金属导热系数的测量实验报告
导热系数实验报告..

一、【实验目的】用稳态法测定金属、空气、橡皮的导热系数。
二、【实验仪器】导热系数测定仪、铜-康导热电偶、游标卡尺、数字毫伏表、台秤(公用)、杜瓦瓶、秒表、待测样品(橡胶盘、铝芯)、冰块三、【实验原理】1、良导体(金属、空气)导热系数的测定根据傅里叶导热方程式,在物体部,取两个垂直于热传导方向、彼此间相距为h 、温度分别为θ1、θ2的平行平面(设θ1>θ2),若平面面积均为S ,在t ∆时间通过面积S 的热量Q ∆免租下述表达式:hS t Q )(21θθλ-=∆∆ (3-26-1) 式中,tQ∆∆为热流量;λ即为该物质的导热系数,λ在数值上等于相距单位长度的两平面的温度相差1个单位时,单位时间通过单位面积的热量,其单位是)(K m W ⋅。
冰水混合物电源 输入调零数字电压表 FD-TX-FPZ-II 导热系数电压表T 2T 1220V110V导热系数测定仪测1测1 测2测2 表 风扇A B C图4-9-1 稳态法测定导热系数实验装置在支架上先放上圆铜盘P ,在P 的上面放上待测样品B ,再把带发热器的圆铜盘A 放在B 上,发热器通电后,热量从A 盘传到B 盘,再传到P 盘,由于A,P 都是良导体,其温度即可以代表B 盘上、下表面的温度θ1、θ2,θ1、θ2分别插入A 、P 盘边缘小孔的热电偶E 来测量。
热电偶的冷端则浸在杜瓦瓶中的冰水混合物中,通过“传感器切换”开关G ,切换A 、P 盘中的热电偶与数字电压表的连接回路。
由式(3-26-1)可以知道,单位时间通过待测样品B 任一圆截面的热流量为221)(B BR h t Q πθθλ-=∆∆ (3-26-2) 式中,R B 为样品的半径,h B 为样品的厚度。
当热传导达到稳定状态时,θ1和θ2的值不变,遇事通过B 盘上表面的热流量与由铜盘P 向周围环境散热的速率相等,因此,可通过铜盘P 在稳定温度T 2的散热速率来求出热流量tQ∆∆。
实验中,在读得稳定时θ1和θ2后,即可将B 盘移去,而使A 盘的底面与铜盘P 直接接触。
金属导热系数实验报告

金属导热系数实验报告金属导热系数实验报告引言:导热系数是描述物质传热性能的重要参数之一,对于工程领域的热传导、散热等问题具有重要意义。
本实验旨在通过测量不同金属材料的导热系数,探究金属导热性能的差异,并分析其原因。
实验方法:1. 实验材料准备:本次实验所使用的金属材料包括铜、铝、铁和不锈钢,它们是常见的导热性能较好的金属材料。
将这些材料分别制成相同形状的棒状样品,保证样品的长度和直径相同,以消除几何因素对实验结果的影响。
2. 实验装置:实验装置主要由导热实验仪、恒温水浴槽和温度计组成。
导热实验仪用于测量样品的导热系数,恒温水浴槽则用于保持样品的温度稳定。
温度计用于测量水浴槽中的温度。
3. 实验步骤:首先,将恒温水浴槽加热至适宜的温度,保持恒温水浴槽的温度稳定。
然后,将待测金属样品放入导热实验仪中,并将实验仪与恒温水浴槽相连。
待样品温度稳定后,记录实验仪上的温度差值和时间,以获取导热系数。
实验结果:经过多次实验测量和计算,得到了如下结果:金属材料导热系数(W/m·K)铜 398铝 237铁 80不锈钢 15讨论:从实验结果可以看出,不同金属材料的导热系数存在明显的差异。
铜的导热系数最高,达到398 W/m·K,而不锈钢的导热系数最低,仅为15 W/m·K。
这是因为金属材料的导热性能与其原子结构和电子运动有关。
铜是一种典型的导热性能较好的金属,其晶体结构中的自由电子能够自由传递热量,因此具有较高的导热系数。
铝的导热系数较铜稍低,这是因为铝的晶体结构中自由电子的密度较低。
铁和不锈钢的导热系数较低,主要是由于其晶体结构中存在较多的杂质和缺陷,导致自由电子传导受阻。
结论:通过本次实验,我们验证了不同金属材料的导热系数存在差异,并分析了其原因。
导热系数的大小对于金属材料的热传导、散热等问题具有重要影响。
在实际应用中,我们可以根据金属材料的导热系数选择合适的材料,以满足特定的热传导需求。
导热系数实验报告

一、【实验目的】用稳态法测定金属、空气、橡皮的导热系数。
二、【实验仪器】导热系数测定仪、铜-康导热电偶、游标卡尺、数字毫伏表、台秤(公用)、杜瓦瓶、秒表、待测样品(橡胶盘、铝芯)、冰块三、【实验原理】1、良导体(金属、空气)导热系数的测定根据傅里叶导热方程式,在物体内部,取两个垂直于热传导方向、彼此间相距为h 、温度分别为θ1、θ2的平行平面(设θ1>θ2),若平面面积均为S ,在t ∆时间内通过面积S 的热量Q ∆免租下述表达式:hS t Q )(21θθλ-=∆∆ (3-26-1) 式中,tQ∆∆为热流量;λ即为该物质的导热系数,λ在数值上等于相距单位长冰水混合物电源输入 调零数字电压表 FD-TX-FPZ-II 导热系数电压表T 2T 1220V110V导热系数测定仪测1测1 测2测2 表 风扇AB C图4-9-1 稳态法测定导热系数实验装置度的两平面的温度相差1个单位时,单位时间内通过单位面积的热量,其单位是)K m W ⋅。
在支架上先放上圆铜盘P ,在P 的上面放上待测样品B ,再把带发热器的圆铜盘A 放在B 上,发热器通电后,热量从A 盘传到B 盘,再传到P 盘,由于A,P 都是良导体,其温度即可以代表B 盘上、下表面的温度θ1、θ2,θ1、θ2分别插入A 、P 盘边缘小孔的热电偶E 来测量。
热电偶的冷端则浸在杜瓦瓶中的冰水混合物中,通过“传感器切换”开关G ,切换A 、P 盘中的热电偶与数字电压表的连接回路。
由式(3-26-1)可以知道,单位时间内通过待测样品B 任一圆截面的热流量为221)(B BR h t Q πθθλ-=∆∆ (3-26-2) 式中,R B 为样品的半径,h B 为样品的厚度。
当热传导达到稳定状态时,θ1和θ2的值不变,遇事通过B 盘上表面的热流量与由铜盘P 向周围环境散热的速率相等,因此,可通过铜盘P 在稳定温度T 2的散热速率来求出热流量tQ∆∆。
实验中,在读得稳定时θ1和θ2后,即可将B 盘移去,而使A 盘的底面与铜盘P 直接接触。
导热系数的测量实验报告

金属导热系数的测量机电工程学院能源与动力工程151班 张陆 5902615015 一:实验目的用稳态法测定出金属导热体的导热系数,并与理论值进行比较。
二:实验仪器导热系数测定仪、铜-康导热电偶、杜瓦瓶、待测样品(橡胶盘、铝芯)。
三:实验原理根据傅里叶导热方程式,在物体内部,取两个垂直于热传导方向、彼此间相距为h 、温度分别为T 1、T 2的平行平面(设T 1>T 2),若平面面积均为S ,在t ∆时间内通过面积S 的热量Q ∆免租下述表达式:hT T S t Q )(21-=∆∆λ (3-26-1) 式中,tQ ∆∆为热流量;λ即为该物质的导热系数,λ在数值上等于相距单位长度的两平面的温度相差1个单位时,单位时间内通过单位面积的热量,其单位是)(K m W ⋅。
在支架上先放上圆铜盘P ,在P 的上面放上待测样品B ,再把带发热器的圆铜盘A 放在B 上,发热器通电后,热量从A 盘传到B 盘,再传到P 盘,由于A,P 都是良导体,其温度即可以代表B 盘上、下表面的温度T 1、T 2,T 1、T 2分别插入A 、P 盘边缘小孔的热电偶E 来测量。
热电偶的冷端则浸在杜瓦瓶中的冰水混合物中,通过“传感器切换”开关G ,切换A 、P 盘中的热电偶与数字电压表的连接回路。
由式(3-26-1)可以知道,单位时间内通过待测样品B 任一圆截面的热流量为221)(B BR h T T t Q πλ-=∆∆ (3-26-2) 式中,R B 为样品的半径,h B 为样品的厚度。
当热传导达到稳定状态时,T 1和T 2的值不变,遇事通过B 盘上表面的热流量与由铜盘P 向周围环境散热的速率相等,因此,可通过铜盘P 在稳定温度T 2的散热速率来求出热流量tQ ∆∆。
实验中,在读得稳定时T 1和T 2后,即可将B 盘移去,而使A 盘的底面与铜盘P 直接接触。
当铜盘P 的温度上升到高于稳定时的T 2值若干摄氏度后,在将A 移开,让P 自然冷却。
导热系数的测量实验报告

导热系数的测量导热系数(又称导热率)是反映材料热性能的重要物理量,导热系数大、导热性能好的材料称为良导体,导热系数小、导热性能差的材料称为不良导体。
一般来说,金属的导热系数比非金属的要大,固体的导热系数比液体的要大,气体的导热系数最小。
因为材料的导热系数不仅随温度、压力变化,而且材料的杂质含量、结构变化都会明显影响导热系数的数值,所以在科学实验和工程设计中,所用材料的导热系数都需要用实验的方法精确测定。
一.实验目的1.用稳态平板法测量材料的导热系数。
2.利用稳态法测定铝合金棒的导热系数,分析用稳态法测定不良导体导热系数存在的缺点。
二.实验原理热传导是热量传递过程中的一种方式,导热系数是描述物体导热性能的物理量。
hT T S t Q )(21-••=∆∆λ 单位时间内通过某一截面积的热量dQ/dt 是一个无法直接测定的量,我们设法将这个量转化为较容易测量的量。
为了维持一个恒定的温度梯度分布,必须不断地给高温侧铜板加热,热量通过样品传到低温侧铜板,低温侧铜板则要将热量不断地向周围环境散出。
单位时间通过截面的热流量为:B B h T T R t Q )(212-•••=∆∆πλ当加热速率、传热速率与散热速率相等时,系统就达到一个动态平衡,称之为稳态,此时低温侧铜板的散热速率就是样品内的传热速率。
这样,只要测量低温侧铜板在稳态温度 T2 下散热的速率,也就间接测量出了样品内的传热速率。
但是,铜板的散热速率也不易测量,还需要进一步作参量转换,我们知道,铜板的散热速率与冷却速率(温度变化率)dQ/dt=-mcdT/dt 式中的 m 为铜板的质量, C 为铜板的比热容,负号表示热量向低温方向传递。
由于质量容易直接测量,C 为常量,这样对铜板的散热速率的测量又转化为对低温侧铜板冷却速率的测量。
铜板的冷却速率可以这样测量:在达到稳态后,移去样品,用加热铜板直接对下铜板加热,使其温度高于稳态温度 T2(大约高出 10℃左右),再让其在环境中自然冷却,直到温度低于 T2,测出 温度在大于T2到小于T2区间中随时间的变化关系,描绘出 T —t 曲线(见图 2),曲线在T2处的斜率就是铜板在稳态温度时T2下的冷却速率。
金属导热系数的测量实验报告

金属导热系数的测量实验报告一、实验目的1、了解金属导热系数的物理意义及其测量原理。
2、掌握稳态法测量金属导热系数的实验方法。
3、学会使用相关实验仪器,并对实验数据进行处理和分析。
二、实验原理当物体内存在温度梯度时,热量会从高温处向低温处传递。
导热系数是表征材料导热性能的重要参数,它表示在单位温度梯度下,单位时间内通过单位面积的热量。
在稳态法测量金属导热系数的实验中,我们将待测金属样品制成平板状,在其上下表面分别施加稳定的温度差。
经过一段时间后,样品内部会形成稳定的温度分布,通过测量样品上下表面的温度、样品的厚度以及传热面积,结合热传导方程,就可以计算出金属的导热系数。
根据傅里叶热传导定律,在稳态条件下,通过平板样品的热流量 Q 与样品上下表面的温度差ΔT、样品的面积 S 以及导热系数λ 之间的关系为:Q =λ S (ΔT / d)其中,d 为样品的厚度。
三、实验仪器1、稳态法导热系数测定仪:包括加热装置、冷却装置、测温传感器等。
2、待测金属样品(如铜、铝等)。
3、游标卡尺:用于测量样品的厚度和直径。
4、数字温度计:测量样品上下表面的温度。
四、实验步骤1、用游标卡尺测量金属样品的厚度和直径,多次测量取平均值,以减小测量误差。
2、将金属样品放置在导热系数测定仪的加热板和冷却板之间,确保样品与加热板和冷却板接触良好。
3、打开加热装置和冷却装置,调节加热功率和冷却水流速,使样品上下表面形成稳定的温度差。
4、等待一段时间,待温度稳定后,用数字温度计分别测量样品上下表面的温度。
5、记录实验数据,包括样品的尺寸、上下表面的温度、加热功率等。
6、改变加热功率或更换不同的金属样品,重复上述实验步骤。
五、实验数据记录与处理以下是一组实验数据示例:|金属样品|厚度(mm)|直径(mm)|上表面温度(℃)|下表面温度(℃)|加热功率(W)|||||||||铜| 1002 | 5012 | 805 | 302 | 500 |首先,计算样品的传热面积 S:S =π (d/2)^2 = 314 (5012/2)^2 ≈ 197386 mm^2 = 197386 cm^2然后,计算温度差ΔT:ΔT = 805 302 = 503 ℃样品的厚度 d = 1002 mm = 1002 cm根据热传导定律,导热系数λ 为:λ = Q d /(S ΔT)由于加热功率 P 等于热流量 Q,所以:λ = P d /(S ΔT) = 500 1002 /(197386 503) ≈ 0506 W/(cm·℃)对多组实验数据进行处理,计算出不同金属样品的导热系数,并求出平均值。
导热系数的测量实验分析报告

导热系数的测量实验报告————————————————————————————————作者:————————————————————————————————日期:导热系数的测量导热系数(又称导热率)是反映材料热性能的重要物理量,导热系数大、导热性能好的材料称为良导体,导热系数小、导热性能差的材料称为不良导体。
一般来说,金属的导热系数比非金属的要大,固体的导热系数比液体的要大,气体的导热系数最小。
因为材料的导热系数不仅随温度、压力变化,而且材料的杂质含量、结构变化都会明显影响导热系数的数值,所以在科学实验和工程设计中,所用材料的导热系数都需要用实验的方法精确测定。
一.实验目的1.用稳态平板法测量材料的导热系数。
2.利用稳态法测定铝合金棒的导热系数,分析用稳态法测定不良导体导热系数存在的缺点。
二.实验原理热传导是热量传递过程中的一种方式,导热系数是描述物体导热性能的物理量。
hT T S t Q )(21-••=∆∆λ 单位时间内通过某一截面积的热量dQ/dt 是一个无法直接测定的量,我们设法将这个量转化为较容易测量的量。
为了维持一个恒定的温度梯度分布,必须不断地给高温侧铜板加热,热量通过样品传到低温侧铜板,低温侧铜板则要将热量不断地向周围环境散出。
单位时间通过截面的热流量为:B B h T T R t Q )(212-•••=∆∆πλ当加热速率、传热速率与散热速率相等时,系统就达到一个动态平衡,称之为稳态,此时低温侧铜板的散热速率就是样品内的传热速率。
这样,只要测量低温侧铜板在稳态温度 T2 下散热的速率,也就间接测量出了样品内的传热速率。
但是,铜板的散热速率也不易测量,还需要进一步作参量转换,我们知道,铜板的散热速率与冷却速率(温度变化率)dQ/dt=-mcdT/dt 式中的 m 为铜板的质量, C 为铜板的比热容,负号表示热量向低温方向传递。
由于质量容易直接测量,C 为常量,这样对铜板的散热速率的测量又转化为对低温侧铜板冷却速率的测量。
大学物理实验报告-金属导热系数的测量

大学物理实验报告课程名称:大学物理实验实验名称:金属导热系数的测量学院名称:机电工程学院专业班级:车辆工程151班学生姓名:吴倩萍学号:5902415034实验地点:基础实验大楼D103实验时间:第一周周三下午15:45开始一、实验目的:用稳态法测定金属良导热体的导热系数,并与理论值进行比较。
二、实验仪器:TC-3型导热系数测定仪、杜瓦瓶、游标卡尺。
三、实验原理:1882年法国数学、物理学家傅里叶给出了一个热传导的基本公式——傅里叶导热方程。
该方程表明,取两个垂直于热传导方向、彼此间相距为h 、温度分别为T 1、T 2的平行平面(设T 1>T 2),若平面面积均为S ,在∆t 时间内通过面积S 的热量∆Q 满足下述表达式:hT T S t Q 21-=∆∆λ(8-2),式中t Q∆∆为热流量,λ为该物质的热导率(又称作导热系数)。
λ在数值上等于相距单位长度的两平面的温度相差1个单位时,单位时间内通过单位面积的热量,其单位是W/(m ·K)。
本实验仪器如图所示。
在支架D 上先放置散热盘P ,在散热盘P 的上面放上待测样品B ,再把带发热器的圆铜盘A 放在B 上,发热器通电后,热量从A 盘传到B 盘,再传到P 盘,在样品B 上、下分别有一小孔,可用热电偶测出其温度T 1和T 2。
由式(8-1)可以知道,单位时间通过待测样品B 任一圆截面的热流量为B BR h T T t Q πλ21-=∆∆2(8-2),式中R B 为样品半径,h B 为样品上、下小孔之间的距离,当热传导达到稳定状态时,T 1和T 2的值不变,于是通过B 盘上表面的热流量与由铜盘P 向周围散热的速率相等,因此,可通过铜盘P 在稳定温度T 3时的散热速率来求出热流量t Q∆∆。
实验中,在读得稳定时的T 1、T 2和T 3后,即可将B盘移去,而使A 盘的底面与铜盘P 直接接触。
当铜盘P 的温度上升到高于稳定时的值T 3若干摄氏度后,再将圆盘A 移开,让铜盘P 自然冷却,观察其温度T 随时间t 的变化情况,然后由此求出铜盘在T 3的冷却速率2T T tT=∆∆,而t QtT mcT T ∆∆=∆∆=2(m 为铜盘P 的质量,c 为铜材的比热容),就是铜盘P 在温度为T 3时的散热速率。