,出磁场时速度偏离原方向60°角,已知带电粒子质量m=3×10-20kg,电量q=10-13C,速度v0=105m/s,磁场区域的半径R=3×10-1m,不计重力,求磁场的磁感应强度。
2、如图所示,虚线所围区域内有方向垂直纸面向里的匀强磁场,磁感应强度为B。
一束电子沿圆形区域的直径方向以速度v射入磁场,电子束经过磁场区后,其运动的方向与原入射方向成θ角。
设电子质量为m,电荷量为e,不计电子之间的相互作用力及所受的重力。
求:
(1)电子在磁场中运动轨迹的半径R;
(2)电子在磁场中运动的时间t;
(3)圆形磁场区域的半径r。
磁场中的临界问题
放缩法找临界
1、在真空中宽d的区域内有匀强磁场B,质量为m,电量为e,速率为v的电子从边
界CD外侧垂直射入磁场,入射方向与CD夹角θ,为了使电子能从磁场的另一侧边界
EF射出,v应满足的条件是:()
A.v>eBd/m(1+sinθ)B.v>eBd/m(1+cosθ)
C.v>eBd/msinθD.v<eBd/mcosθ
2、如图所示,一足够长的矩形区域abcd内充满方向垂直纸面向里的、磁感应强度为B的匀强磁场,在ad 边中点O方向垂直磁场射入一速度方向跟ad边夹角θ=300、大小为v0的带电粒子,已知粒子质量为m、电量为q,ab边足够长,ad边长为L,粒子的重力不计。
求:⑴.粒子能从ab边上射出磁场的v0大小范围。
⑵.如果带电粒子不受上述v0大小范围的限制,求粒子在磁场中运动的最长时间。
平移法找临界
1、如图,真空室内存在匀强磁场,磁场方向垂直于纸面向里,磁感应强度的大小B=0.60T,磁场内有一块平面感光板ab,板面与磁场方向平行,在距ab的距离L=16cm处,有一个点状的放射源S,它向各个方向发射α粒子,α粒子的速度都是v=4.8x106 m/s,已知α粒子的电荷与质量之比q/m=5.0x107C/kg现只考虑在图纸平面中运动的α粒子,求ab上被α粒子打中的区域的长度.
2、如图,在一水平放置的平板MN上方有匀强磁场,磁感应强度的大小为B,磁
场方向垂直于纸面向里,许多质量为m,带电量为+q的粒子,以相同的速率v沿
位于纸面内的各个方向,由小孔O射入磁场区域,不计重力,不计粒子间的相互
影响.下列图中阴影部分表示带电粒子可能经过的区域,其中R=mv/qB.哪个图
是正确的()
练习:
1、如图所示,在边长为2a 的等边三角形△ABC内存在垂直纸面向里磁感应强度为B的匀强磁场,有一
a3
带电量为q、质量为m的粒子从距A点的D点垂直于AB方向进入磁场。
若粒子能从AC间离开磁场,求粒子速率应满足什么条件及粒子从AC间什么范围
内射出?
2、如图所示,虚线MN是一垂直纸面的平面与纸面的交线,在平面右侧的半空间存在一磁感应强度为B、方向垂直纸面向外的匀强磁场。
O是MN上的一点,从O点可以向磁场区域发射电
荷量为+q、质量为m、速率为v的粒子,粒子射入磁场时的速度可在纸面内各个方
向,已知先后射入的两个粒子恰好在磁场中给定的P点相遇,P到O的距离为L,
不计重力和粒子间的相互作用。
(1)求所考察的粒子在磁场中的轨道半径;
(2)求这两个粒子从O点射入磁场的时间间隔。