最新人教版八年级数学下全册优质教学课件(含教案)

合集下载

新人教版八年级数学下册全册课件

新人教版八年级数学下册全册课件

引入新知
用带有根号的式子填空,看看写出的结果有什么特点:
(1)面积为3的正方形的边长为 正方形的边长为 S .
3 ,面积为S的
(2)一个长方形的围栏,长是宽的2倍,面积为130 m2,
则它的宽为
65 m.
(3)一个物体从高处自由落下,落到地面所用的时间 t (单位:s)与开始落下时离地面的高度h(单位:m) 满足关系h=5t2.如果用含有h的式子表示t, 那么t为__h 5_.
课件说明
• 学习目标: 1.根据算术平方根的意义了解二次根式的概念;知 道被开方数必须是非负数的理由; 2.能用二次根式表示实际问题中的数量和数量关系.
• 学习重点: 从算术平方根的意义出发理解二次根式的概念.
创设情境 提出问题
电视塔越高,从塔顶发射的电磁波传得越远,从 而能收看到电视节目的区域越广,电视塔高h(单位: km)与电视节目信号的传播半径 r(单位:km)之间 存在近似关系 r= 2Rh,其中地球半径R≈6 400 km. 如果两个电视塔的高分别是h1 km、h2 km,那么它们
练习3 若 16-4n 是整数,则自然数n 的值为 __0_,__3_,__4___.
课堂小结
(1)本节课你学到了哪一类新的式子? 一般地,我们把形如 a(a≥0)的式子叫做二次
根式,“ ”称为二次根号. (2)二次根式有意义的条件是什么?二次根式的值的
范围是什么? a 中的a≥0; a≥ 0. 双重非负性
答案:(1) a为任何实数; (2) a =1.
总结:被开方数不小于零.
比较辨别 探索性质
问题 请比较 a 和0 的大小. 分类讨论思想
当a>0 时, a 表示a 的算术平方根,因此 a >0; 当a =0 时, a 表示0 的算术平方根,因此 a =0; 这就是说, a(a≥0)是一个非负数.

人教版2022-2022年八下数学第20章《数据的分析》全章教学案(含解析)

人教版2022-2022年八下数学第20章《数据的分析》全章教学案(含解析)

第二十章数据的分析1.进一步理解平均数、中位数和众数等统计量的统计意义.2.会计算加权平均数,理解“权”的意义,能选择适当的统计量表示数据的集中趋势.3.会计算极差和方差,理解它们的统计意义,会用它们表示数据的波动情况.1.探索并掌握平均数、方差的计算公式,会找一组数据的中位数、众数、极差,用样本估计总体,并解决生产、生活中的有关问题.2.从事收集、整理、描述和分析数据得出结论的统计活动,经历数据处理的基本过程,体验统计与生活的联系,感受统计在生活和生产中的作用,养成用数据说话的习惯和实事求是的科学态度.1.能用计算器的统计功能进行统计计算,进一步体会计算器的优越性.2.会用样本平均数、方差估计总体的平均数、方差,进一步感受抽样的必要性,体会用样本估计总体的思想.3.通过创设问题情境,激发学生自主探求的热情和积极参与的意识;通过合作交流,培养学生团结协作、乐于助人的品质.本章属于“统计与概率”领域.对于“统计与概率”领域的内容,共有三章.这三章内容采用统计和概率分开编排的方式,前两章是统计,最后一章是概率.统计部分的两章内容按照数据处理的基本过程来安排.我们在7年级下册学习了“第10章数据的收集、整理与描述”,本章“数据的分析”主要学习分析数据的集中趋势和离散程度的常用方法.在前一章中,我们学习了收集、整理和描述数据的常用方法,将收集到的数据进行分组、列表、绘图等处理工作后,数据分布的一些面貌和特征可以通过统计图表等反映出来.为了进一步了解数据分布的特征和规律,还需要计算出一些代表数据一般水平(典型水平)或分布状况的特征量.对于统计数据的分布的特征,可以从三个方面来分析:一是分析数据分布的集中趋势,反映数据向其中心值(平均数)靠拢或聚集的程度;二是分析数据分布的离散程度,反映数据远离其中心值(平均数)的趋势;三是分析数据分布的偏态和峰度,反映数据分布的形状.这三个方面分别反映了数据分布特征的不同侧面.根据《标准》的要求,本章就从前两个方面研究数据的分布特征.【重点】平均数、众数、中位数、方差的定义及其应用.【难点】应用所学的统计知识解决实际问题.1.注意与前两个学段相关内容的衔接.本章在教学时,注意与前两个学段的衔接,将三个学段的相关内容,在分析数据的这个大背景下统一起来,在对学生已有的相关知识进行整理的基础上学习新的知识.例如,对于平均数、中位数、众数,本章就是在研究数据集中趋势的大背景下,在整理学生已有的关于这三种统计量的认识的基础上,学习加权平均数,研究如何根据统计量的特征选择适当的统计量描述数据的集中趋势等.这样的一种编写方式,将三个学段的学习连成一个相互联系、螺旋上升的整体.因此,教学中要注意对已有知识的复习,在复习的基础上学习新内容,使学生对于分析数据的知识和方法形成整体认识.2.准确把握教学要求.本章要求通过较多实例,从不同的方面进一步感受抽样的必要性,并初步感受样本的代表性,体会不同的抽样可能得到不同的结果,能够用样本的平均数、方差估计总体的平均数、方差等.因此,在本章教学时,要注意把握教学要求.3.合理使用计算器.信息技术的发展给统计学的研究带来很大变化,为统计工作的高效、准确提供了便捷的工具.对于计算器等现代信息技术对统计的作用,本章中,编写了使用计算器求一组数据的平均数和方差的内容作为必学内容,还编写了利用计算机求平均数、中位数、众数和方差等集中统计量的内容作为选学内容等.教学中要注意发挥计算器在处理数据中的作用,也要注意合理地使用计算器.20.1 数据的集中趋势20.1.1平均数(2课时) 20.1.2中位数和众数(2课时)4课时20.2 数据的波动程度1课时20.3 课题学习体质健康测试中的数据分析1课时单元概括整合1课时20.1数据的集中趋势1.进一步掌握算术平均数、加权平均数的概念,会求一组数据的算术平均数和加权平均数.2.理解中位数和众数的定义和意义,会求一组数据的中位数和众数,能结合具体问题解释中位数和众数的实际意义.3.能分清平均数、中位数、众数三者的区别,根据实际问题情境选择适当的统计量表示数据的特征.经历应用加权平均数对数据处理和探索中位数、众数的过程,体验对统计基本思想的理解过程.能运用数据信息的分析解决一些简单的实际问题.通过加权平均数、中位数和众数的学习,初步认识数学与人类生活的密切联系,感受数学结论的确定性,激发学生学好数学的热情,感受统计在生活中的应用,增强统计意识,培养统计能力.【重点】算术平均数、加权平均数的概念及计算,会求一组数据的中位数和众数,能结合实际情境理解其实际意义.【难点】理解平均数、中位数和众数这三个统计量之间的联系与区别,能根据具体问题选择适当的统计量分析数据信息并作出决策.20.1.1平均数1.进一步掌握算术平均数、加权平均数的概念.2.会求一组数据的算术平均数和加权平均数.经历应用加权平均数对数据处理的过程,体验对统计基本思想的理解过程.能运用数据信息的分析解决一些简单的实际问题.通过加权平均数的学习,初步认识数学与人类生活的密切联系,感受数学结论的确定性,激发学生学好数学的热情.【重点】1.算术平均数、加权平均数的概念及计算.2.掌握加权平均数的实际应用.【难点】1.体会平均数在不同情境中的应用.2.应用加权平均数对数据做出合理判断.第课时1.使学生理解数据的权和加权平均数的概念.2.使学生掌握加权平均数的计算方法.1.通过加权平均数的学习,经历运用数据描述信息,作出推断的过程,形成和发展统计观念.2.通过加权平均数的学习,进一步认识数据的作用,体会统计的思想方法.渗透数学公式的简单美和结构的严谨美,展示了寓深奥于浅显、寓纷繁于严谨的辩证统一的数学美.【重点】会求加权平均数.【难点】对“权”的正确理解.【教师准备】教学中出示的课件和例题.【学生准备】预习课本内容.导入一:刘木头开了一家小工厂,生产儿童玩具.工厂的管理人员由刘木头、他的弟弟及其他6个亲戚组成.工作人员由5个领工和10个工人组成.现在需要一个新工人,刘木头正在与一个叫小王的青年人谈招聘问题.刘木头说:“我们这里报酬不错,平均每个人的薪金是每周300元,但在学徒期间每周是75元,不过很快就可以加工资.”小王上了几天班以后,要求和厂长谈谈.小王说:“你骗我,我已经和其他工人核对过了,没有一个人的工资超过每周100元.每人平均工资怎么可能是一周300元呢?”刘木头皮笑肉不笑地回答:“小王,不要激动嘛!每人平均工资确实是300元,不信你自己算一算.”刘木头拿出一张表,说道:“这是我每周付出的薪金.我得2400元,我弟弟得1000元,我的6个亲戚每人得250元,5个领工每人得200元,10个工人每人得100元.总共是每周6900元,付给23个人,平均每人得300元,对吗?”“对,对,你是对的,每人的平均工资是每周300元.可你还是骗了我.”小王生气地说.刘木头拍着小王的肩膀说:“这我可不同意,你自己算的结果也表明我没骗你呀!小兄弟,你根本不懂得平均数的含义,怪不得别人哟!”同学们,你能当个小法官来判一下谁说的对吗?[设计意图]让学生明确数学问题来源于生活实践,同时数学又指导生活实践,从而达到激发学生思考问题、探究新知的强烈欲望及引入新课的目的.导入二:农科院为了选出适合某地种植的甜玉米种子,对甲、乙两个品种各用10块试验田进行试验,得到各试验田每公顷的产量(见下表),根据这些数据,应为农科院选择甜玉米种子提出怎样的建议呢?品各试验田每公顷产量种(单位:吨)甲7.657.57.627.597.65 7.647.57.47.417.41乙7.557.567.537.447.49 7.527.587.467.537.49提问:如何考察一种玉米的产量和产量的稳定性?学生随意说出自己的一些想法后,教师说明本章学习的知识内容:(1)平均数、中位数、众数和方差等概念;(2)用样本的平均数和方差估计总体的平均数和方差;(3)课题学习,解决实际问题.[设计意图]问题的提出,学生难以用已学到的平均数的公式解决这个问题,需要研究新的方法,学习新的知识,让学生了解本章研究的基本知识内容,培养学生用样本估计总体的基本思想.[过渡语]前面我们学过算术平均数的计算,我们一起来探究加权平均数.1.加权平均数思路一问题:某市三个郊县的人数及人均耕地面积如下表:郊县人数/万人均耕地面积/公顷A15 0.15 B7 0.21 C10 0.18这个市郊县的人均耕地面积是多少?(精确到0.01公顷)问题1小明求得这个市郊县的人均耕地面积为:= =0.18(公顷).你认为小明的做法有道理吗?为什么?组织学生讨论,教师参与,并适时指导:(1)对“平均数”和“人均耕地面积”的准确理解;(2)三个郊县人数的多少对人均耕地面积有无影响,分析小明同学的计算错误.问题2这个市郊县的总耕地面积是多少?总人口是多少?你能算出这个市郊县的人均耕地面积是多少吗?引导学生列出正确算式,即这个市郊县的人均耕地面积为:≈0.17(公顷).问题3三个郊县的人数(单位:万)15,7,10在计算人均耕地面积时有何作用?教师指出:上面的平均数0.17称为三个数0.15,0.21,0.18的加权平均数.三个郊县的人数(单位:万)15,7,10分别为三个数据的权.追问:你能正确理解数据的权和三个数的加权平均数吗?在活动中教师应重点关注学生对数据的权及加权平均数的理解.问题4若n个数x1,x2,…,x n的权分别是w1,w2,…,w n,则这n个数的加权平均数是多少?教师引导学生从三个数据的加权平均数的计算方法中,归纳得出n 个数的加权平均数的计算公式.学生思考、总结归纳:若n个数x1,x2,…,x n的权分别是w1,w2,…,w n,则叫做这n个数的加权平均数.[设计意图]通过讨论、分析、思考认识到用已学过的平均数的计算方法来计算这个市郊县的人均耕地面积是根本行不通的,使学生意识到需要学习新知识、新方法,激发学生去探究.通过大胆猜想,培养学生的探究意识,通过教师的有效引导,让学生体会数学的归纳思想方法,理解n个数的加权平均数的计算公式及其结构特征,认识数据的权的作用.思路二问题1一家公司打算招聘一名英文翻译,对甲乙两名应试者进行了听、说、读、写的英语水平测试,他们各项的成绩(百分制)如下:应试听说读写者甲85 83 78 75乙73 80 85 82提问:如果这家公司想招一名综合能力较强的翻译,计算两名应试者的平均成绩(百分制),从他们的成绩看,应该录取谁?录用依据是什么?学生提出评判依据,若学生提出以总分作为依据,教师要引导学生思考:已学过的哪个统计量可反映数据的集中趋势?学生计算平均数,解决问题.追问:这家公司在招聘英文翻译的过程中,对甲、乙两名应试者进行了哪几个方面的英语水平测试?成绩分别为多少?学生同桌讨论,计算后提出自己的意见.问题2如果这家公司想招一名笔译能力较强的翻译,听、说、读、写成绩按照2∶1∶3∶4的比确定,计算两名应试者的平均成绩,从他们的成绩看,应该录取谁?引导学生讨论:招聘口语能力或笔译能力较强的翻译时,听、说、读、写四项成绩的重要程度是否相同,公司侧重哪两个方面的成绩?从给出的比值是否体现这两方面更加“重要”?根据算术平均数的计算公式,让学生依据题目要求,分别计算出甲、乙两名应试者的成绩,教师引导写出解答过程.问题3在问题2中,各个数据的重要程度不同(权不同),这种计算平均数的方法能否推广到一般?追问:若n个数据x1,x2,…,x n的权分别为w1,w2,…,w n,这n个数据的平均数该如何计算?教师引导学生思考归纳得出n个数的加权平均数的计算公式:若n个数x1,x2,…,x n的权分别是w1,w2,…,w n,则叫做这n个数的加权平均数.问题4如果这家公司想招一名口语能力较强的翻译,应该侧重哪些分项成绩?如果听、说、读、写成绩按照3∶3∶2∶2的比确定两人的测试成绩,那么谁将被录取?与问题2相比较,你能体会到权的作用吗?学生独立完成计算过程,体会权的改变对加权平均数的影响.追问:你认为问题1中各数据的权有什么关系?通过上述问题的解决,说说你对权的认识.师生活动:引导学生分析加权平均数公式,发现问题1中各数可看作是权相同的,教师指出两种平均数之间的联系.[设计意图]回顾学过的平均数的意义,为引入加权平均数作铺垫.通过讨论,让学生充分发表自己的见解,同时接纳和吸引别人的正确意见,相互交流、相互探讨,培养学生的合作意识.通过改变同一个问题背景中数据的权,得到不同的结果,从而进一步体会权的意义与作用.[知识拓展](1)当所给的数据在一常数a上下波动时,一般选用='+a.一组数据x1,x2,…,x n的各个数据比较大的时候,我们可以把各个数据同时减去一个适当的常数a,得x'1=x1-a,x'2=x2-a,…,x'n=x n-a.于是x1=x'1+a,x2=x'2+a,…,x n=x'n+a.因此=(x1+x2+…+x n)=(x1'+x2'+…+x n')+·na='+a;(2)平均数的大小与每个数据都有关系,它反映一组数据的集中趋势,是一组数据的“重心”,也是度量一组数据波动大小的基准;(3)加权平均数是算术平均数的特例.加权平均数的实质就是考虑不同权重的平均数,当加权平均数的各项权相等时,就变成了算术平均数.2.例题讲解一次演讲比赛中,评委将从演讲内容、演讲能力、演讲效果三个方面为选手打分,各个成绩均按百分制,再按演讲内容占50%、演讲能力占40%、演讲效果占10%的比例,计算选手的综合成绩(百分制),进入决赛的前两名选手的单项成绩如下表所示:(单位:分)选手演讲内容演讲能力演讲效果A85 95 95B95 85 95请确定两人的名次.教师出示例题并指导学生阅读分析:这个问题可以看成是求两名选手三项成绩的加权平均数,50%,40%,10%说明演讲内容、演讲能力、演讲效果三项成绩在总成绩中的重要程度,是三项成绩的权.学生在阅读过程中明确下列问题:(1)演讲内容、演讲能力、演讲效果三项成绩在总成绩中的重要程度用什么数据说明?(2)要想决出两人的名次,必须求两人的总成绩,实质上是求这两名选手三项成绩的加权平均数.学生根据加权平均数的计算公式先分别计算出两名选手的总成绩,教师进一步引导写出解答过程.解:选手A的最后得分是=90,选手B的最后得分是=91.由上可知选手B获得第一名,选手A获得第二名.[设计意图]让学生掌握自学的方法,提高学生独立分析问题、解决问题的能力.通过问题的解决,让学生进一步体会数据的权的作用,体验参与数学活动的乐趣.(1)加权平均数的意义:在一组数据中,由于每个数据的权不同,所以计算平均数时,用加权平均数,才符合实际.(2)数据的权的意义:数据的权能够反映数据的相对“重要程度”.(3)加权平均数公式:=.1.晨光中学规定学生的学期体育成绩满分为100分,其中平时体育活动评估成绩占20%,期中成绩占30%,期末成绩占50%.则平时体育活动评估成绩、期中成绩、期末成绩的权分别为、和.解析:根据权的概念解决即可.答案:20%30%50%2.学校把学生学科的期中、期末两次成绩分别按40%,60%的比例计入学期学科总成绩.小明期中数学成绩是85分,期末数学成绩是90分,那么他的学期数学总成绩是()A.85分B.87.5分C.88分D.90分解析:根据学期数学成绩=期中数学成绩×所占的百分比+期末数学成绩×所占的百分比即可求得学期总成绩.故选C.3.一家公司打算招聘一名部门经理,现对甲、乙两名应聘者从笔试、面试、实习成绩三个方面表现进行评分,笔试占总成绩的20%,面试占30%,实习成绩占50%,各项成绩如下表所示:(单位:分)应聘笔试面试实习者甲85 83 9080 85 92试判断谁会被公司录用,为什么?解:甲的平均成绩为=86.9,乙的平均成绩为=87.5.因此,乙会被公司录用.4.某单位欲招聘一名技术部门负责人,对甲、乙、丙三位候选人进行了三项能力测试,且各项测试成绩满分均为100分,根据结果择优录取,三位候选人的各项测试成绩如下表所示:(单位:分)测试项目测试成绩甲乙丙沟通能力85 73 73 科研能70 71 65组织能64 72 84力(1)如果根据三项测试的平均成绩,谁将被录用?说明理由.(2)根据实际需要,该单位将沟通能力、科研能力和组织能力三项测试得分按5∶3∶2的比例确定每人的成绩,谁将被录用?说明理由.解:(1)甲的平均成绩为(85+70+64)÷3=73,乙的平均成绩为(73+71+72)÷3=72,丙的平均成绩为(73+65+84)÷3=74,因此,丙的平均成绩最高,丙将被录用.(2)甲的成绩为=76.3,乙的成绩为=72.2,丙的成绩为=72.8.因此,甲的成绩最高,甲将被录用.第1课时1.加权平均数2.例题讲解例题一、教材作业【必做题】教材第113页练习第1,2题;教材第121页习题20.1第1题.【选做题】教材第122页习题20.1第5题.二、课后作业【基础巩固】1.在中国好声音选秀节目中,四位参赛选手的各项得分如下表,如果将专业、形象、人气这三项得分按3∶2∶1的比例确定最终得分,最终得分最高的进入下一轮比赛,则进入下一轮比赛的是()(每项按10分制)测试内测试成绩容小赵小王小李小黄专业素6 7 8 8质形象表8 7 6 9现人气指8 10 9 6数A.小赵B.小王C.小李D.小黄2.学校广播站要招聘1名记者,小明、小亮和小丽报名参加了3项素质测试,成绩如下:采访写计算机创意设作计小70分60分86分明小90分75分51分亮小60分84分72分丽现在要计算3人的加权平均分,如果将采访写作、计算机和创意设计这三项的权重比由3∶5∶2变成5∶3∶2,成绩变化情况是() A.小明增加最多 B.小亮增加最多C.小丽增加最多D.三人的成绩都增加3.希望中学一个学期的数学总平均分是按下图进行计算的.该校李飞同学这个学期的数学成绩如下:(单位:分)李飞平时作业期中考试期末考试90 8588则李飞这个学期数学总平均分为.4.某商场用加权平均数来确定什锦糖的单价,由单价为15元/千克的甲种糖果10千克,单价为12元/千克的乙种糖果20千克,单价为10元/千克的丙种糖果30千克混合成的什锦糖果的单价应定为.【能力提升】5.学生的学科期末成绩由期考分数、作业分数、课堂参与分数三部分组成,按各占30%,30%,40%的比例确定.已知晓明的数学期考80分,作业90分,课堂参与85分,则他的数学期末成绩为分.6.小丽家上个月吃饭费用为500元,教育费用为200元,其他费用为500元.本月小丽家这三项费用分别增长了10%,30%和5%.小丽家本月的总费用比上个月增长的百分数是多少?7.小李同学七年级第二学期的数学成绩如下表所示:测验类别平时期中考试期末考试测验1测验2测验3测验4成绩88 92 94 90 92 89如果学期的总评成绩是根据如图所示的权重计算,那么小李同学该学期的总评成绩为多少分?(四舍五入精确到1分)8.老师在计算学期总平均分的时候按如下标准:作业占10%,测验占20%,期中考试占35%,期末考试占35%,小关和小兵的成绩如下表:学生作业测验期中考试期末考试小关80 75 71 88 小76 80 68 90分别算出小关和小兵的总平均分.【拓展探究】9.某单位欲从内部招聘管理人员一名,对甲、乙、丙三名候选人进行了笔试和面试两项测试,三人的测试成绩如下表所示:测试成绩(单位:分)测试项甲乙丙目笔试75 80 90面试93 7068根据录用程序,组织200名职工对三人利用投票推荐的方式进行民主评议,三人得票率(没有弃权票,每位职工只能推荐1人)如图所示,每得一票记作1分.(1)请算出三人的民主评议得分;(2)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用?(精确到0.01)(3)根据实际需要,单位将笔试、面试、民主评议三项测试得分按4∶3∶3的比例确定个人成绩,那么谁将被录用?【答案与解析】1.D(解析:将四个人的测试成绩按比例求出最终成绩,找出成绩最高的即可.)2.B(解析:根据加权平均数的概念分别计算出3人的各自成绩.先求出采访写作、计算机和创意设计这三项的权重比是3∶5∶2各自的成绩,再求出这三项的权重比是5∶3∶2各自的成绩,进行比较.)3.87.5(解析:先从统计图得到相应数据的权重,再利用加权平均数的计算方法求解.)4.11.5元/千克(解析:将三种糖果的总价算出,再除以60即可.)5.85(解析:根据加权平均数的计算公式计算即可.)6.解:500×10%+200×30%+500×5%=135(元),135÷(500+200+500)×100% =11.25%.7.解:平时平均成绩为=91(分),总评成绩为=90.1≈90(分).8.解:小关的学期总平均分为=80×10%+75×20%+71×35%+88×35%=78.65(分),小兵的学期总平均分为'=76×10%+80×20%+68×35%+90×35%=78.9(分).9.解:(1)甲、乙、丙三人的民主评议得分分别为:200×25%=50(分),200×40%=80(分),200×35%=70(分).(2)甲的平均成绩为≈72.67(分),乙的平均成绩为≈76.67(分),丙的平均成绩为=76.00(分).由于76.67>76>72.67,所以候选人乙将被录用.(3)甲的个人成绩为=72.9(分);乙的个人成绩为=77(分);丙的个人成绩为=77.4(分).由于丙的个人成绩最高,所以候选人丙将被录用.本节课把学生的探索和验证活动放在首位,一方面要求学生在老师的引导下自主探索,合作交流,另一方面要求学生对探究过程中用到的数学思想方法有一定的领悟和认识,达到培养能力的目的.平均数是统计中的一个重要概念,新教材注重了学生在经历统计活动的过程中体会平均数的本质内涵,理解平均数的意义,发展学生的统计观念.基于以上认识,我在设计中突出了让学生在具体情境中体会为什么要学习平均数,注重引导学生在统计的背景中理解平均数的含义,在比较、观察中把握平均数的特征,进而运用平均数解决实际问题,了解它的价值,努力做到由传统的数学课堂向实验课堂转变.在教学过程中,高估了学生理解加权平均数的能力,主要困难在于一些学生不能对权的含义理解透彻.适当增加学生熟知的一些实例,通过计算平均数,深刻理解权的含义及对平均数的影响.练习(教材第113页)1.解:(1)甲:=88(分),乙:=87.5(分),故甲将被录取.(2)甲:=87.6(分),乙:=88.4(分),故乙将被录取.2.解:=88.5(分).故小桐这学期的体育成绩是88.5分.学生在第二学段已学过平均数,初步了解了平均数的实际意义,这个课时将在此基础上,在研究数据集中趋势的大背景下,学习加权平。

八年级数学下册(人教版)精品教学课件-全册

八年级数学下册(人教版)精品教学课件-全册

讲授新课
一 二次根式的概念及有意义的条件
问题1 上面问题的结果分别是 3, s, 65, h ,它们表示一些
5
正数的算术平方根.那么什么样的数有算术平方根呢?
我们知道,负数没有平方根.因此,在实数范围内开平 方时,被开方数只能是正数或0.
问题2 上面问题的结果分别是 3, s, 65, h ,分别从形式上
八年级数学下册(人教版)精品教学课件 全册
第十六章
八年级数学下(RJ) 教学课件
二次根式
16.1 二根次式
第1课时 二次根式的概念
导入新课
讲授新课
当堂练习
课堂小结
学习目标
情境引入
1.理解二次根式的概念.(重点)
2.会确定二次根式有意义时字母的取值范围.(难点)
导入新课
想一想
(1)如左图所示,礼盒的上面是正方形, 其面积为3,则它的边长是 3 .
如果其面积为S,则它的边长是 S .
(2)如左图所示,一个长方形的围 栏,长是宽的2倍,面积为130m2,则 它的宽为 65 m.
想一想
(3)一个物体从高处自由落下,落到
地面所用的时间t(单位:s)与开始落下
时离地面的高度h(单位:m)满足关系
式h=5t2.如果用含有h的式子表示t,那么t
h
为 5.
(1) ( 1.5)2;
(2) (2 5)2.
想一想:此小题 用到了幂的哪条 基本性质呢?
解: (1) ( 1.5)2 1.5;
积的乘方: (ab)2=a2b2
(2) (2 5)2 22 ( 5)2 4 5 20.
二 a2 (a 0) 的性质
归纳 要使二次根式在实数范围内有意义,即需满足被开方数≥0,列不等 式求解即可.若二次根式处在分母的位置,应同时考虑分母不为零.

八年级数学下人教版教案全册

八年级数学下人教版教案全册

( 1) =_________ ,( 2) =_________ ,( 3) =______,
4
3
3
三、巩固练习 教材 P5 练习 1、 2、 3.
四、归纳小结 (学生活动,老师点评) 本节课要掌握:
1.形如 a (a≥ 0)的式子叫做二次根式, “ ”称为二次根号.
2.要使二次根式在实数范围内有意义,必须满足被开方数是非负 数.
五、布置作业 1.教材 P5 1, 2, 3,4 2.选用课时作业设计.
参考上面的结果,用“ >、 <或=”填空.
4 × 9 _____ 4 9 , 16 × 25 _____ 16 25 , 100 ×
36 ________ 100 36
2.利用计算器计算填空
( 1) 2 × 3 ______ 6 ,( 2) 2 × 5 ______ 10 ,
( 3) 5 × 6 ______ 30 ,( 4) 4 × 5 ______ 20 ,
16.1.2 二次根式 (2)
教学内容
1. a ( a≥ 0)是一个非负数;
2.( a ) 2=a( a≥ 0).
教学目标
理解 a ( a≥ 0)是一个非负数和(
a ) 2=a(a≥ 0),并利用它们进行计算和化简.
通过复习二次根式的概念,用逻辑推理的方法推出
a ( a≥ 0)是一个非负数,用具体数据结合算术平
三、巩固练习 ( 1)计算(学生练习,老师点评)
① 16 × 8 ②3 6 × 2 10

5a ·
1 ay
5
(2) 化简 : 20 ; 18 ; 24 ; 54 ; 12a2b2
教材 P7 练习全部
四、归纳小结

人教版(五四制)数学八年级下册全册课件【完整版】

人教版(五四制)数学八年级下册全册课件【完整版】

说出下列命题的逆命题.这些命题的逆命题成立吗? (1)两条直线平行,内错角相等。
逆命题: 内错角相等,两条直线平行。成立 (2)如果两个实数相等,那么它们的立方相等。
逆命题:如果两个实数的立方相等,那么这两个实数相等。成立 (3)如果两个实数相等,那么它们的绝对值相等。
逆命题:如果两个实数的绝对值相等,那么这两个实数相等不。成立 (4)全等三角形的对应角相等。 逆命题:对应角相等的两个三角形是全等三角形。不成立 (5)对顶角相等。 逆命题:相等的两个角是对顶角。不成立
感悟:原命题成立时, 逆命题有时成立,有时不
成立。
谢谢
特殊的平行四边形
一、矩形
观察思考 形成概念
当独木桥前后运动时,四边形ABCD是什么形状? 当独木桥最后停下时,四边形ABCD有什么特殊的变化? 当独木桥静止时,四边形ABCD是什么图形?
c
b
B
C
a
C C 90
勾股定理的逆定理:如果三角形的三边长
a、b、c满足 a2 + b2 = c2,那么这个三
角形是直角三角形。
A
D
工人师傅想要检测一扇小门两边AB、
CD是否垂直于底边BC和门的上边AD,
但他只带了一把卷尺,你能替工人
师傅想办法完成任务吗?
B
C
例如检查△ABC是否直角三角形?
定理与逆定理
3.直角三角形两条边分别是3和4,则第三条边是 ______________。
总结归纳
本节课你学到哪些知识?有什么收获?
谢谢
勾股定理的逆定理
预习检测
1.下列三条线段不能组成直角三角形 的是( )
A. a 8,b 15,c 17
B. a 9,b 12,c 15

人教版八年级数学下全册教案

人教版八年级数学下全册教案

第十六章二次根式教材内容1.本单元教学的主要内容:二次根式的概念;二次根式的加减;二次根式的乘除;最简二次根式.2.本单元在教材中的地位和作用:二次根式是在学完了八年级下册第十七章《反比例正函数》、第十八章《勾股定理及其应用》等内容的基础之上继续学习的,它也是今后学习其他数学知识的基础.教学目标1.知识与技能(1)理解二次根式的概念.(2a≥02=a(a≥0=a(a≥0).(3(a≥0,b≥0;a≥0,b>0(a≥0,b>0).(4)了解最简二次根式的概念并灵活运用它们对二次根式进行加减.2.过程与方法(1)先提出问题,让学生探讨、分析问题,师生共同归纳,得出概念.再对概念的内涵进行分析,得出几个重要结论,并运用这些重要结论进行二次根式的计算和化简.(2)用具体数据探究规律,用不完全归纳法得出二次根式的乘(除)法规定,•并运用规定进行计算.(3)利用逆向思维,得出二次根式的乘(除)法规定的逆向等式并运用它进行化简.(4)通过分析前面的计算和化简结果,抓住它们的共同特点,•给出最简二次根式的概念.利用最简二次根式的概念,来对相同的二次根式进行合并,达到对二次根式进行计算和化简的目的.3.情感、态度与价值观通过本单元的学习培养学生:利用规定准确计算和化简的严谨的科学精神,经过探索二次根式的重要结论,二次根式的乘除规定,发展学生观察、分析、发现问题的能力.教学重点1a≥0a≥0)是一个非负数;2=a(a≥0);(a≥0)•及其运用.2.二次根式乘除法的规定及其运用.3.最简二次根式的概念.4.二次根式的加减运算.教学难点1a≥02=a(a≥0(a ≥0)的理解及应用.2.二次根式的乘法、除法的条件限制.3.利用最简二次根式的概念把一个二次根式化成最简二次根式.教学关键1.潜移默化地培养学生从具体到一般的推理能力,突出重点,突破难点.2.培养学生利用二次根式的规定和重要结论进行准确计算的能力,•培养学生一丝不苟的科学精神.单元课时划分本单元教学时间约需11课时,具体分配如下:21.1 二次根式 3课时21.2 二次根式的乘法 3课时21.3 二次根式的加减 3课时教学活动、习题课、小结 2课时16.1 二次根式第一课时教学内容二次根式的概念及其运用教学目标知识与技能:1、a≥0)的意义解答具体题目.2、提出问题,根据问题给出概念,应用概念解决实际问题.过程与方法:经历观察、比较,总结二次根式概念和被开方数取值的过程,发展学生的归纳概括能力。

2019-2020学年八年级数学《角平分线(尺规作图)》教案 新人教版.doc

2019-2020学年八年级数学《角平分线(尺规作图)》教案新人教版一.教学过程(简案):1.复习提问:三角形中有那些重要的线段?学生回答:三角形的高、中线、角平分线,(老师强调角平分线与三角形角平分线的区别)。

2.新课:例1.在∠AOB边OA、OB上取OM=ON,MC⊥OA,NC⊥OB,MC与NC交于点C.求证:∠MOC=∠NOC(学生自己动手证明,并让学生板书证明过程)老师提问:你做完此题后有何启示?经过学生讨论后,他们认为利用这种方法可作角平分线。

例2.角平分仪器操作原理:若A B=AD,BC=CD。

则AC平分∠DAB和∠BCD,为什么?学生们发现△ADC和△ABC全等,所以AC平分∠DAB和∠BCD。

例3.利用尺规作∠AOB的平分线(学生动手操作)老师强调两点:第一,以O为圆心适当长度为半径画弧交OA、OB于M、N。

第二,分别以M、N为圆心时,半径应大于MN的一半长度。

练习:作出∠AOB的平分线?二、对教学案例的分析这一教学案例当然不能被看作是培养学生创新意识的初中数学课堂教学的范例 ,其中许多环节还需要进一步改进完善。

但其较为真实地反映了目前数学课堂教学的一些情况 , 一些教学环节的处理还是值得肯定的。

1. 突出了数学课堂教学中的探索性关于尺规作角的平分线的引出 , 在本教学案例上没有像教材那样直接给出作法 , 而是利用《几何画板》采取了让学生动手画一画 , 量一量的方式 , 使学生通过对直观图形的观察归纳和猜想 , 自己去发现结论 , 并用命题的形式表述结论。

关于例1.例2的证明 , 没有采用教师给学生演示角平分线的尺规作法 , 而是引导学生证明猜想 , 并做了进一步的完善。

这种探索性的数学教学方式在其后的例题讲解中亦得到了进一步的贯彻。

这样既调动了学生学习数学的积极性和主动性 ,增强了学生参与数学活动的意识 , 又培养了学生的动手实践能力。

同时 , 也向学生渗透了实践 ---- 认识 ---- 再实践 ---- 再认识的辩证观点。

人教版数学八年级下册教案全册完整版

人教版数学八年级下册教案全册完整版一、教学内容1. 第十三章:平面几何1.1 线段和直线1.2 角1.3 多边形1.4 平行四边形1.5 矩形、菱形、正方形2. 第十四章:函数2.1 函数的定义2.2 一次函数2.3 二次函数2.4 反比例函数2.5 函数的应用二、教学目标1. 理解并掌握平面几何的基本概念和性质,能够运用几何知识解决实际问题。

2. 掌握函数的定义、图像和性质,能够运用函数知识解决实际问题。

3. 培养学生的逻辑思维能力和解决问题的能力。

三、教学难点与重点1. 教学难点:几何图形的性质和判定函数图像的绘制和性质分析2. 教学重点:几何图形的分类和性质函数的定义和性质四、教具与学具准备1. 教具:黑板橡皮、直尺、圆规等绘图工具多媒体设备2. 学具:笔记本铅笔、橡皮、直尺、圆规等绘图工具五、教学过程1. 导入:利用生活实例引入平面几何和函数的概念,激发学生学习兴趣。

2. 新课内容:详细讲解教材中的知识点,通过例题和随堂练习巩固所学内容。

3. 课堂讲解:对重点、难点知识进行详细讲解,结合实际应用进行分析。

4. 课堂练习:设计不同难度的练习题,让学生独立完成,并及时给予指导和反馈。

六、板书设计1. 人教版数学八年级下册教案2. 内容:章节和知识点例题和解答过程重点、难点提示七、作业设计1. 作业题目:第十三章:1.1 画出线段和直线1.2 判断角的类型1.3 绘制多边形1.4 判断平行四边形1.5 分析矩形、菱形、正方形的性质第十四章:2.1 解释函数的定义2.2 绘制一次函数图像2.3 分析二次函数性质2.4 解释反比例函数2.5 解决函数应用问题2. 答案:八、课后反思及拓展延伸1. 反思:2. 拓展延伸:设计相关竞赛题目,提高学生运用几何和函数知识解决问题的能力。

鼓励学生进行课后自主学习,拓展知识面。

重点和难点解析一、教学内容1. 几何图形的性质和判定重点和难点解析:这部分内容涉及到的几何图形种类繁多,性质和判定方法各异。

人教版八年级数学下册教案【精选5篇】

人教版八年级数学下册教案【精选5篇】人教版八年级数学下册教案【精选5篇】数学的课件很有意义的。

20世纪是科学技术空前辉煌的世纪,如何展现那些辉煌的科技成就呢?下面小编给大家带来关于人教版八年级数学下册教案,希望会对大家的工作与学习有所帮助。

人教版八年级数学下册教案(精选篇1)1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

一般地,在某一变化过程中有两个变量x与y,如果对于x的每一个值,y都有确定的值与它对应,那么就说x是自变量,y是x的函数。

2、函数解析式用来表示函数关系的数学式子叫做函数解析式或函数关系式。

使函数有意义的自变量的取值的全体,叫做自变量的取值范围。

3、函数的三种表示法及其优缺点(1)解析法两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做解析法。

(2)列表法把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。

(3)图像法用图像表示函数关系的方法叫做图像法。

4、由函数解析式画其图像的一般步骤(1)列表:列表给出自变量与函数的一些对应值(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。

人教版八年级数学下册教案(精选篇2)一、分式※1.两个整数不能整除时,出现了分数;类似地,当两个整式不能整除时,就出现了分式;整式A除以整式B,可以表示成的形式.如果除式B中含有字母,那么称为分式,对于任意一个分式,分母都不能为零.※2.进行分数的化简与运算时,常要进行约分和通分,其主要依据是分数的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变;※3.一个分式的分子、分母有公因式时,可以运用分式的基本性质,把这个分式的分子、分母同时除以它的们的公因式,也就是把分子、分母的公因式约去,这叫做约分;※4.分子与分母没有公因式的分式,叫做最简分式;二、分式的乘除法法则两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母;两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘(简记为:除以一个数等于乘以这个数的倒数)三、分式的加减法※1.分式与分数类似,也可以通分;根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分;※2.分式的加减法:分式的加减法与分数的加减法一样,分为同分母的分式相加减与异分母的分式相加减;(1)同分母的分式相加减,分母不变,把分子相加减;(2)异号分母的分式相加减,先通分,变为同分母的分式,然后再加减;※3.概念内涵:通分的关键是确定最简分母,其方法如下:(1)最简公分母的系数,取各分母系数的最小公倍数;(2)最简公分母的字母,取各分母所有字母的次幂的积;(3)如果分母是多项式,则首先对多项式进行因式分解;四、分式方程※1.解分式方程的一般步骤:①在方程的两边都乘以最简公分母,约去分母,化成整式方程;②解这个整式方程;③把整式方程的根代入原方程检验;※2.列分式方程解应用题的一般步骤:①审清题意;②设未知数;③根据题意找相等关系,列出(分式)方程;④解方程,并验根;⑤写出答案;人教版八年级数学下册教案(精选篇3)一、分解因式※1.把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式分解因式。

八年级数学(上)全册教案(新人教版)

八年级数学(上)全册教案(新人教版)教案内容:一、第一章:勾股定理1. 教学目标:理解勾股定理的定义和证明;能够运用勾股定理解决实际问题。

2. 教学重点:勾股定理的表述和证明;勾股定理的应用。

3. 教学难点:勾股定理的证明;解决实际问题时的计算和应用。

4. 教学准备:教学课件;练习题。

5. 教学过程:导入:介绍勾股定理的背景和意义;讲解:讲解勾股定理的表述和证明;练习:学生练习解决实际问题;总结:回顾本节课的重点和难点。

二、第二章:平行四边形1. 教学目标:理解平行四边形的定义和性质;能够识别和判断平行四边形。

2. 教学重点:平行四边形的定义和性质;平行四边形的判定。

3. 教学难点:平行四边形的性质证明;平行四边形的判定方法。

4. 教学准备:教学课件;练习题。

5. 教学过程:导入:介绍平行四边形的背景和意义;讲解:讲解平行四边形的定义和性质;练习:学生练习识别和判断平行四边形;总结:回顾本节课的重点和难点。

三、第三章:三角形1. 教学目标:理解三角形的定义和性质;能够识别和判断三角形。

2. 教学重点:三角形的定义和性质;三角形的判定。

3. 教学难点:三角形的性质证明;三角形的判定方法。

4. 教学准备:教学课件;练习题。

5. 教学过程:导入:介绍三角形的背景和意义;讲解:讲解三角形的定义和性质;练习:学生练习识别和判断三角形;总结:回顾本节课的重点和难点。

四、第四章:数的开方与乘方1. 教学目标:理解数的开方和乘方的概念;能够熟练进行数的开方和乘方运算。

2. 教学重点:数的开方和乘方的概念;数的开方和乘方的运算规则。

3. 教学难点:数的乘方运算;数的开方和乘方的逆运算。

4. 教学准备:教学课件;练习题。

5. 教学过程:导入:介绍数的开方和乘方的意义;讲解:讲解数的开方和乘方的概念和运算规则;练习:学生练习进行数的开方和乘方运算;总结:回顾本节课的重点和难点。

五、第五章:实数1. 教学目标:理解实数的定义和性质;能够运用实数解决实际问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

归纳总结
一般地,我们把形如 a (a 0) 的式子叫做二 次根式. “ ”称为二次根号.
注意:a可以是数,也可以是式.
①外貌特征:含有“ ” 两个必备特征
②内在特征:被开方数a ≥0
周国年作品,盗版必究!
全册优质教学资源,一次下载,使用无忧!
典例精析
例1 下列各式中,哪些是二次根式?哪些不是?
二次根式.
周国年作品,盗版必究!
全册优质教学资源,一次下载,使用无忧!
例2 当x是怎样的实数时, x 2 在实数范围内有 意义?
解:由x-2≥0,得 x≥2.
当x≥2时, x 2 在实数范围内有意义. 【变式题1】当x是怎样的实数时,下列各式在实数范 围内有意义?
(1) 1 ; x 1
解:由题意得x-1>0, ∴x>1.
周国年作品,盗版必究!
全册优质教学资源,一次下载,使用无忧!
思考 用带根号的式子填空,这些结果有什么特点? (1)如图的海报为正方形,若面积为2m2,则边长为 ___2__m;若面积为S m2,则边长为___S__m.


(2)如图的海报为长方形,若长是宽的2倍,面积
为6m2,则它的宽为___3__m.
全册优质教学资源,一次下载,使用无忧!
归纳总结
(1)单个二次根式如 A 有意义的条件:A≥0;
(2)多个二次根式相加如 A B ... N 有意义的
A≥0;
条件: B≥0;

...
N≥0;
(3)二次根式作为分式的分母如
B 有意义的条件:
A
A>0;
(4)二次根式与分式的和如
A 1 有意义的条件:
B
A≥0且B≠0.
周国年作品,盗版必究!
全册优质教学资源,一次下载,使用无忧!
练一练
1.下列各式: 3; 5; a2 ; x 1 x≥1;3 27; x2 2x 1.
一定是二次根式的个数有
( B)
A.3个 B.4个 C.5个 D.6个
2.(1)若式子 x 1 在实数范围内有意义,则x的取值 2 范围是_x__≥_1___;
二、新授
一 二次根式的概念及有意义的条件
上面问题中,得到的结果分别是: 2,S, 3,h.
5
问题1 这些式子分别表示什么意义? 分别表示2,S,3, h 的算术平方根. 5
问题2 这些式子有什么共同特征?
①根指数都为2;
②被开方数为非负数.
周国年作品,盗版必究!
全册优质教学资源,一次下载,使用无忧!
周国年作品,盗版必究!
全册优质教学资源,一次下载,使用无忧!
(2) x 3 . x 1
解:∵被开方数需大于或等于零, ∴3+x≥0,∴x≥-3. ∵分母不能等于零, ∴x-1≠0,∴x≠1. ∴x≥-3 且x≠1.
归纳 要使二次根式在实数范围内有意义,即需满足 被开方数≥0,列不等式求解即可.若二次根式为分母
(2)若式子
x
1
2

x 在实数范围内有意义,则x的
取值范围是_x__≥_0_且__x_≠_2__.
周国年作品,盗版必究!
全册优质教学资源,一次下载,使用无忧!
二 二次根式的双重非负性 问题1 当x是怎样的实数时, x2在实数范围内有意 义? x3 呢?
或二次根式为分式的分母时,应同时考虑分母不为零.
周国年作品,盗版必究!
全册优质教学资源,一次下载,使用无忧!
【变式题2】当x是怎样的实数时,下列各式在实数范 围内有意义?
(1) x2 2x 1;
(2) x2 2x 3.
解:(1)∵无论x为何实数,x2 2x 1 x 12 ≤0,
周国年作品,盗版必究!
全册优质教学资源,一次下载,使用无忧!
通过表情包来辨别人物,最重要的是根据个人的特 征,那么数学的特征是什么呢?
“数学根本上是玩概念的,不是玩技巧,技巧不足 道也.”
----中科院数学与系统科学研究院 李邦河
周国年作品,盗版必究!
全册优质教学资源,一次下载,使用无忧!
复习引入
周国年作品,盗版必究!
全册优质教学资源,一次下载,使用无忧!
一、引入
情景引入 里约奥运会上,哪位奥运健儿给你留下了深刻的 印象?你能猜出下面表情包是谁吗?
你们是根据 哪些特征猜 出的呢?
周国年作品,盗版必究!
全册优质教学资源,一次下载,使用无忧!
下面来看傅园慧在里约奥运会赛后的采访视频,注 意前方高能表情包.
购课件,送教案、试卷。
八年级数学下(人教版) 教学资源
第十六章 二次根式
16.1 二根次式
第1课时 二次根式的概念
一、引入
周国年作品,盗版必究!
二、新授
三、巩固
全册优质教学资源,一次下载,使用无忧!
四、总结
教学目标
1.理解二次根式的概念.(重点) 2.掌握二次根式有意义的条件.(重点) 3.会利用二次根式的非负性解决相关问题.(难点)
∴当x=1时,x2 2x 1在实数范围内有意义. (2)∵无论x为何实数,-x2-2x-3=-(x+1)2-2<0,
∴无论x为何实数,x2 2x 3在实数范围内都无意义.
归纳 被开方数是多项式时,需要对组成多项式的项进 行恰当分组凑成含完全平方的形式,再进行分析讨论.
周国年作品,盗版必究!
问题1 什么叫做平方根? 一般地,如果一个数的平方等于a,那么这个数
叫做a的平方根.
问题2 什么叫做算术平方根? 如果 x2 = a(x≥0),那么 x 称为 a 的算术平方根.
用 a (a 0) 表示.
问题3 什么数有算术平方根? 我们知道,负数没有平方根.因此,在实数范围内
开平方时,被开方数只能是正数或0.
周国年作品,盗版必究!
全册优质教学资源,一次下载,使用无忧!
(3)一个物体从高处自由落下,落到地面所用的时 间 t(单位:s)与开始落下的高度h(单位:m)满 足关系 h =5t2,如果用含有h 的式子表示 t ,那么t为 ___h5__.
周国年作品,盗版必究!
全册优质教学资源,一次下载,使用无忧!
(1) 32; (2) 6; (3) 12; (4) -m m≤0;
(5) xy x, y异号; (6) a2 1; (7) 3 5.
分析:是否含二次根号 是
被开方数是 不是非负数

二次根式
否否
不是二次根式
解:(1)(4)(6)均是二次根式,其中a2+1属于“非负
数+正数”的形式一定大于零.(3)(5)(7)均不是
相关文档
最新文档