有界磁场问题分类点拨

合集下载

有界磁场中粒子运动问题归类分析

有界磁场中粒子运动问题归类分析

2 粒 子 初速 度 的大小确 定 , 向变化 . 方
放大轨迹圆: 根据初速度方 向确定 圆心所在 的
、 × 直线 , 逐渐放大粒子运动的轨迹 圆, 找到临界点.×


O 、 、Fra bibliotek_ ×l x
_ _
例 1 如 图 1所 示 ,

截 面为直 角三 角形 的 区
e 为 使 电 子 能从 a , c边 射 出 , 电子 入 射 速 度 求
应 该 满足 的条 件.
都 是 口一 3 0 0 m/ . . ×1 s 已知 口 粒子 的 电量 与质
分 析 如 图 2 ,电
子 入 射 速 度 。方 向 一
量 之 比 q m 一 5 0×1 / g 现 只考 虑在 纸平 / . 0C k , 面 中运 动 的 a粒子 , 求 上被 粒 子 打 中的 区
垂 直 于 纸 面 , 子 飞 出磁 场 区 粒
万摄 氏 度 以 上 的 高 温 , 把 高 温 为 条 件 下 高速 运 动 的 离子 约 束 在 小 范 围 内 , 常 采 用磁 约 束 的 方 法 . 通
a 子做 圆周 运 动的半 径 一定. 粒 子 的速 度 方 粒 向为各个 方 向, 意作 出以 S点为起 点 , 任 半径 为 1 c 的一 个轨 迹 圆 , S点 旋转 该 轨迹 圆 , 0m 绕 与 边有 一系 列 的 交点 , 图 4 a , 图 中 可 以 如 ()从
找 出满足 题 意 的临界条 件.
21 0 1年第 1 O期
物 理 中 的思 想 和 方 法
《 理 天 地 》 中版 数 高

物理 中的思想和方法 ・
有 界 磁 场 中粒 子 运 动 问 题

有界磁场(六类)

有界磁场(六类)
y o
x
解:如图所示作辅助线, 由几何知识可得: L sin 2R
L 故运动半径为 R 2 sin
运动时间为
t
2 2 m
qB
练习2如图,在一水平放置的平板MN上方 有匀强磁场,磁感应强度的大小为B,方向 垂直于纸面向里。许多质量为m,带电量 为+q的粒子,以相同的速率v沿位于纸面 内的各个方向,由小孔O射入磁场区域,不 计重力及粒子间的影响.图中阴影部分表 示带电粒子可能经过的区域,其中哪个图 是正确的? R=mv/qB.
y
y=5cm
O
x
y 解:作如图所示辅助线 (1)粒子在磁场中 运动的半径为 mv R qB
1.671027 5.0 105 m 19 1.6 10 0.20
C
o D A x
2.6 10 m 2.6cm
(2)由几何知识可得: OCA是等腰三角形
2
所以 OA 2OD
y Rr 3mv 2qB
二、在条形(平行)边界磁场区中的运动
例2质子以某一速度垂直射入宽度为d的匀强磁场中,穿 出磁场时速度方向与入射方向的夹角为θ, 求带电粒子在 磁场中的运动半径R。
yOxຫໍສະໝຸດ 解:如图所示作辅助线设两圆切点为A,电子第二次 从B点通过y轴, 因为电子的入射方向与x轴 夹角为60°
B y A x
O 则由几何知识可得OA和AB分别对应小圆和大圆的半径。 又因为电子在右边磁场中运动的半径为 在左边磁场中运动的半径为
R mv qB
r
mv 2qB
故电子第二次通过y轴时前进的距离为:
圆心在过入射点跟跟速 度方向垂直的直线上 ①速度较小时,作圆弧 运动后从原边界飞出; ②速度增为某临界值时, 粒子作部分圆周运动其 轨迹与另一边界相切 ③速度较大时粒子作部 分圆周运动后从另一边 界飞出

带电粒子在有界磁场中运动问题分类解析

带电粒子在有界磁场中运动问题分类解析

带电粒子在有界磁场中运动问题分类解析带电粒子在磁场中的运动是高中物理的一个难点,也是高考的热点。

在历年的高考试题中几乎年年都有这方面的考题。

笔者在指导高三复习过程中,对带电粒子在有界磁场中的运动问题进行了专题复习,探究解题方法,取得了良好的教学效果。

带电粒子在有界磁场中的运动问题,综合性较强,解这类问题既要用到物理中的洛仑兹力、圆周运动的知识,又要用到数学中的平面几何中的圆及解析几何知识。

下面按照有界磁场的形状对这类问题进行分类解析,供参考。

一、带电粒子在半无界磁场中的运动例1、一个负离子,质量为m ,电量大小为q ,以速率V 垂直于屏S 经过小孔O 射入存在着匀强磁场的真空室中(如图1).磁感应强度B 的方向与离子的运动方向垂直,并垂直于图1中纸面向里.(1)求离子进入磁场后到达屏S 上时的位置与O 点的距离. (2)如果离子进入磁场后经过时间t 到达位置P ,证明:直线OP 与离子入射方向之间的夹角θ跟t 的关系是t mqB 2=θ。

二、带电粒子在长足够大的长方形磁场中的运动例2、如图2所示,一束电子(电量为e )以速度V 垂直射入磁感强度为B ,宽度为d 的匀强磁场中,穿透磁场时速度方向与电子原来入射方向的夹角是30°,则电子的质量是 ,穿透磁场的时间是( )。

三、带电粒子在圆形磁场中的运动例3、圆心为O 、半径为r 的圆形区域中有一个磁感强度为B 、方向为垂直于纸面向里的匀强磁场,与区域边缘的最短距离为L 的O '处有一竖直放置的荧屏MN ,今有一质量为m 的电子以速率v 从左侧沿OO'方向垂直射入磁场,越出磁场后打在荧光屏上之P 点,如图3所示,求O 'P 的长度和电子通过磁场所用的时间。

B图1 MNO ,O图2四、带电粒子在正方形磁场中的运动例4、长为L 的水平极板间,有垂直纸面向内的匀强磁场,如图6所示,磁感强度为B ,板间距离也为L ,板不带电,现有质量为m ,电量为q 的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度V 水平射入磁场,欲使粒子不打在极板上,可采用的办法是:A .使粒子的速度V <BqL /4m ;B .使粒子的速度V >5BqL /4m ;C .使粒子的速度V >BqL /m ;D .使粒子速度BqL /4m <V <5BqL /4m 。

教案 六类有界磁场问题共65页文档

教案 六类有界磁场问题共65页文档
Than不 容忽视 的。— —爱献 生
6、最大的骄傲于最大的自卑都表示心灵的最软弱无力。——斯宾诺莎 7、自知之明是最难得的知识。——西班牙 8、勇气通往天堂,怯懦通往地狱。——塞内加 9、有时候读书是一种巧妙地避开思考的方法。——赫尔普斯 10、阅读一切好书如同和过去最杰出的人谈话。——笛卡儿
教案 六类有界磁场问题
36、如果我们国家的法律中只有某种 神灵, 而不是 殚精竭 虑将神 灵揉进 宪法, 总体上 来说, 法律就 会更好 。—— 马克·吐 温 37、纲纪废弃之日,便是暴政兴起之 时。— —威·皮 物特
38、若是没有公众舆论的支持,法律 是丝毫 没有力 量的。 ——菲 力普斯 39、一个判例造出另一个判例,它们 迅速累 聚,进 而变成 法律。 ——朱 尼厄斯

有界磁场中的“最值”问题分类解析(理科考试研究)

有界磁场中的“最值”问题分类解析(理科考试研究)

解析:质点在做半径为 R 的圆周运动,由q V Bn^ 2-得 R=mvqB分类解析有界磁场中的“最值”问题唐山市丰南一中(063302) 王殿彬带电粒子在有界磁场中的运动是高中物理的一个难点,也是高考的热点 ,有界磁场中的“最值"问题更是高考物理试题中的常见题,此类问题综合性强,常涉及确定临界条件、正确的作图,还要用到数学中的 几何知识。

下面按照有界磁场的形状对此分类解析。

一. 矩形有界磁场:矩形有界磁场常常涉及的是粒子的入射速度方向一定的速率最值问题,粒子刚好要射岀磁场即与射岀 边界相切时存在最值。

例1 . 如图1所示,宽度为d 的匀强有界磁场,磁感强度为 B ,MM ,和NN ,是它的两条边界。

现有一质 量为m ,电量为+q 的带电微粒沿图1所示方向垂直磁场射入, 要使粒子不能从边界 NN ‘射出,求粒子入射 的最大速率。

解析:要求粒子不从 NN ,射出入射速率的最大值,只需求出粒子刚好不射出时的入射速率。

粒子在磁场中 运动的轨迹如图2所示, 经分析知,v 越大,对应的半径R 越大,当v 达到最大值时,对应的圆弧与 NN二. 圆形有界磁场:圆形有界磁场涉及的最值问题有两方面: 场中运动时间最值问题。

(一)圆形有界磁场面积最值问题 :此类问题需要作岀带电粒子在圆形磁场中的运动轨迹 最小. 例2. (94高考)一带电质点,质量为 m,电量为q ,以平行于ox 轴的速度v 从y 轴上的a 点射入图中 的第一象限所示的区域, 为了使该质点能从x 轴上的b 点以垂直于ox 轴的速度v 射岀,可在适当的地方加 一个垂直于xy 平面、磁感强度为 B 的匀强磁场。

若此磁场仅分布在一个圆形区域内,试求这圆形磁场区 域的最小半径。

相切,则有轨道圆半径 R=d R,又 (一)圆形有界磁场面积最值问题。

(二)带电粒子在有界磁 ,并作出两条切线,以两切点的连线为直径时面积R=mv ,故 v m =(2 2)Bq d1根据题意,质点在磁场区域中的轨道是半径等于R的一圆周,这段圆弧应与入射方向的速度、岀射方4向的速度相切。

带电粒子在“有界”磁场中运动问题分类解析

带电粒子在“有界”磁场中运动问题分类解析

带电粒子在“有界”磁场中运动问题分类解析在物理学中,带电粒子在磁场中的运动问题一直是一个非常重要的研究方向。

无论是理论上的研究还是实验上的探测,都需要我们对带电粒子在磁场中运动的物理规律进行深入的了解和研究。

在本文中,我们将着重研究带电粒子在“有界”磁场中运动的问题,并对其进行分类解析。

“有界”磁场的概念在真实的物理现象中,带电粒子往往会受到非常复杂的磁场影响。

但是,在某些特殊情况下,带电粒子受到的磁场受限于空间的某些特定区域,我们就将这种磁场称为“有界”磁场。

当带电粒子受到“有界”磁场的影响时,我们可以更加精确地研究其在磁场中运动的规律。

问题分类带电粒子在“有界”磁场中运动的问题可以分为三类:匀强磁场、非匀强磁场和旋转磁场。

下面我们依次对这三类问题进行探讨。

匀强磁场中的运动当带电粒子在匀强磁场中运动时,其受力方向始终垂直于磁场方向,磁场的大小和方向都是不变的。

这种情况下,我们可以通过洛伦兹力公式求解带电粒子的运动轨迹。

具体来说,当带电粒子的速度为v,电荷为q,受到的磁场强度为B时,带电粒子所受的洛伦兹力大小为F=qvB,方向垂直于速度和磁场的方向。

由于洛伦兹力的方向与速度方向垂直,所以带电粒子在匀强磁场中的轨迹为一个圆形。

非匀强磁场中的运动当带电粒子受到的磁场不再是匀强磁场时,其运动状态也会相应发生变化。

在非匀强磁场中,带电粒子受到的磁场强度和方向均发生变化,从而影响其运动状态。

此时,我们需要采用更加复杂的计算方法求解带电粒子的运动轨迹。

旋转磁场中的运动在旋转磁场中,带电粒子的磁场方向和大小都是随时间变化的。

这种情况下,带电粒子的运动将更加复杂。

经过分析,我们可以发现,在旋转磁场中,带电粒子的轨迹为多个圆形或椭圆形,其大小和形状随时间的变化而发生了改变。

结论总的来说,带电粒子在“有界”磁场中的运动问题是非常复杂的。

对于这些问题,在实践研究中,我们需要根据实际情况和研究目的,灵活采取不同的方法和技巧。

带电粒子在“有界”磁场中运动问题分类解析

带电粒子在“有界”磁场中运动问题分类解析

带电粒子在“有界”磁场中运动问题分类解析一、求解带电粒子在匀强磁场中的匀速圆周运动时,一般先根据题意画岀运动的轨迹, 确定圆心,从而根据几何关系求岀半径或圆心角,然后利用半径公式、周期公式求解。

1、首先确定圆心: 一个基本思路: 圆心一定在与速度方向垂直的直线上。

三个常用方法: 方法一:利用两个速度垂线的交点找圆心 由于向心力的方向与线速度方向互相垂直,洛伦兹力(向心力)沿 半径指向圆心,知道两个速度的方向,画岀粒子轨迹上两个对应的 洛伦兹力,其延长线的交点即为圆心。

例1:如图1所示,一个质量为 m 电荷量为q 的带电粒子从x 轴上 的P ( a ,0)点以速度V,沿与x 正方向成60 °的方向射入第一 象限内的匀强磁场中,并恰好垂直于y 轴射岀第一象限。

求匀强磁 场的磁感应强度 B 和射岀点的坐标。

解析:分别由射入、射岀点做两条与速度垂直的线段,其交点 圆心,由图可以看岀,轨道半径为ra2a,洛仑兹力是向心力 qBvsin 60 43射岀点的纵坐标为(叶rsin30 ° ) =1.5r,因此射岀点坐标为(0,方法二:利用速度的垂线与弦的中垂线的交点找圆心带电粒子在匀强磁场中做匀速运动时,如果已知轨迹上的两点的位置和其中一点的速 度方向,可用联结这两点的弦的中垂线与一条半径的交点确定圆心的位置。

例2:电子自静止开始经 M 、N 板间(两板间的电压为 U )的 厂电场加速后从A 点垂直于磁场边界射入宽度为 d 的匀强磁场中,电子离开磁场时的位置 P 偏离入射方向的距离为L ,如图2所示,求:(1) 正确画岀电子由静止开始直至离开磁场时的轨迹图; (2) 匀强磁场的磁感应强度 .(已知电子的质量为 m ,电量为 解析:(1)联结AP 的线段是电子圆运动轨道上的一条弦,做弦 子通过A 点时的速度方向与磁场左边界垂直,AP 弦的中垂线 OC 与磁场左边界的交点 O 即是电子圆运动的圆心,为半径画圆弧,如图 3所示,电子进入磁场后做匀速圆周运动,设其半径为veBv m —rB= 2L ;2mUJ —— L d Y e方法三:利用速度的垂线与角的平分线的交点找圆心当带电粒子通过圆形磁场区后又通过无场区,如果只知道射入和射岀时的速度的方向和射入时的位置,而不知道射岀点的位置,应当利用角的平分线和半径的交点确定圆心。

带电粒子在有界磁场中运动问题分类解析1

带电粒子在有界磁场中运动问题分类解析1

带电粒子在有界磁场中运动问题分类解析一、带电粒子在半无界磁场中的运动 【例1】如图所示,真空室内有匀强磁场,磁场方向垂直于纸面向里,磁感应强度的大小B =0.60T ,磁场内有一块平行感光板ab ,板面与磁场方向平行,在距ab 的距离l =16cm 处,有一个点状的α粒子发射源S ,它向各个方向发射α粒子,α粒子的速度都是v =3.0×106m/s .已知α粒子的电量与质量之比q/m =5.0×107C/kg ,现只考虑在纸平面中运动的α粒子,求ab 上被α粒子打中的区域长度.二、带电粒子在长足够大的长方形磁场中的运动【例2】长为L 间距为d 的水平两极板间,有垂直于纸面向里的匀强磁场,磁感强度为B ,两板不带电,现有质量为m ,电量为q 的带正电粒子(重力不计),从左侧两极板的中心处以不同速率v 水平射入,欲使粒子不打在板上,求粒子速率v 应满足什么条件.图3v 2v【例3】如图4所示,A 、B 为水平放置的足够长的平行板,板间距离为m d 2100.1-⨯=,A 板中央有一电子源P ,在纸面内能向各个方向发射速度在s m /102.3~07⨯范围内的电子,Q为P 点正上方B 板上的一点,若垂直纸面加一匀强磁场,磁感应强度T B 3101.9-⨯=,已知电子的质量kg m 31101.9-⨯=,电子电量C e 19106.1-⨯=,不计电子的重力和电子间相互作用力,且电子打到板上均被吸收,并转移到大地.求:(1)沿P Q方向射出的电子击中A 、B 两板上的范围.(2)若从P点发出的粒子能恰好击中Q点,则电子的发射方向(用图中θ角表示)与电子速度的大小v 之间应满足的关系及各自相应的取值范围..【例4】如图11-3-16所示,一足够长的矩形区域abcd 内有磁感应强度为B ,方向垂直纸面向里的匀强磁场,现从ad 边的中点O 处,以垂直磁场且跟ad 边成30º角的速度方向射入一带电粒子.已知粒子质量为m ,带电量为q ,ad= l ,不计粒子重力.(1)若粒子从ab 边上射出,则入射速度v 0的范围是多少? (2)粒子在磁场中运动的最长时间为多少? 三、带电粒子在“三角形磁场区域”中的运动 【例5】在边长为2a 的三角形ABC 内存在垂直纸面向里的磁感强度为B的匀强磁场,有一带正电q ,质量为m 的粒子从距A点a 3的D点垂直AB 方向进入磁场,如图7所示,若粒子能从AC 间离开磁场,求粒子速率应满足什么条件及粒子从AC 间什么范围内射出.图7DB【例6】边长为100cm 的正三角形光滑且绝缘的刚性框架ABC 固定在光滑的水平面上,图内有垂直于框架平面B =0.5T 的匀强磁场.一质量m =2×10-4kg ,带电量为q =4×10-3C 小球,从BC 的中点小孔P 处以某一大小的速度垂直于BC 边沿水平面射入磁场,设小球与框架相碰后不损失动能.求:(1)为使小球在最短的时间内从P 点出来,小球的入射速度v 1是多少? (2)若小球以v 2=1m/s 的速度入射,则需经过多少时间才能由P 点出来?练习:1.如图所示有一边界为矩形的磁场,一带电量为q 、质量为m 的带负电的粒子到达坐标中(a ,b )点时速度为v ,方向与x 轴方向相同,欲使粒子到达坐标原点时速率仍为v ,但方向与x 轴方向相反,则所在磁场的方向应为_____,磁感应强度的大小B =________,在图中标出磁场分布的最小范围.2.一个负离子,质量为m ,电量大小为q ,以速率V 垂直于屏S 经过小孔O 射入存在着匀强磁场的真空室中(如图1).磁感应强度B 的方向与离子的运动方向垂直,并垂直于图1中纸面向里.(1)求离子进入磁场后到达屏S 上时的位置与O 点的距离.(2)如果离子进入磁场后经过时间t 到达位置P ,证明:直线OP 与离子入射方向之间的夹角θ跟t 的关系是θ=qBt/2m 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

教师用有界磁场问题分类点拨一、带电粒子在圆形磁场中的运动例1、圆心为O 、半径为r 的圆形区域中有一个磁感强度为B 、方向为垂直于纸面向里的匀强磁场,与区域边缘的最短距离为L的O '处有一竖直放置的荧屏MN ,今有一质量为m 的电子以速率v 从左侧沿OO'方向垂直射入磁场,越出磁场后打在荧光屏上之P 点,如图1所示,求O'P 的长度和电子通过磁场所用的时间.解析 :电子所受重力不计。

它在磁场中做匀速圆周运动,圆心为O ″,半径为R 。

圆弧段轨迹AB 所对的圆心角为θ,电子越出磁场后做速率仍为v 的匀速直线运动, 如图2所示,连结OB,∵△OAO ″≌△O BO″,又O A⊥O″A ,故OB ⊥O″B,由于原有BP ⊥O ″B ,可见O、B、P 在同一直线上,且∠O 'OP =∠AO ″B =θ,在直角三角形OO 'P 中,O 'P =(L +r )tan θ,而)2(tan 1)2tan(2tan 2θθθ-=,Rr =)2tan(θ,所以求得R 后就可以求出O'P 了,电子经过磁场的时间可用t =VRV AB θ=来求得。

由R V mBeV 2=得R=θtan )(.r L OP eBmV+= mV eBr R r ==)2tan(θ,2222222)2(tan 1)2tan(2tan rB e V m eBrmV -=-=θθθ 22222,)(2tan )(r B e V m eBrmVr L r L P O -+=+=θ, )2arctan(22222rB e V m eBrmV-=θ )2arctan(22222rB e V m eBrmV eB m V R t -==θ 例2、如图2,半径为cm r 10=的匀强磁场区域边界跟y 轴相切于坐标原点O,磁感强度T B 332.0=,方向垂直纸面向里.在O处有一放射源S,可向纸面各个方向射出速度为s m v /102.36⨯=的粒子.已知α粒子质量kg m 271064.6-⨯=,电量C q 19102.3-⨯=,试画出α粒子通过磁场空间做圆周运动的圆心轨道,求出α粒子通过磁场空间的最大偏角.MNO ,图1MNO ,图2解析:设粒子在洛仑兹力作用下的轨道半径为R ,由R v m Bqv 2= 得cm m m Bq mv R 2020.0102.3332.0102.31064.619627==⨯⨯⨯⨯⨯==--虽然α粒子进入磁场的速度方向不确定,但粒子进场点是确定的,因此α粒子作圆周运动的圆心必落在以O 为圆心,半径cm R 20=的圆周上,如图2中虚线. 由几何关系可知,速度偏转角总等于其轨道圆心角.在半径R 一定的条件下,为使α粒子速度偏转角最大,即轨道圆心角最大,应使其所对弦最长.该弦是偏转轨道圆的弦,同时也是圆形磁场的弦.显然最长弦应为匀强磁场区域圆的直径.即α粒子应从磁场圆直径的A 端射出.如图2,作出磁偏转角ϕ及对应轨道圆心O ',据几何关系得212sin==R r ϕ,得060=ϕ,即α粒子穿过磁场空间的最大偏转角为060. 二、带电粒子在半无界磁场中的运动例3、(1999年高考试题)如图3中虚线MN 是一垂直纸面的平面与纸面的交线,在平面右侧的半空间存在一磁感应强度为B 、方向垂直纸面向外的匀强磁场.O是M N上的一点,从O点可以向磁场区域发射电荷量为+q 、质量为m 、速率为v 的粒子,粒子射入磁场时的速度可在纸面内各个方向,已知先后射入的两个粒子恰好在磁场中给定的P点相遇,P到O点的距离为L,不计重力和粒子间的相互作用.(1)求所考察的粒子在磁场中的轨道半径. (2)求这两个粒子从O点射入磁场的时间间隔.解析:(1) 粒子的初速度与匀强磁场的方向垂直,在洛仑兹力作用下,做匀速圆周运动.设圆半径为R,则据牛顿第二定律可得:R v m Bqv 2= ,解得BqmvR =(2)如图3所示,以OP 为弦的可以画出两个半径相同的圆,分别表示在P 点相遇的两个粒子的轨道,圆心分别为O 1和O 2,在O 处两个圆的切线分别表示两个粒子的射入方向,它们之间的夹角为α,由几何关系知∠PO 1Q1=∠PO 2Q 2=α从O 点射入到相遇,粒子在1的路径为半个圆周加P Q 1弧长等于αR ;粒子在2的路径为半个圆周减P Q 2弧长等于αR.粒子1的运动时间 t 1=21T +v R α 粒子2的运动时间 t 2=21T -vR αM N. . . . . .. . . . . .两个粒子射入的时间间隔△t =t 1-t 2=2vR α 由几何关系得Rcos21α=21op =21L,解得:α=2arccos RL 2 故△t =Bq m 4.ar c cos mvLBq2 例4、如图4所示,在真空中坐标xoy 平面的0>x 区域内,有磁感强度T B 2100.1-⨯=的匀强磁场,方向与xoy 平面垂直,在x 轴上的)0,10(p 点,有一放射源,在xoy 平面内向各个方向发射速率s m v /100.14⨯=的带正电的粒子,粒子的质量为kg m 25106.1-⨯=,电量为C q 18106.1-⨯=,求带电粒子能打到y 轴上的范围.解析:带电粒子在磁场中运动时有R v m Bqv 2=,则cm m Bq mv R 101.0106.1100.1100.1106.1182425==⨯⨯⨯⨯⨯⨯==---. 如图15所示,当带电粒子打到y 轴上方的A 点与P连线正好为其圆轨迹的直径时,A点既为粒子能打到y 轴上方的最高点.因cm R Op 10==,cm R AP 202==,则cm OP AP OA 31022=-=.当带电粒子的圆轨迹正好与y 轴下方相切于B点时,B点既为粒子能打到y 轴下方的最低点,易得cm R OB 10==.综上,带电粒子能打到y 轴上的范围为:cm y cm 31010≤≤-. 三、带电粒子在长方形磁场中的运动例5、如图5,长为L 间距为d 的水平两极板间,有垂直于纸面向里的匀强磁场,磁感强度为B ,两板不带电,现有质量为m ,电量为q 的带正电粒子(重力不计),从左侧两极板的中心处以不同速率v 水平射入,欲使粒子不打在板上,求粒子速率v 应满足什么条件.图4o cm x /cmy /p ⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯•图5⨯⨯⨯⨯⨯⨯⨯⨯→•d Lvcm /解析:如图4,设粒子以速率1v 运动时,粒子正好打在左极板边缘(图4中轨迹1),则其圆轨迹半径为41d R =,又由1211R v m Bqv =得m Bqdv 41=,则粒子入射速率小于1v 时可不打在板上.设粒子以速率2v 运动时,粒子正好打在右极板边缘(图4中轨迹2),由图可得22222)2(dR L R -+=,则其圆轨迹半径为d d L R 44222+=,又由2222R v mBqv =得md d L Bq v 4)4(222+=,则粒子入射速率大于2v 时可不打在板上.综上,要粒子不打在板上,其入射速率应满足:mBqdv 4<或md d L Bq v 4)4(22+>.例6、长为L 的水平极板间,有垂直纸面向内的匀强磁场,如图4所示,磁感强度为B,板间距离也为L ,板不带电,现有质量为m ,电量为q 的带正电粒子(不计重力),从左边极板间中点处垂直磁感线以速度V 水平射入磁场,欲使粒子不打在极板上,可采用的办法是:A.使粒子的速度V <BqL /4m ;B.使粒子的速度V >5BqL /4m;C.使粒子的速度V >BqL /m ;D.使粒子速度Bq L/4m <V <5Bq L/4m解析:由左手定则判得粒子在磁场中间向上偏,而作匀速圆周运动,很明显,圆周运动的半径大于某值r1时粒子可以从极板右边穿出,而半径小于某值r 2时粒子可从极板的左边穿出,现在问题归结为求粒子能在右边穿出时r的最小值r 1以及粒子在左边穿出时r 的最大值r2,由几何知识得:粒子擦着板从右边穿出时,圆心在O 点,有:r12=L2+(r1-L /2)2得r 1=5L/4,又由于r 1=mV 1/Bq 得V 1=5BqL /4m ,∴V >5BqL /4m时粒子能从右边穿出。

粒子擦着上板从左边穿出时,圆心在O'点,有r 2=L /4,又由r2=mV 2/Bq =L /4得V 2=BqL /4m ∴V 2<BqL /4m 时粒子能从左边穿出。

综上可得正确答案是A 、B 。

四、带电粒子在“三角形磁场区域”中的运动例7、在边长为a 2的ABC ∆内存在垂直纸面向里的磁感强度为B 的匀强磁场,有一带正电q ,质量为m 的粒子从距A点a 3的D点垂直AB方向进入磁场,如图5所示,若粒子能从AC间离开磁场,求粒子速率应满足什么条件及粒子从ACl l r 1 O V+q V图6 图7D•⨯⨯⨯⨯⨯⨯C图4⨯⨯⨯⨯⨯⨯⨯⨯•d L1v ••2R 1o 2o 212v间什么范围内射出.解析:如图6所示,设粒子速率为1v 时,其圆轨迹正好与AC 边相切于E 点. 由图知,在E AO 1∆中,11R E O =,113R a A O -=,由AO E O 11030cos =得11323R a R -=,解得aR )32(31-=,则a R a AO AE )332(23211-=-==. 又由1211R vm Bqv =得m aqB m BqR v )32(311-==,则要粒子能从AC 间离开磁场,其速率应大于1v .如图7所示,设粒子速率为2v 时,其圆轨迹正好与B C边相切于F点,与AC 相交于G点.易知A点即为粒子轨迹的圆心,则a AG AD R 32===.又由2222R v m Bqv =得m aqBv 32=,则要粒子能从AC 间离开磁场,其速率应小于等于2v .综上,要粒子能从AC 间离开磁场,粒子速率应满足maqBv m aqB3)32(3≤<-. 粒子从距A 点a a 3~)332(-的EG 间射出.五、带电粒子在“宽度一定的无限长磁场区域”中的运动例8、如图11所示,A 、B 为水平放置的足够长的平行板,板间距离为m d 2100.1-⨯=,A 板中央有一电子源P,在纸面内能向各个方向发射速度在s m /102.3~07⨯范围内的电子,Q为P点正上方B板上的一点,若垂直纸面加一匀强磁场,磁感应强度T B 3101.9-⨯=,已知电子的质量kg m 31101.9-⨯=,电子电量C e 19106.1-⨯=,不计电子的重力和电子间相互作用力,且电子打到板上均被吸收,并转移到大地.求:(1)沿PQ 方向射出的电子击中A 、B 两板上的范围.(2)若从P点发出的粒子能恰好击中Q点,则电子的发射方向(用图中θ角表图6DB1o A B示)与电子速度的大小v 之间应满足的关系及各自相应的取值范围.解析:如图12所示,沿PQ方向射出的电子最大轨迹半径由rv m Bev 2=可得Bemv r m m =,代入数据解得d m r m 21022=⨯=-. 该电子运动轨迹圆心在A 板上H处,恰能击中B 板M处.随着电子速度的减少,电子轨迹半径也逐渐减小.击中B 板的电子与Q点最远处相切于N点,此时电子的轨迹半径为d ,并恰能落在A板上H处.所以电子能击中B 板MN 区域和A 板PH 区域.在∆MFH 中,有d d d MF HM FH 3)2(2222-=-=,s m d PF QM /1068.2)32(3-⨯=-==, m d QN 2101-⨯==,m d PH 21022-⨯==.电子能击中B板Q 点右侧与Q 点相距m m 23101~1068.2--⨯⨯的范围.电子能击中A 板P 点右侧与P点相距m 2102~0-⨯的范围.(2)如图13所示,要使P 点发出的电子能击中Q 点,则有Be mv r =,2sin dr =θ. 解得6108sin ⨯=θv .v 取最大速度s m /102.37⨯时,有41sin =θ,41arcsin min =θ;v 取最小速度时有2max πθ=,s m v /1086min ⨯=.所以电子速度与θ之间应满足6108sin ⨯=θv ,且]2,41[arcsin πθ∈,]/102.3,/108[76s m s m v ⨯⨯∈六、带电粒子在相反方向的两个有界磁场中的运动例9、如图9所示,空间分布着有理想边界的匀强电场和匀强磁场.左侧匀强电场的场强大小为E 、方向水平向右,电场宽度为L ;中间区域匀强磁场的磁感应强度大小为B ,方向垂直纸面向里.一个质量为m 、电量为q 、不计重力的带正电的粒子从电场的左边缘的O点由静止开始运动,穿过中间磁场区域进入右侧磁场区域后,又回到O点,然后重复上述运动过程.求:(1) 中间磁场区域的宽度d ;(2) 带电粒子从O 点开始运动到第一次回到O点所用时间t.BB图9图13P图14o cm x /cmy /p ⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯⨯•解析:(1)带电粒子在电场中加速,由动能定理,可得: 221mV qEL = 带电粒子在磁场中偏转,由牛顿第二定律,可得:RV m BqV 2=由以上两式,可得qmELB R 21=.可见在两磁场区粒子运动半径相同,如图11所示,三段圆弧的圆心组成的三角形ΔO1O 2O 3是等边三角形,其边长为2R.所以中间磁场区域的宽度为qmELB R d 62160sin 0==(2)在电场中qEmLqE mV a V t 22221===, 在中间磁场中运动时间qB mT t 3232π==在右侧磁场中运动时间qBm T t 35653π==, 则粒子第一次回到O点的所用时间为qBmqE mL t t t t 3722321π+=++=. 七、带电粒子在环形或有孔磁场中的运动例10、核聚变反应需要几百万度以上的高温,为把高温条件下高速运动的离子约束在小范围内(否则不可能发生核反应),通常采用磁约束的方法(托卡马克装置)。

相关文档
最新文档