第七章__相关分析剖析讲解

合集下载

第七章 相关分析(新)

第七章 相关分析(新)

8
合计
8.0
36.4
160
880
请根据上述资料计算产品产量和生产费用之间的相关系数。
三、相关系数的密切程度
相关系数的范围在-1到1之间,即-1≤r≤1。 ★ 当r=1,为完全正相关
★ 当r=-1,为完全负相关
★ 当r=0为,不相关 ★ r的范围在0.3-0.5是低度相关 ★ r的范围在0.5-0.8是显著相关 ★ r的范围在0.8以上是高度相关 四、相关系数的显著性检验
第七章 相关分析
第一节 相关分析的意义和任务
主 要 内 容
第二节 简单线性相关分析
第三节 直线回归分析
第四节 曲线回归分析
第一节 相关分析的意义和任务
相关关系的概念 相关关系的种类 相关分析的主要内容
一、相关关系的概念
在社会经济领域中,现象之间具有一定的联系,一种现象的变化
往往依存于其他现象的变化。所有各种现象之间的相互联系,都 可以通过数量关系反映出来。现象之间的相互联系可以区分为两
16.5 17
14
16 17
例2:某游览点历年观光游客的数量如下表,请用最小平方 法建立直线方程,并预测2005年的游客数量。
年份
1998 1999
游客量(万人)
100 112
2000
2001 2002
125
140 155
2003
2004
168
180
★ 判定系数 R 2 (相关概念)
用最小平方法求得的回归直线确定了x与y的具体变动关系。但是, 实际值是不是紧密分布在其两侧?其紧密程度如何?这关系到回
制相关图(也称散布图、散点图)和相关表,可以直接地判断现象之 间大致上呈现何种关系形式,以此计算相关系数作定量分析,精确

第七章-相关分析 ppt课件

第七章-相关分析  ppt课件

5
第一,按所涉及的自变量多少分, 有单相关和复相关
第二,按相关关系的表现形式分, 有直线相关和曲线相关
第三,按相关的方向分,有正相关 和负相关。
第四,按相关关系的程度分,有不 相关、完全相关和不完全相关
ppt课件
25
20
15
10
5
0
0
2
4
6
8
10
12
11.2

11
10.8
10.6
10.4
10.2
ቤተ መጻሕፍቲ ባይዱ10
528 340 1310
0.96
5397 41 2 5207 3 01 0 20
ppt课件
例1题5 4
已知:xy146.5 x 12.6 y 11.3 x2 164.2 y2 134.6
求: ?
解:
xyxy
x2
2
x
y2
2
y
14 .5 61.6 21.3 1 16 .2 41.6 22 13 .6 41.3 12
(四)衡量估计值的准确程度
(五)预测因变量
ppt课件
7
第一节完
一、相关图和相关表(P344)
(一)相关图(P344)
1、相关图的概念 2、相关图的作用
(二)相关表(P344-347)
1、相关表的概念 2、相关表的种类
简单相关表(P345)
单变量分组相关表(P346)
分组相关表
双变量分pp组t课相件 关表(P347)
n 1 x y nxy nyxxyn 1xy xyxyxy n 1xyxyxyxy…… (1)
δ xn 1
x x 21
n

《SPSS统计分析案例教程》第七章相关分析

《SPSS统计分析案例教程》第七章相关分析

非参数相关分析
总结词
非参数相关分析是研究两个或多个变量之间相关关系的方法,与线性相关分析不同,它不需要假定变量之间的 关系是线性的。
详细描述
非参数相关分析通过计算斯皮尔曼等级相关系数(Spearman's rank correlation coefficient)或肯德尔等级 相关系数(Kendall's tau)等非参数方法来评估两个变量之间的相关关系。这些方法适用于有序分类变量或连 续变量的非线性关系。
03
相关分析的步骤和注意事项
相关分析的步骤
• 确定研究目的:明确研究问题和目的,以及需要探究的变量。 • 数据收集:根据研究目的和所需的变量,收集数据。 • 数据清洗和整理:对数据进行清洗、整理,包括缺失值处理、异常值处理、数据转换等。 • 变量选择:选择需要进行分析的变量,通常选择两个或两个以上的变量。 • 绘制散点图:根据选择的变量,绘制散点图,观察数据点的分布情况。 • 相关系数计算:根据选择的变量,计算相关系数,通常使用皮尔逊相关系数。 • 假设检验:根据相关系数的值,进行假设检验,判断两个变量之间是否存在显著的相关关系。
要点三
选用更为精确的方法
在相关分析中,可以选用更为精确的 方法来弥补局限性。例如,在研究运 动和健康之间的关系时,可以采用结 构方程模型等方法来更准确地评估运 动对健康的影响。
THANK YOU.
牌忠诚度之间的关系。
销售预测
在市场营销中,相关分析可以 用来研究销售数据之间的关系 ,例如销售额和广告投入之间 的关系,为销售预测和资源分
配提供依据。
05
相关分析的局限性及解决方法
相关分析的局限性
无法揭示因果关系
易受第三方因素影响

23第七章直线回归与相关分析

23第七章直线回归与相关分析

研究“一因一果”,即一个自变量与一 个依变量的回归分析称为一元回归分析; 研究“多因一果”,即多个自变量与一 个依变量的回归分析称为多元回归分析。 一元回归分析又分为直线回归分析与曲 线回归分析两种; 多元回归分析又分为多元线性回归分析 与多元非线性回归分析两种。
回归分析:揭示出呈因果关系的相关变 量间的联系形式,建立它们之间的回归方程, 利用所建立的回归方程,由自变量(原因)来预 测、控制依变量(结果)。
SS x ( 159.0444) 2
144.6356
249.5556 74.6670
所以
S yx
2 ˆ ( y y )
n2
74.6670 = 3.2660 (天) 92
【题一】下表为每1000 g土壤中所含NaCl 的不同克数(x),对植物单位叶面积干物质 (Y)的影响,试建立其回归方程。 土壤NaCl含量 x/g· kg-1 干重 y/mg· y bx
(7-3)式中的分子是自变量 x 的离均差与
依变量 y 的离均差的乘积和 ( x x )( y y ) ,
简称乘积和,记作 SP ,分母是自变量 x 的离 xy
均差平方和 ( x x )2,记作 SS x。
a 叫做样本回归截距,是总体回归截距α的 最小二乘估计值也是无偏估计值,是回归直线
资料如下表,建立 y 与 x 的直线回归方程。
表7-1 平均温度累积值(x)与一代三化螟盛发期(y)资料
年份 1956 1957 1958 1959 1960 1961 1962 1963 1964 累积温 x 35.5 34.1 31.7 40.3 36.8 40.2 31.7 39.2 44.2 盛发期 y 12 16 9 2 7 3 13 9 –1

第七章 相关分析

第七章 相关分析

(四)按变量多少划分可分为单相关、复相关
1.单相关:两个因素之间的相关关系叫单相关,即研究时只涉 及一个自变量和一个因变量。 2.复相关:二个以上因素的相关关系叫复相关,即研究时涉及 两个或两个以上的自变量和因变量。 偏相关:在某一现象与多种现象相关的场合,当假定其他变 量不边时,其中两个变量之间的相关关系称为偏相关。 在实际工作中,如存在多个自变量,可抓住其中主要的自变 量,研究其相关关系,而保持另一些因素不变,这时复相关为 偏相关。
第七章 直线相关与回 归分析
含秩相关
第一节
相关分析的概念
一、相关分析的概念: 相关分析是分析变量间是否有相关关系,确定相关关系是否 存在,描述相关关系呈现的形式和方向,以及变量间相关的密 切程度的方法。 二、函数关系和相关关系: 函数关系反映变量间的数量上,存在着确定的数量对应关系
,这种关系可用数学函数关系表达式,由一个变量精确计算出 另一个变量。见函数关系散点图和曲线。 相关关系反映变量间存在数量上的相关关系,但不具有确定 性的对应关系。见相关关系散点图和曲线。
三、相关分析内容
相关分析通常包括考察随机变量观测数据的散点图、 计算样本相关系数以及对总体相关系数的显著性检验 等内容。 散点图可以大致判断两个变量之间有无相关关系、 变量间的关系形态以及变量之间的关系密切程度,但 准确度量两个变量之间的关系密切程度,需要计算相 关系数。 一般情况下,总体相关系数ρ是未知的,通常是将 样本相关系数r作为ρ的估计值,于是常用样本相关系 数推断两变量间的相关关系.这一点要和相关系数的 显著性检验结合起来应用。

2.回归分析的种类
(1)根据所涉及变量的多少不同,回归分析可分为简单回归 和多元回归。 简单线性回归又称一元回归或直线回归,是指两个变量之 间的回归,研究一个自变量与另一个因变量的线性趋势数量 关系。 多元线性回归是研究多个自变量与一个因变量的线性趋势 数量关系。 (2)根据变量变化的表现形式不同,回归分析也可分为直线 回归和曲线回归。 对具有直线相关关系的现象,配之以直线方程进行回归分 析,即直线回归; 对具有曲线相关关系的现象,配之以曲线方程进行回归分 析,则称为曲线回归。

第七章 相关分析

第七章 相关分析
2

y
2

2
y
xf 1230 41 x 30 f yf 464 15 . 47 y 30 f xyf 18490 616 . 33 xy 30 f x y
2

x f
2
f

63100 30
2103 . 33
2

y f
2
f

20 20 15 10 5 0
30
40
50
80
相关图
三、相关系数的测定与应用
(一)相关系数的特点 相关系数是测定变量之间相关密切程度 和相关方向的代表性指标。 相关系数用符号“r”表示。
其特点表现在:
(1)参与相关分析的两个变量是对等 的,不分自变量和因变量,因此相关系 数只有一个。 (2)相关系数有正负号反映相关关系 的方向,正号反映正相关,负号反映负 相关。 (3)计算相关系数的两个变量都是随 机变量。
相关关系与函数关系的不同之处表现在:
(1)函数关系指变量之间的关系是确定的, 而相关关系的两变量的关系则是不确定的。可 以在一定范围内变动; (2)函数关系变量之间的依存可以用一定的 方程y=f(x)表现出来,可以给定自变量来推算 因变量,而相关关系则不能用一定的方程表示。 函数关系是相关关系的特例,即函数关系是完 全的相关关系,相关关系是不完全的相关关系。
函数关系和相关关系的联系表现在:
对具有相关关系的现象进行分析时, 则必须利用相应的函数关系数学表达式 来表明现象之间的相关方程式。 相关关系是相关分析的研究对象,函 数关系是相关分析的工具。
三、相关关系的种类
(1)按相关的程度划分,有完全相关、不完 全相关和不相关。 相关分析的主要对象是不完全的相关关系。 (2)按相关的方向来划分,有正相关和负相 关。 正相关指的是因素标志和结果标志变动的方向 一致,负相关指的是因素标志和结果标志变动 的方向相反。

(第七章 相关分析

(第七章 相关分析

统计学
STATISTICS
直线回归分析 第三节 直线回归分析
8 - 25
STAT
回归: 回归:退回 regression
平均身高
1877年 弗朗西斯 高尔顿爵士 年 弗朗西斯高尔顿爵士 学研究 回归线
遗传
STAT
回归分析(regression):通过一个 通过一个 回归分析 或几个变量的变化去解释另一变量的 变化。包括找出自变量与因变量、 变化。包括找出自变量与因变量、设 定数学模型、检验模型、 定数学模型、检验模型、估计预测等 环节。 SxS y
总体相关系数
样本相关系数
相关系数的常用算法: 相关系数的常用算法:
r=
n∑ xy ∑ x∑ y n∑ x (∑ x )
2 2
n ∑ y (∑ y )
2
2
相关系数取值在 -1 与 1 之间。 相关系数取值在 之间。 相关系数是一种对称测量。 相关系数是一种对称测量。 相关系数是一种对称测量 相关系数无量纲,可以进行比较。 相关系数无量纲,可以进行比较。 相关系数无量纲
STAT
二、一元线性回归模型 最小二乘法
STAT
求 a、b 的公式: 、 的公式:
∑ y = na + b∑ x ∑ xy = a∑ x + b∑ x n∑ xy ∑ x ∑ y b= n∑ x (∑ x)
2 2
2
a = y bx
学 身高 体重 生 x y
x2
y2
xy
估计值
残差
47.291 49.448 51.606 53.764 55.921 58.079 60.236 62.394 64.552 66.709
判定系数(Coefficient of determination): 判定系数 估计的回归方程拟合优度的度量, 估计的回归方程拟合优度的度量,表明 Y 的变异性能被估计的回归方程解释的 部分所占比例。 部分所占比例。

生物统计学:第七章 直线回归与相关分析

生物统计学:第七章  直线回归与相关分析

特别要指出的是:利用直线回归方程进行预 测或控制时,一般只适用于原来研究的范围,不 能随意把范围扩大,因为在研究的范围内两变量 是直线关系,这并不能保证在这研究范围之外仍 然是直线关系。若需要扩大预测和控制范围,则 要有充分的理论依据或进一步的实验依据。利用 直线回归方程进行预测或控制,一般只能内插, 不要轻易外延。
(三)、相关系数的显著性检验
统计学家已根据相关系数r显著性t检验法计算出了 临界r值并列出了表格。 所以可以直接采用查表法对相 关系数r进行显著性检验。
先根据自由度 n-2 查临界 r 值 ( 附表8 ), 得 r0.05(n2) ,r0.01(n2)。若|r|< r0.05(n2),P>0.05,则相 关系数r不显著,在r的右上方标记“ns”;若 r0.05(n2) ≤|r|< r0.01(n2) ,0.01<P≤0.05,则相关系数 r 显 著,在r的右上方标记“*”;若|r|≥ r0.01(n2) ,P ≤ 0.01, 则相关系数 r 极显著,在 r 的右上方标记 “**”。
第七章 直线回归与相关分析
在试验研究中常常要研究两个变量间的关系。 如:人的身高与体重、作物种植密度与产量、食品价格与需
求量的关系等。 两个关系 依存关系:依变量Y随自变量X变化而变化。
—— 回归分析 互依关系:依变量Y与自变量X间的彼此关系.
—— 相关分析
一 直线回归
(一)、直线回归方程的建立 对于两个相关变量x和y,如果通过试验或调查 获得它们的n对观测值: (x1,y1),(x2,y2),……,(xn,yn) 为了直观地看出x和y间的变化趋势,可将每一 对观测值在平面直角坐标系描点,作出散点图。
y)2 y)2
SPxy 2 SSxSS y
SPxy SS x
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图7-4(a) 曲线相关
当两变量间呈线性趋势,其相关散布图是椭 圆形,说明两变量之间是线性关系,称为直线相 关,如图7-4(b)。
图7-4(b) 直线相关
2、判断相关密切程度高低 相关散布图的形状和疏密,反映着相关程度 的高低。如图7-5(a),散布图的椭圆形状较狭 长,称为高度相关。
图7-5(a) 高度相关
• 2.取值大小:表示双变量相关的强度 │r│→1,则相关越密切 │r│→0,相关越不密切
• 3.正负号:表示双变量相关的方向 是正相关(+)还是负相关(-)
• 4.代表值:r=+1,表完全正相关 r=-1,表完全负相关 r=0,表无相关
注意:
• 一般情况下,通过相关系数r的值来判断双 变量相关是否密切时,要把样本量的大小 和相关系数取值大小综合起来考虑,经统 计检验后方能确定变量之间是否存在显著 相关
• 然而在实际的心理和教育测量中, 往往会遇到两种事物,两种现象关系 的描述,此时我们又如何去统计处理 呢?
• 对于双变量数据相互之间的关系可以 用相关系数加以统计分析。
• 何谓双变量?
对于一个变量X的每一个观测值:X1, X 2,, X n 同时有另外的一个变量Y相对应:Y1 , Y2 , , Yn 所推断的是双变量的总体。
3.相关关系:两类现象在发展变化的方向和

大小方面存在一定联系,但并

不是前两种关系,比较复杂
• 一、什么是相关
• (二)相关的类别(三种) • 1.正相关:两列变量变动方向相同 • 2.负相关:两列变量变动方向相反 • 3.零相关:两列变量之间没有相关
关系存在
二、相关系数(coefficient of correlation)
第二节 积差相关分析
一、积差相关的概念与适用资料 (一)概念 当两个变量都是正态、连续变量,而且二者之间呈
线形关系,表示这两个变量之间的相关为积差相 关 由英国统计学家皮尔逊在20世纪初提出,简称: Pearson相关系数(软件中常用此名称) 积差相关又称为积矩相关
离均差乘方之和除以N称做“矩”(moment),把X 的离均差和Y的离均差两者积的总和除以N,用 “积矩”表示。称为协方差riance,X和Y有
图7-6(b) 负相关
零相关:散布点的变化无一定规律。如 图7-6(c)。
图7-6(c)零相关
附加说明:
(1)两变量间存在相关,仅意味着变量间有 关联,并不一定是因果关系。
(2)相关系数不是等距的测量单位。 r是一个比值,不是由相等单位度量而来,不 能进行加、减、乘、除运算。如 r1=0.25,r2=0.5,r3=0.75,不能认为r1=r3-r2 或r2=2r1。 (3)相关系数受变量取值区间大小及观测值 个数的影响较大。
变量的取值区间越大,观测值个数越多,相关 系数受抽样误差的影响越小,结果就越可靠,如 果数据较少,本不相关的两列变量,计算的结果 可能相关,如学生的身高与学习成绩。本书所举 例题,数据较少,仅为说明计算方法时较方便。
(4)相关系数在特定情况下使用才具有意义。 如高中生身高与体重的相关系数用在儿童身上 就没有意义。
如果散布图的椭圆形状比较粗,称为低度相 关。如图7-5(b)。
图7-5b 低度相关
3、判断相关变化方向 正相关:散布点主要位于一、三象限。如图7-6 (a),即一个变量增加(或减少),另一个变量也增加 (或减少)。
图7-6(a) 正相关
负相关:若散布点主要位于二、四象限,如图 7-6(b),即一个变量增加(或减少),另一个变 量也减少(或增加)。
• 相关系数是两列变量间相关程度的数字表 现形式。作为样本间相互关系程度的统计 特征数,常用r表示,作为总体参数,一般用 ρ表示, 是应用比较广泛的一个有代表性 的统计量。
• 相关系数是就线形关系而言的
相关系数的取值 1 r 1
• 内在涵义:
• 1.取值范围:位于-1.00至+1.00之间,是一个比率,常用 小数形式表示
7-1
第七章 相关分析
学习目标
• 理解各种相关系数的含义、性质、作用; • 掌握各种相关系数的计算方法; • 能够区分各种相关系数应用的前提; • 运用相关法解决各类实际问题。
第七章 相关关系
• 问题?
• 通过前面的学习,我们知道,给定 任何一列单变量连续数据,都可以用 平均数和标准差反映数据的总体特征。
(5)通过实际观测值计算的相关系数,须经 过显著性检验确定其是否有意义。
表7-2 |r|的取值与相关程度
|r|的取值范围 0.00-0.19 0.20-0.39 0.40-0.69 0.70-0.89 0.90-1.00
|r|的意义 极低相关 低度相关 中度相关 高度相关 极高相关
*如何判断两个变量的相关性 (1)找出两个变量的正确相应数据。 (2)画出它们的散布图(散点图)。 (3)通过散布图判断它们的相关性。 (4)给出相关(r)的解答。 (5)对结果进行评价和检验。
主要内容
• 第一节:相关的概念 • 第二节:积差相关分析 • 第三节:等级相关分析 • 第四节:偏相关分析 • 第五节:相关分析的SPSS过程
第一节 相关的概念
一、什么是相关
(一)事物之间的相互关系(有三种):
1.因果关系:一种现象是另一种现象的原因
2.共变关系:表面上有联系的两种事物其实

都和第三种现象有关
103
13
51 13
66 13
102
12
50 12
65 12
101
11
49 11
64 11
100
三、散点图
• 在相关研究中,常用相关散点图表示两个变量之 间的关系;散点图通过点的散布形状和疏密程度 来显示两个变量的相关趋势和相关程度。
7-3
相关散布图的用途: 1、判断相关是否直线式。 当两变量之间呈曲线趋势,其相关散布 图呈弯月状,说明两变量之间是非线性关 系,如图7-4(a)。
• 两变量间不是线形关系时,不能用直线相 关计算r值
图7-2
表7-1 五名学生四种测验的分数
学生 A
1
15
2
14
3
13
4
12
5
11
测验分数
B
C
D
53
64
102
52
65
100
51
66
104
50
67
103
49
68
101
比较1
比较2
比较3
A
BA
CA
D
15
53 15
68 15
104
14
52 14
67 14
相关文档
最新文档