无源互调(PIM)影响因素及常见问题(一)

合集下载

射频无源连接器的互调特性与寿命

射频无源连接器的互调特性与寿命

射频无源连接器的互调特性与寿命1、射频无源器件的无源互调特性射频无源器件的互调失真,即无源互调(PIM)是由于其非线性特性而引起的,连接器也不例外。

产生射频连接器或电缆组件非线性的主要原因是导体的接触不良,而产生接触不良的主要原因有连接器的配接力矩不足,表面镀层不均匀,金属表面氧化,触点表面有杂质和表面腐蚀等。

此外,磁性材料如镍和钢均会产生非线性因素。

要保证射频连接器的低互调性能,在设计中可采用焊接的内导体和一体化的外导体结构,这样可以避免由于风、振动和热胀冷缩效应所产生的接触不良。

连接器的表面涂敷也很重要,内导体可以采用镀金或镀银工艺,外导体可以镀银或三元合金来保证无源互调指标。

在所有射频连接器中,N型和DIN7-16型具有最好的无源互调特性,其指标可以达到-165dBc~-168dBc@2x43dBm。

在所有无源器件中,射频连接器的无源互调测量是最困难的。

这种困难体现在两个方面:(1)—套精密的无源互调测量系统,最终也是靠射频电缆与被测器件连接的。

无源互调的测量是一个串联系统,如系统剩余互调为-168dBc@2x43dBm,其中必然包含了测试电缆自身的无源互调指标。

而用这样一套系统,要测量出同等指标的射频连接器的无源互调,从测量原埋上讲,其最终测量精度是值得商榷的。

(2)射频连接器不能独立参加测试,必须连接到电缆或者夹具进行测试,在此过程中,电缆和测试夹具的自身无源互调指标必须优于被测连接器。

要保证测试夹具的低无源互调指标比电缆更加困难。

2、射频连接器的寿命如果从射频测试和测量角度来评估一个射频转接器或测试电缆组件,应用工程师不仅关心其出厂时的指标,而且更加关心其使用寿命。

射频电缆组件的寿命取决于三个因素:电缆本身的抗弯曲性能;电缆和连接器之间的良好连接及其防折弯性能;连接器的寿命。

对于前两项因素,可以采取工装夹具或者规范操作。

PIM常见问题解答(紫光)

PIM常见问题解答(紫光)

1. 什么是无源互调(PIM)?无源互调与有源互调相类似,只是无源互调是无源器件产生的。

只要在一个射频导体中同时存在两个或两个以上RF信号,就会产生互调。

当器件中存在一个以上的频率时,任何无源器件都会产生无源互调产物。

由于不同材料的连接处具有非线性,信号会在结点混合。

典型地,其奇数阶互调产物(如IM3=2*F1-F2)会落在基站的上行或接收频段内,成为干扰接收机工作的信号。

它会造成独立于接收机随机底噪的接收机减敏现象。

2. 产生PIM的典型原因?在射频器件(天线、电缆、滤波器等)中,有三个典型的成因:1.射频通道中不良的机械结点;2.射频器件的材料具有磁滞现象(如不锈钢);3.射频通道中的表面或接触面受到污染。

例如,焊料(会吸附其他污染物)和加工过程中的金属微粒。

在一个完整的基站中,大功率放大器和接收机滤波器之间的任何无源器件都会产生严重的无源互调信号。

铁塔(“生锈螺钉噪声”)或发射天线的直射波周围的金属物质也会产生无源互调信号。

3. 什么是IM3和IM5?它一般用来说明我们所讨论的互调产物的阶数。

IM表示“互调(Inter-modulation)”。

紧跟着的数字是产生互调产物的两个母信号的整数倍频之和。

通过下表,可以很好的理解这个概念:IM Calculation互调计算IM Order互调阶数2*F1±1*F2 = F IM3Third Order (2+1=IM3)3*F1±2*F2 = F IM5Fifth Order (3+2=IM5)4*F1±3*F2 = F IM7Seventh Order (4+3=IM7)5*F1±4*F2 = F IM9Ninth Order (5+4=IM9)一般来说,阶数越小能量越大。

尽管如此,在选频系统中,接收机中的五阶互调产物大于三阶互调产物也是有可能的。

4. 如果定义“良好”的PIM值?一个给定的RF器件所要求达到的无源互调水平对于该器件所在的最终系统的性能来说,是非常重要的。

无源互调(PIM)影响因素及常见问题(一)

无源互调(PIM)影响因素及常见问题(一)

无源互调(PIM)影响因素及常见问题(一)无源互调(PIM)影响因素及常见问题(一)随着通信技术的快速发展,特别是5G天线,通信频率的增高,以及语音和数据信号容量的增加,之前对信号产生影响较小的因素也被越来越重视起来,无源互调就是其中之一。

1什么是无源互调(PIM)无源互调(Passive Inter-Modulatio)又称无源交调、互调失真等,是由射频系统中各种无源器件产生的,只要一个射频导体中存在两个或两个以上的RF信号,就会产生互调,产生一个或多个新的频率,这些新产生的频率与工作频率混合在一起就会影响到通信系统。

无源互调值非常小,一个典型的无源互调指标是在二个+43dBm的载频功率同时作用到被测器件(DUT)时,DUT产生-110dBm(绝对值)的无源互调失真,其相对值为-153dBc,相当于一根头发丝的直径对比地球到太阳之间的距离。

因此测试非常因难,大多采用IEC 推荐的正向和反射互调产物的测量方法。

2无源互调的来源PIM可以发生在任何两种不同金属的连接点或接口处,例如连接器和电缆组件的连接处,天线和天线馈源的连接处。

接触不良的连接器,内部生锈或氧化的连接器也可能会导致PIM。

PCB材料也可能是PIM的来源,它可能来自于材料本身,也可能来自馈电点。

3无源互调分类(1)正向互调正向互调也被称为传输互调,其定义是当两个载频同时输入到一个双端口(或多端口)器件时,在输出端所产生的互调。

在测试过程中,任何空闲端口必须接低互调负载。

从频段细分,正向互调又可分为落入发射频段和落入接收频段两种,它们的区别取决于f1和f2的之间的差值△,2f1—f2和f1之间的间隔、2f2—f1和f2之间的间隔都等于△,从这个规律可以直观判断互调产物的位置。

同样是正向互调,落入发射频段和接收频段互调的测试方法却大相径庭。

PIM讲解

PIM讲解

无源互调的传输方向
无源互调按照传输方向可以分为反射式互调(Reflected) 和传输式互调(Transmitted)
无源互调产生的本质与来源
互调产生的本质
不连续性:包括机械尺寸的不连续性,不到污 染
影响无源互调的因素
金属接触处通过分离导体的薄氧化层的电子隧道效 应和半导体行为; 在微狭缝之间和跨越金属中空隙的微放电; 与污垢和金属表面的金属粒子有关的非线性; 接触处的大电流密度; 碳纤维的非线性电阻系数; 铁磁材料中的非线性磁滞效应; 使用质量差的连接器; 低劣的安装工艺可能引起的松动连接或接触不良;
移动通信互调失真特点
1,无源互调随着载波功率的增加 而迅速增大 2,无源互调随阶数的增大而迅速 减小 3,现代通信系统中,发射机功率 越来越大,接收机灵敏度越来越高。 无源互调失真的影响越来越严重。 4,现代通信系统共址和共站越来 越普遍。无源互调不仅会对本系统 造成影响,还会对其他通信制式造 成干扰。
无源互调(PIM)
2013-10-28
什么是无源互调
无源互调(PIM)定义 物理定义:无源互调(Passive Intermodulation-PIM)是指两个或更多不同频率的信号混合输入到 无源器件中,在其它频率产生幅度不同的互调产物。
无源器件范围
无源器件包括天线、射频馈线、连接件、避雷器、 滤波器﹑双工器﹑多工器、定向耦合器、射频终端 负载及衰减器等。
无源互调的定义
定义1
如果在通信系统的发射频段有两个载波f1和f2,其中 f1<f2。当两个载波混合输入到无源器件中时,会产 生各个阶次的互调失真。 其中2f1-f2, 2f2-f1, 2f1+f2 和2f2+f1都称为三阶互调失真。一般情况下,只有 2f1-f2会落在通信系统的接收频段,所以在检测三阶 互调时,重点对其进行考察。 同理,3f1-2f2, 3f2-2f1, 3f1+2f2和3f2+2f1都称为系 统的五阶互调失真。一般情况下,只有3f1-2f2会落 在系统的接收频段,所以在检测五阶互调时,重 点对其进行考察。

GSM基站互调干扰介绍(三阶、五阶、七阶)

GSM基站互调干扰介绍(三阶、五阶、七阶)

GSM基站互调干扰
通信系统中的无源互调干扰(PIM)来自于两种无源非线性,即无源接触非线性和无源材料非线性,无源非线性将引起射频信号产生大量的谐波信号,通常我们说的三阶、五阶、七阶互调产物都是由于射频电路无源器件的非线性引起的互调谐波。

PIM受射频电路中的无源器件性能、馈线接头性能、天线性能影响,当无源器件采用材质较差,杂质较多的铝合金,或接头等镀层磨损氧化后,另外器件接头部分工艺粗造等原因都有可能导致器件的非线性性增强,从而引起较大的谐波互调信号。

中国移动互调分量干扰分析(见附件)
中国移动GSM互调模拟图
对于GSM系统来说,由下行信号产生的互调分量中三阶分量并没有落到上行的频段内,但是5阶分量却大量落到上行频段内,至于7阶和9阶分量由于其强度已衰减过大,在考虑对上行信号的干扰时可以忽略不计算,因此对于GSM900系统来说,无源器件的互调分量干扰主要来自于5阶互调干扰,5阶互调干扰也是造成GSM系统上行干扰的一个重要原因。

对于DCS1800系统来说,3阶和5阶分量都不会落到上行频段,7阶、9阶分量会落到上行频段,但由于其强度衰减过大,故DCS1800系统无需考虑无源器件互调干扰的影响。

PIM操作手册

PIM操作手册

安立公司无源互调分析仪操作手册PIM Master TM MW82119A40W 高功率、电池供电、故障定位、手持式无源互调分析仪安立公司市场部2013 年 7 月一、什么是无源互调(Passive Intermodulation, PIM)?无源互调(PIM)是一种发生在无源器件上的互调失真,比如滤波器,合路器,浪涌保护 器,线缆,连接头,天线等,这些器件通常被认为是线性的,但是他们受到高功率信号激励 时会产生杂散信号,当这些杂散信号落入到基站接收频段内时,就会对基站形成干扰,影响 正常通信的进行。

无源互调(PIM)显示一系列由两个或多个强射频信号在非线性器件(比如松散或腐蚀的连 接头,或附近生锈物)中混频产生的不需要的信号, 无源互调(PIM)现象又称为“环境二极管 效应”或“锈门栓效应”。

下面这组方程可以精确描述两个载波 F1,F2 的无源互调产物频率:IMn+m = nF1 – mF2IMn+m = nF2 – mF1F1 和 F2 是发射载波频率,常数 n 和 m 是正整数。

当提到无源互调产物时, n + m 称为互调阶数。

例如,当 m 等于 2,n 等于 1,则他们的和 (2+1=3)称为 3 阶交调 即 IM3。

载波 F1,F2 和对应的 3 阶、5 阶、7 阶互调产物 调制信号无源互调产物的带宽随着其阶数的增加而增加典型情况是,3阶互调产物是电平幅度最大,且最可能落在接收频段内,从而对接收 信号造成危害的互调产物。

由于无源互调产物的幅度随着阶数的增高而变低,高阶的互调产 物一般情况下不会强到直接导致频率问题,但是他们通常会是导致临近频段噪底电平上升的 原因。

一旦这些上升的噪底电平落入接收频段,他们便进入到基站接收信号范围内(有时候 通过低噪放),会对基站信号接收造成影响。

而且,还要认识到,由调制信号引起的互调信 号比从基波信号引起的互调信号的带宽要宽得多。

因此,互调产物可以有非常宽的频带,占 用好几个通频带。

无源互调产生原因

无源互调产生原因
合金,避免采用 不锈钢或其它含磁性材料,即便要用导磁率应小于 2.0。 4)提高表面加工质量,一般表面粗糙度应在0.4um 以下。并且不得有凹坑,碎屑等杂物。 5)导电体表面不得有斑点和锈蚀。 6)选择良好的弹性材料,进行精细加工和真空热处 理,以保证接触件在 500 次插拔过程中具有稳定 可靠的接触正压力和较小的接触电阻。 7)避免不同金属,特别是彼此之间可能产生电动势 耦合的不相容金属互相结合,防止产生电化学腐蚀。
(4)无源交调与频率的关系 由于同轴连接器是宽带元件,没有频率依赖 性,因此,无源交调也无频率依赖性,其影响程 度仅与信道传输功率大小有关,与频率无关。 (5)无源交调的测试 无源交调的测试方法仍在研究之中,目前国 际上尚无权威性的标准测试方案。
3、无源交调的预防措施 针对上述无源交调产生的原因,在射频同轴 连接器设计和制造中应采取以下措施。 1)从电镀角度考虑,为降低无源交调,减少接触 电阻,最好采用镀银层,厚度应在6um以上,镀层 应无杂质且必须用铬酸盐钝化,这就是 7-16 或 N 型大功率产品镀银的原因。 但镀银层易变色的 问题在某些场合要慎重考虑。镀金也是较好的选 择,但成本较高。 2)在产品结构设计方面尽避免出现阻抗不连续性, 尽可能保持一致的特性阻抗,减小非线性因素。
连接器无源交调的 产生与预防
随着移动通信的飞速发展,对接收系 统的灵敏度要求日益提高,使得同一传输 信道内可能存在很多不同频率的信号,如 果传输线或连接传输线的射频同轴连接器 特性不良,就可能使不同频率之间产生无 源交调(Passive intermodulation/PIM), 源交调(Passive intermodulation/PIM), 结果使有效传输信号发生畸变,产生噪声 和杂波,影响信号传输速率。本文分析了 射频同轴连接器无源交调产生的原因及预 防措施,对射频同轴连接器的设计、制造 以及通信系统中的选用有积极的指导意义 和参考价值。

卫星通讯天线无源互调原理

卫星通讯天线无源互调原理

卫星通讯天线无源互调原理
卫星通讯天线的无源互调(PIM)原理是指,在射频信号路径中,由于各种无源器件(如天线、电缆或连接器)的非线性特性,导致两个或更多的射频信号相互混合,产生新的杂散信号。

在大功率、多信道系统中,这种互调现象更为显著,可能由铁磁材料、异种金属焊接点、金属氧化物接点、被污染的器件和松散的射频连接器等因素引起。

如果两个基波信号的频率分别为f1和f2,那么PIM干扰信号的频率(F_PIM)可以用以下公式来描述:F_PIM = m * f1 ± n * f2,其中m和n是正整数,m 和n的乘积叫做混频信号的阶数。

虽然通过滤波可以把信号发射路径中由功放产生的干扰信号去掉,但是射频信号路径中由无源器件(如天线、电缆或连接器)引起的PIM干扰信号是无法滤掉的。

信号发射(Tx)通道中的PIM干扰信号会进入信号接收(Rx)通道,这会增加接收通道中的噪声功率从而降低无线通信的质量。

因此,无源互调是限制系统容量的重要因素,制造商需要对应用在基站中的射频器件进行100%的检查,以确保器件的无源互调始终维持在合格范围。

以上信息仅供参考,如需获取更多详细信息,建议查阅相关文献或咨询卫星通讯专家。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

无源互调(PIM)影响因素及常见问题(一)
随着通信技术的快速发展,特别是5G天线,通信频率的增高,以及语音和数据信号容量的增加,之前对信号产生影响较小的因素也被越来越重视起来,无源互调就是其中之一。

1什么是无源互调(PIM)
无源互调(Passive Inter-Modulatio)又称无源交调、互调失真等,是由射频系统中各种无源器件产生的,只要一个射频导体中存在两个或两个以上的RF信号,就会产生互调,产生一个或多个新的频率,这些新产生的频率与工作频率混合在一起就会影响到通信系统。

无源互调值非常小,一个典型的无源互调指标是在二个+43dBm的载频功率同时作用到被测器件(DUT)时,DUT产生-110dBm(绝对值)的无源互调失真,其相对值为-153dBc,相当于一根头发丝的直径对比地球到太阳之间的距离。

因此测试非常因难,大多采用IEC 推荐的正向和反射互调产物的测量方法。

2无源互调的来源
PIM可以发生在任何两种不同金属的连接点或接口处,例如连接器和电缆组件的连接处,天线和天线馈源的连接处。

接触不良的连接器,内部生锈或氧化的连接器也可能会导致PIM。

PCB材料也可能是PIM的来源,它可能来自于材料本身,也可能来自馈电点。

3无源互调分类
(1)正向互调
正向互调也被称为传输互调,其定义是当两个载频同时输入到一个双端口(或多端口)器件时,在输出端所产生的互调。

在测试过程中,任何空闲端口必须接低互调负载。

从频段细分,正向互调又可分为落入发射频段和落入接收频段两种,它们的区别取决于f1和f2的之间的差值△,2f1—f2和f1之间的间隔、2f2—f1和f2之间的间隔都等于△,从这个规律可以直观判断互调产物的位置。

同样是正向互调,落入发射频段和接收频段互调的测试方法却大相径庭。

相关文档
最新文档