利用热泵技术对某热电厂排汽余热进行回收
热泵在余热回收中的应用共52页文档

1
0
、
倚
南
窗
以
寄
傲
,
审
容
膝
之
易
安
。
16、业余生活要有意义,不要越轨。——华盛顿 17、一个人即使已登上顶峰,也仍要自强不息。——罗素·贝克 18、最大的挑战和突破在于用人,而用人最大的突破在于信任人。——马云 19、自己活着,就是为了使别人过得更美好。——雷锋 20、要掌握书,莫被书掌握;要为生而读,莫为读而生。——布尔沃
END
文 家 。汉 族 ,东 晋 浔阳 柴桑 人 (今 江西 九江 ) 。曾 做过 几 年小 官, 后辞 官 回家 ,从 此 隐居 ,田 园生 活 是陶 渊明 诗 的主 要题 材, 相 关作 品有 《饮 酒 》 、 《 归 园 田 居 》 、 《 桃花 源 记 》 、 《 五 柳先 生 传 》 、 《 归 去来 兮 辞 》 等 。
热泵在余热回收中的应用
6
、
露
凝
无
游
氛
,
天
高
风
景
澈
。
7、翩翩新 来燕,双双入我庐 ,先巢故尚在,相 将还旧居。
8
、
吁
嗟
身
后
名
,
于
我
若
浮
烟
。
9、 陶渊 明( 约 365年 —427年 ),字 元亮, (又 一说名 潜,字 渊明 )号五 柳先生 ,私 谥“靖 节”, 东晋 末期南 朝宋初 期诗 人、文 学家、 辞赋 家、散
供热系统烟气余热及循环水余热回收方案设计

供热系统烟气余热及循环水余热回收方案设计李彦峰;马晓菲【摘要】文中通过对京郊地区某燃气—蒸汽联合循环热电联产机组的供热系统优化设计,对余热锅炉尾气和循环水余热进行回收,用来加热热网回水,实现了低品质热量的再利用,有效地实现电厂的经济效益与节能减排.【期刊名称】《应用能源技术》【年(卷),期】2015(000)007【总页数】5页(P16-20)【关键词】热泵技术;循环水余热利用;烟气余热回收【作者】李彦峰;马晓菲【作者单位】国核电力规划设计研究院,北京100095;国核电力规划设计研究院,北京100095【正文语种】中文【中图分类】TU822.6优化设计方案工程位于位于北京市通州运河核心区,工程建设规模为200 MW级燃气—蒸汽联合循环热电联产机组及2台116 MW燃气热水锅炉,建成后将为核心区提供电力与热力配套,承担采暖热负荷、生活热水热负荷及空调冷负荷。
国家“十二五”能源规划除了通过加快推进新能源研发外,还在节能增效等“减量”上下功夫,节能增效包括节约能源和提高能源效率两大方面:做好节能增效即是一个能源富矿的开发。
在国家大力推行节能减排能源政策的大背景下,电厂丰富的余热资源正引起人们越来越多的关注:电厂输入的燃料总热量只有40%左右转变为电能,50%以上的热能则主要通过锅炉排烟和汽轮机凝汽器的循环水散失到环境中。
燃气-蒸汽联合循环热电联产是利用清洁能源天然气来满足城市供热需求的一项重要技术,与燃煤热电联产技术类似,为了保证机组的安全运行,必需要保证联合循环蒸汽轮机低压缸的最小通流量,即为了发电而必需通过空冷岛或者湿冷塔排放一部分乏汽余热。
同时,余热锅炉排出的烟气中含有大量的余热( 包含冷凝热) 。
如果能利用一定的技术将这两部分余热回收用于供热,则可以使燃气-蒸汽联合循环热电联产机组供热能力大幅增加,解决供热能力不足的问题,同时还可避免能源的浪费以及对环境的热污染。
方案通过对燃气-蒸汽联合循环机组余热的充分发掘,配套建设余热深度利用系统,主要包括以下三部分:(1)三台余热锅炉烟气余热的深度利用;(2)两台联合循环抽汽凝汽式蒸汽轮机乏汽余热(即循环水余热)的深度利用;(3)两台燃气调峰锅炉烟气余热的深度利用。
热泵用于热电循环水中的低位热能回收利用

循环水中的低位热能回收利用方案摘要--华能营口热电厂节能改造1.前言:1.1:热能回收的必要性:当前全国各个火力发电厂凝汽器的冷却基本是采用传统生产工艺,冷却水进入电厂冷却水塔,通过风冷将水中的凝汽热量散发到大气中,水循环利用,从而产生了热能损失同时产生了蒸发水损失。
利用热泵技术将电厂排汽冷却水作为低温热水源,汲取以往被当作工业废热排放的凝汽热量,提升回热凝结水以及热网水温度。
这样既有利于电厂冷却循环水侧形成闭式循环,减少水量蒸发损失,又能够提高整体发电效率降低煤耗。
在能源日益紧张环境污染日趋严重的当今,节能减排迫在眉睫。
我2X330mw机组的热能损失为135MW(此数据来源于北京华电博欣节能技术有限公司和大连热电工程设计有限公司可行性报告),循环水蒸发损失为10000吨/天(此数据来源于我厂统计);1.2:热能回收的可行性:热泵是一种能从自然界的空气、水或土壤中获取低品位热,经过电力做功,输出能用的高品位热能的设备,热泵的理论基础是分子运动及能量守恒原理。
热泵的历史可以追朔到1912年瑞士的一个专利,而热泵真正意义的商业应用也只有近十几年的历史。
如美国,截止1985年全国共有14,000台地源热泵,而1997年就安装了45,000台,到目前为止已安装了400,000台,而且每年以10%的速度稳步增长。
目前国内外已经有利用低温(2-5℃)水的热能,把水加热到70-90℃的高温热泵,并且能效比COP>3.5。
热泵技术的日臻成熟为本方案提供了基础。
如果我厂用热泵技术回收余热进行供热,那么2X330 Mw的机组供热时发电与供热总的能力(煤耗不变的前提下)至少可以达到发电2X250 Mw +供热465(465=3*155) Mw的效果;2.本项目循环水中的低位热能回收利用方案预期结果:如果我厂用热泵技术回收余热进行供热,那么2X330 Mw的机组供热时发电与供热总的能力(煤耗不变的前提下)至少可以达到发电(2X330-155) Mw +供热465(465=3*155) Mw的效果;初步计算,通过利用热泵技术进行循环水中的低位热能回收,可以提高全厂能效利用率5%以上,当冬季供热时,可以提高全厂能效利用率10%以上,平均每天可以减少蒸发量损失2X330MW 机组10000吨/天;具体如下:2.1:本方案可以将循环水内(20000 T/h ,温度25 °C 温升6°C)的低位热能提取出来。
利用热泵技术对某热电厂排汽余热进行回收

利用热泵技术对某热电厂排汽余热进行回收【摘要】在热电厂热电机组的运行过程中,汽轮机排汽会产生大量的余热,这些余热被冷却塔进行冷却,造成了浪费,同时也造成了一定的汽水损失。
吸收式热泵具有回收低温热量的功能,可以吸收利用这些余热。
以北方某300MW热电机组为例,对利用吸收式热泵回收低温余热进行了可行性分析,通过分析得到吸收式热泵能够回收机组的排汽余热,增加了机组热效率,减少了余热的浪费,具有显著的经济、社会和环境效益。
【关键词】热电厂排汽余热吸收式热泵节能降耗1 前言国家十二五能源规划通过采取加快推进新能源研发,加强节能增效等手段实现对能源的合理利用,其中节能增效包括节约能源和提高能源效率两大方面。
随着国家经济的发展,城市的规模也迅猛扩张,我国很多地方出现了集中热源不足的问题。
而作为集中供热热源主力的热电厂却大多数存在大容量、高参数供热机组所产生的大量低压缸排汽余热没有得到利用,而是直接通过循环冷却水系统排放到大气环境,所以如何对热电厂排汽余热进行回收便显得尤为重要。
[1]本文以我国北方某热电厂300MW热电机组排汽余热回收项目为例,对利用吸收式热泵回收该热电机组排汽余热进行了可行性分析。
[2]2 项目概况考虑对该热电厂热电机组排汽余热进行回收,提高供热效率,扩大供热面积。
前期已完成热电厂部分相关信息调研,如表1所示。
该电厂供热参数中供回水温度设计值为130/70℃,但是实际运行中回水温度根本不能够达到70℃,按照实际运行温度热网回水55℃进行设计,供热水温度130℃,热网循环水流量按8000m3/h。
3 方案简介本方案按电厂首站改造增加吸收式热泵回收排汽冷凝进行设计。
本方案使用汽轮机部分供热抽汽作为热源,回收一台汽轮机部分凝汽器循环水的余热,通过吸收式热泵将供热回水从55℃加热至110.3℃,再利用原系统热网加热器将热网水加热到130℃提供给市政供热。
4 工艺系统流程图5 经济效益分析5.1 电厂余热回收供热收益分析本方案热泵额定运行工况下可回收循环水余热205.9MW,单位面积供热负荷按60W/㎡计算,可以增加供热面积343万平方米。
热泵技术在厂网一家热电厂应用浅析论文

热泵技术在厂网一家热电厂的应用浅析【摘要】热电厂的循环冷却水存在大量的低温热能,热泵具有将低温热能提升为高温热能的能力。
本文提出利用热泵技术回收电厂循环水余热,为厂网一家热电厂带来节能、环保、效益三重效应,有广阔的发展前景。
为拥有供热公司的热电厂提供了一种节能降耗、增大供热面积、提高经济效益的有效途经。
【关键词】热泵技术;热电厂;厂网一家;节能降耗;供热面积;经济效益火力发电厂的冷端损失是电厂热力系统的最大损失,在冬季额定供热工况下,汽轮机排汽损失可占到燃料总发热量的39%左右,这部分热量通过循环水排入大气。
造成巨大的能源浪费。
随着目前热泵技术的逐步推广,在热电厂使用热泵技术回收循环水余热被越来越多的热电企业采用。
采用热泵技术一方面可以回收汽轮机组的冷端损失,降低发电煤耗,达到节能降耗的目的。
对于热电厂和供热公司为一家的发电企业来说,可以增大供热面积,带来显著的经济收益,应用前景十分广阔。
1.应用热泵技术的意义某电厂设计为2×300mw热电联产机组,设计供热能力为860万㎡,年供热时间6个月。
其下属的全资供热子公司负责经营区域内60%左右的供热用户。
该供热公司目前实际接入供热面积约920万㎡,实际供热面积720万㎡,并以40万㎡的速度在逐年递增,按照当前的现状,未来三年时间,将达到并超过设计供热面积。
随着国家节能环保政策的要求,今后几年内一部分供热小锅炉将被逐步淘汰。
目前未接入该公司热网系统的供热面积超过700万㎡,供热市场前景广阔,而该电厂面临着供热能力不足的问题。
近几年,因煤炭价格大幅度上涨,导致火电企业全线亏损,为了降本增效,火电企业只能从内部挖掘潜力,不断降低发电煤耗。
对于厂网一家热电企业来说,不断扩大供热面积、不断提高热电比,是一种短期内就能盈利的经营方式。
热泵技术的成熟应用以及选择方案的不同,可以降低发电煤耗30g/kwh—70g/kwh左右,增大供热面积200万㎡—400万㎡,热泵技术应用后,给厂网一家热电企业带来两个板块的经营收入,带来大幅度盈利的机会。
浅谈热泵技术回收循环水余热方案

浅谈热泵技术回收循环水余热方案丁猛辉(天津国电津能热电有限公司天津300300)摘要:汽轮机乏汽冷凝热损失对于电厂来说是无用^的,但对于冬季需要采暖的城市居民而言,则是巨大的浪费而热泵技术日趋成熟和快速发展,已使得回收汽轮机乏汽冷凝热成为现实,并能够转换为可供城市居民采暖用的高品质热量文章结合实际工程改造经验介绍了利用溴化锂吸收式热泵机组对#2机组主机循环水排至冷却水塔的余热回收方案的工艺原理、边界条件、工艺设计及相关系统施工改造,并重点介绍了溴化锂吸收式热泵原理、主机循环水系统、热网循环水系统、五段抽汽系统(热泵驱动蒸汽系统)及热泵凝结水系统改造,最后对改造的经济性进行了分析:,关键词:冷端损失;循环水;供热;热泵;效益引言汽轮机的冷端损失是火电厂的最大热量损失。
330MW等级 纯凝机组的排汽冷凝热损失占到进入汽轮机总热量的55%以上;即使是在冬季带供热的抽汽凝汽式机组,排汽冷凝热损失也占到进入汽轮机总热量40%左右。
如果能够回收汽机排汽冷凝热,并用于居民采暖供热,将大幅提高电厂的供热能力和效率,同时节约了燃煤.减少排放,从而带来巨大的节能效益、环保效益 与社会效益。
1设备及供热现状某公司安装2x330MW亚临界抽汽式供热燃煤机组,热网首 站的主要配置为LRJCW2200-2400型卧式加热器四台,额定抽 汽量为550t/h,最人供热面积1300万m2。
热网水流量固定在10000t/h,根据天气清况调节热网循环水供水温度,以满足居民 采暖需求;供回水压力1.60/0.30MPa.a主要承担市区及东丽区的居民采暖供热;由于供热能力有限,只实现了对华明镇示范居 民住宅区约130万1112的供热。
根据天津市最新供热规划,还将 承担市区新建居民楼供热任务;现有供热能力不能满足。
2应用吸收式热泵技术回收#2机组循环水余热项目2.1 #2机组循环水余热回收的必要性天津市根据《国家“十二五”节能减排综合性工作方案》制定 了到2015年燃煤量比2010年下降18%总体节能H标。
热泵技术回收电厂冷凝热供热方案研究
的原理 , 通过三种不 同的供热方法介绍 了加入热泵后充分 回收废热 , 提高 电厂热效 率 , 大热 电厂的供 扩
热 面积 。
关 键
词: 热泵技术 ; 余热 回收 ; 汽驱动 ; 蒸 冬季供暖
文 献标 识码 : A
中 图分 类 号 : K2 2 +2 T 1.
1 回收热 电厂 冷凝 热 供 热 的意义
第 1期
吕 太等 : 泵技 术 回 收 电 厂 冷 凝 热 供 热 方 案研 究 热
7
图 1 大 唐 长春 第 三 热 电 厂供 暖 系统 示 意 图
从 表 1可 以 看 出潜 在 的热 量 还 是 很 大 的 , 然 冷 虽
表 1 汽 轮 机 的 基 础 数 据
却 循 环 水 的 温 降 比较 低 , 是 由于 其 流 量非 常 大 , 但 导 致其 热 能 的排放 量也 相 当 可观 , 面我们 计 算 这 部 分 下 的具体 数值 。
两 台汽 轮机 排 汽冷 凝热 量 : Q 。: , () 1
式 中 : 为蒸 汽 凝 结 水 量 为 8 . h h 为 排 汽 焓 2 G 0 2t ; 1 /
5 5 9k/ g h 为 凝 水焓 为 1 5 6 J k ; 1为带 人 5 . J k ;2 2 . 6k/ g Q
第 3 卷第 1期 1
21 0 1年 2月
东
北
电
力
大
学
学
报
Vo . 1, . 1 3 No 1 Fb 2 l e .. 01
J u n l fN rh at ini ies y o r a ote s D a lUnv ri O t
文章编号 :05— 9 2 2 1 ) 1— o 6一O 10 2 9 (0 10 0 0 5
热电厂低温循环水余热回收利用工程实践
热电厂低温循环水余热回收利用工程实践摘要:进入新时期以来,我国各项事业均快速发展,取得了十分理想的成绩,特别是热电厂以惊人的速度向前发展。
随着煤炭价格逐年升高,热电厂经营压力巨大,且电力行业是一次能源消耗大户和污染排放大户,也是国家实施节能减排的重点领域。
电厂循环冷却水余热属于低品位热能,一般情况下,直接向环境释放,造成了巨大的能源浪费。
热泵是利用一部分高质能从低位热源中吸取一部分热量,并把这两部分能量一起输送到需要较高温度的环境或介质的设备。
火电厂循环水中存在大量余热,利用热泵技术有效回收这部分热量用于冬季供暖或常年加热凝结水。
关键词:热电厂;低温循环水;余热回收;利用工程引言低温循环水余热即是可回收再利用的一种资源。
热电厂生产中需要大量能源,这些能源因生产工艺等原因,无法全部利用,因此就产生了大量的各种形式的余热,能源浪费严重。
1热泵技术的分类热泵技术是基于逆卡诺循环原理实现的。
按照驱动力的不同,热泵可以分为压缩式热泵和吸收式热泵。
压缩式热泵主要由蒸发器、压缩机、冷凝器和膨胀阀组成,通过让工质不断完成蒸发一压缩一冷凝一节流一再蒸发的热力循环过程,将低温热源的热量传递给热用户。
吸收式热泵主要由再生器、吸收器、冷凝器、蒸发器、溶液热交换器等组成,是利用两种沸点不同的物质组成的溶液的气液平衡特性来工作的。
根据热泵的热源介质来分,可分为空气源热泵和水源热泵等:空气源热泵是以空气为热源,因空气对热泵系统中的换热设备无腐蚀,理论上可在任何地区都可运用,因此是目前热泵技术应用最多的装置;水源热泵是以热水为热源,因水源热泵的热源温度一般为15~35°C,全年基本稳定,其制热和制冷系数可达3.5-4.5,与传统的空气源热泵相比,要高出30%左右。
2驱动蒸汽参数偏低工况当蒸汽参数偏低,不能满足热泵正常工作需要时,对高参数蒸汽减温减压后送入热泵,这种方法没有对高参数蒸汽的能量进行梯级利用。
研究采用蒸汽引射器方案,即利用高参数蒸汽引射低参数蒸汽,产生满足热泵需求的蒸汽,实现高、低压蒸汽的高效利用。
火力发电厂吸收式热泵余热回收_利用系统设计导则_概述说明
火力发电厂吸收式热泵余热回收利用系统设计导则概述说明1. 引言1.1 概述火力发电厂作为目前主要的能源供应方式之一,面临着能源效率低下和环境问题等挑战。
为了提高火力发电厂的能源利用效率和减少环境排放,回收和利用余热成为了一种可行的解决方案。
而吸收式热泵技术作为一种有效的能量回收方式,已被广泛应用于火力发电厂中。
本文将重点探讨在火力发电厂中应用吸收式热泵技术进行余热回收的系统设计导则。
通过对设备选择和布置原则、运行参数优化与控制策略以及安全与可靠性考虑等方面进行论述,旨在帮助读者了解如何更好地设计和实施火力发电厂的吸收式热泵余热回收系统。
1.2 文章结构本文分为五个部分进行论述。
首先,在引言部分我们将概述文章的目的和结构。
接下来,在第二部分我们将介绍火力发电厂的基本原理和吸收式热泵技术,并强调余热回收在其中的重要性。
第三部分将详细阐述利用系统设计导则,包括设备选择和布置原则、运行参数优化与控制策略以及安全与可靠性考虑。
第四部分将通过实施步骤与案例分析展示具体的操作流程和效果评估。
最后,在结论部分,我们将对主要观点和成果进行总结,并展望未来发展趋势。
1.3 目的本文的目的是通过对火力发电厂吸收式热泵余热回收系统设计导则的概述说明,帮助读者了解如何高效地回收并利用火力发电厂中产生的余热能量。
通过合理选择和布置设备、优化运行参数与控制策略以及考虑安全与可靠性等方面,有效提升火力发电厂的能源利用效率,减少环境污染排放,并为未来发展趋势提供展望。
2. 火力发电厂吸收式热泵余热回收2.1 火力发电厂基本原理火力发电厂是一种通过燃烧化石燃料产生蒸汽,然后利用蒸汽驱动涡轮发电机组产生电能的设施。
在这个过程中,大量的能量以余热的形式散失到环境中。
为了提高能源利用效率和减少能源浪费,需要采取措施来回收和利用这些废热。
2.2 吸收式热泵技术介绍吸收式热泵是一种通过吸收剂对工质进行吸附和解吸过程来实现制冷或加热的装置。
其工作原理类似于传统压缩式制冷系统,但采用了不同的工作流体和循环过程。
循环水余热利用系统存在的问题及改造
该热 电厂 在 城 区外 南 端 , 供热 负 荷 主要 分 布 在 铁 路 以西 的城 区 , 电厂 距 离 热 负荷 中心 约 8k 城 m,
收 稿 日期 :0 2— 3— 7 2 1 0 2
2 吸 收 式 热泵 技 术 原 理 简 介
大供 水量 为 8 7 th最 高 热 网供水 温度 为 16o 30/ , 1 C,
最 大总 供 热 抽 汽量 为 7 1/ 。 由此 可 见 , 0 h t 2台 3 0 0 MW 机组 的供热 汽 源 已经接 近 额 定 抽 汽 量 , 已不 能 满 足未来 的供 暖需求 。
但 从投 运 的实 际效 果来 看 与设 计值 偏 差 较 大 , 能 节 效 果 并没有 理论 上那 样理 想 。本文简 单介 绍某 工程
为 l 0 J 相当于 5 . 标煤 的发热量。若能 回 0 , 6 G 46 t
收 , 于城市 供 热 , 产 生 巨 大 的 经 济 效 益 和 社 会 用 可
效益 。
供热的需求 。循环水余热利用系统包括驱动蒸汽系 统 、 源水 系统 及热 网水 系 统 。系 统 主要 设 计 参数 热
1 设 备 及 系统 简 介
某热 电厂装 机 容 量为 2×3 0M , 0 W 电厂 运行 数
据 显 示 , 厂 每小 时通 过 凉 水 塔排 人 大 气 的 热量 约 全
收利用 , 以提高电厂供热能力 ; 同时 , 在热 网采用回
水 直供 、 混水 供热 方 式 , 高管 网输 送 能力 , 满足 提 以
中图 分 类 号 :K 1 5 T 1 文 献标 志码 : 文 章 编 号 :64— 9 1 2 1 )8— 0 8— 5 17 15 (0 2 0 06 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用热泵技术对某热电厂排汽余热进行回收【摘要】在热电厂热电机组的运行过程中,汽轮机排汽会产生大量的余热,这些余热被冷却塔进行冷却,造成了浪费,同时也造成了一定的汽水损失。
吸收式热泵具有回收低温热量的功能,可以吸收利用这些余热。
以北方某300mw热电机组为例,对利用吸收式热泵回收低温余热进行了可行性分析,通过分析得到吸收式热泵能够回收机组的排汽余热,增加了机组热效率,减少了余热的浪费,具有显著的经济、社会和环境效益。
【关键词】热电厂排汽余热吸收式热泵节能降耗
1 前言
国家十二五能源规划通过采取加快推进新能源研发,加强节能增效等手段实现对能源的合理利用,其中节能增效包括节约能源和提高能源效率两大方面。
随着国家经济的发展,城市的规模也迅猛扩张,我国很多地方出现了集中热源不足的问题。
而作为集中供热热源主力的热电厂却大多数存在大容量、高参数供热机组所产生的大量低压缸排汽余热没有得到利用,而是直接通过循环冷却水系统排放到大气环境,所以如何对热电厂排汽余热进行回收便显得尤为重要。
[1]
本文以我国北方某热电厂300mw热电机组排汽余热回收项目为例,对利用吸收式热泵回收该热电机组排汽余热进行了可行性分析。
[2]
2 项目概况
考虑对该热电厂热电机组排汽余热进行回收,提高供热效率,扩大供热面积。
前期已完成热电厂部分相关信息调研,如表1所示。
该电厂供热参数中供回水温度设计值为130/70℃,但是实际运行中回水温度根本不能够达到70℃,按照实际运行温度热网回水55℃进行设计,供热水温度130℃,热网循环水流量按8000m3/h。
3 方案简介
本方案按电厂首站改造增加吸收式热泵回收排汽冷凝进行设计。
本方案使用汽轮机部分供热抽汽作为热源,回收一台汽轮机部分凝汽器循环水的余热,通过吸收式热泵将供热回水从55℃加热至110.3℃,再利用原系统热网加热器将热网水加热到130℃提供给市政供热。
4 工艺系统流程图
5 经济效益分析
5.1 电厂余热回收供热收益分析
本方案热泵额定运行工况下可回收循环水余热205.9mw,单位面积供热负荷按60w/㎡计算,可以增加供热面积343万平方米。
该地区冬季采暖供热时间为182天,热泵供热运行时间4368小时,热泵制热运行满负荷系数为1,热泵每年可以回收循环水余热量323.8万gj。
5.2 节省冷却塔补水费用分析
本项目采用吸收式热泵回收利用了循环冷却水余热,这一部分
冷却水不需要再通过冷却塔降温,因此可以减少冷却塔蒸发、漂水的补水量。
热泵回收利用循环水量21909t/h,补水率取1.5%,每年运行4368h,可以节省冷却塔补水21909×1.5%×4368=143.5万吨/年。
电厂补水价格按3元/吨计算,每年节水费用143.5万吨×3元/吨=430.5万元。
5.3 节能预测分析
本项目热泵提供的是供热基础负荷,热网加热器起到尖峰加热器的作用,热泵在整个采暖期始终处于满负荷运行状态,年运行时间按182天(4368小时),每年可回收循环水余热量323.8万gj,按国家节能标准,按每百万千焦供热折标煤0.03412吨计算,每年可以实现节能110.7万吨标准煤。
6 结语
(1)电厂的排汽余热不再全部依靠冷却塔降温,而是大部分被吸收式热泵机组吸收,将本来要浪费的余热进行回收并供热,可见热电联产集中供热系统具有巨大的余热利用潜力;
(2)吸收式热泵机组仍采用电厂原供热的蒸汽,蒸汽的热量最终仍然进入到热网中,可减少汽轮机的抽汽量,增加汽轮机的发电能力,提高系统整体能效。
由上可见基于吸收式热泵的循环水余热利用技术在大型抽凝机组热电联产中的应用是成功的。
可以作为电厂改造及新电厂建设的一种有效的节能减排手段,来缓解化石燃料紧张、有效实现电厂节
能减排和提高电厂经济效益。
节能减排效果显著,应是各发电厂十二五期间节能减排的新途径,应在有条件的地区大力推广。
参考文献:
[1]任兵,郭江龙,陈海平等.热泵技术用于火电厂碳减排的经济性分析[j].电力科学与工程,2011,27(11):63-67.
[2]付林,江亿,张世钢.基于co-ah循环的热电联产集中供热方法[j].清华大学学报:自然科学版,2008,48(9):1377-1380.。