高二数学排列及排列数
排列数 课件 -2022-2023学年高二下学期数学人教A版(2019)选择性必修第三册

m
符号 An 中的A是英文
arrangement(排列)
的第一个字母
排列数:
我们把从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数,
m
叫做从n个不同元素中取出m个元素的排列数,用符号 An 表示.
m
n
A
取出元素数
元素总数
排列的第一个字母
m,n所满足的条件是:
(1) m∈N*,n∈N* ;
全排列数:
1. 全排列:从n个不同素中取出n个元素的一个排列称为n个不同 元素的
一个全排列 .
全排列数为: Ann n( n 1)( n 2) 2 1 n!
2.阶乘:正整数1到n的连乘积 1×2×···×n称为n的阶乘,用 n!表示, 即
Ann n !
规定:0 ! 1.
小结:
1. 排列数公式:A n( n 1)( n 2) ( n m 1). ( m , n N 且m n)
m
n
*
2. 全排列数: Ann n( n 1)( n 2) 2 1
3.阶乘:正整数1到n的连乘积 1×2×···×n称为n的阶乘,用 n!表示, 即
∴不同的排法共有 A44 A31 A31 A33 78 种.
解2:甲站排头有 A44 种排法,乙站排尾有 A44 种排法.
3
但两种情况都包含了 “甲站排头, 且乙站排尾” 的情况,有A3 种排法.
5
4
3
∴ 不同的排法有 A5 2 A4 A3 78 种排法.
例题 证明:Anm mAnm 1 Anm1 .
解1:分两步完成:(特殊位置法)
高中数学排列组合

1、排列定义
一般地,从n个不同元素中取出m(m≤n) 个元素按照一定顺序排成一列,叫做从n个不同 元素中取出m个元素的一个排列.
排列的定义中包含两个基本内容: 一是“取出元素”;二是“按照一定顺序排列”.“一定 顺序”就是与位置有关,这也是判断一个问题是不是排列问 题的重要标志.
根据排列的定义,两个排列相同,当且仅当这两个排 列的元素完全相同,而且元素的排列顺序也完全相同.
思考 上述问题1,2 的共同特点是什么?你能将它 们推广到一般情形吗?
一般地,从n个不同的元素中取出m(m n)个元素, 按 照 一 定 顺 序 排 成 一 列,叫 做 从n个 不 同 元 素 中 取
出m个元素的一个排列 (arrangement).
思考 你能归纳一下排列的特征吗?
根据排列的定义,两个排列相同,当且仅当两个排 列的元素完全相同,且元素的排列顺序也相同.例 如在问题2中,123与134的元素不完全相同,它们 是 不 同 的 排 列;123与132虽 然 元 素 完 全 相 同, 但 元 素的排列顺序不同,它们也是不同的排列.
(5)20位同学互通一次电话 (6)20位同学互通一封信
(7)以圆上的10个点为端点作弦 (8)以圆上的10个点中的某一点为起点,作 过另一个点的射线
(9)有10个车站,共需要多少种车票? (10)有10个车站,共需要多少种不同的票价?
例2.某年全国足球甲级 A组 联赛有14
个队参加, 每队要与其余各队在主、客场 分别比赛一次, 共进行多少场比赛?
nn
1n
2 n n m
m 1n
2 1
m
2
1
n! nm!
A
n n
A nm nm
.
高二数学排列和组合知识点

高二数学排列和组合知识点排列与组合是高中数学中的重要内容,它们在解决实际问题时具有广泛的应用。
本文将详细介绍排列和组合的基本概念、公式以及解题方法,帮助学生掌握这一知识点。
基本概念排列和组合都是从一组元素中选择一定数量的元素进行分析的数学方法。
排列强调元素的顺序,而组合则不考虑元素的顺序。
排列1. 排列数公式:从n个不同元素中取出m个元素的所有排列的个数,记作A_{n}^{m},计算公式为:\[ A_{n}^{m} = \frac{n!}{(n-m)!} \]其中n!表示n的阶乘,即从1乘到n。
2. 举例说明:假设有5本不同的书,我们要选出2本来阅读。
如果考虑阅读的顺序,那么第一天读哪本书,第二天读哪本书是有区别的。
这里就有A_{5}^{2}种不同的排列方式。
组合1. 组合数公式:从n个不同元素中取出m个元素的所有组合的个数,记作C_{n}^{m},计算公式为:\[ C_{n}^{m} = \frac{n!}{m!(n-m)!} \]同样,这里的n!表示n的阶乘。
2. 举例说明:继续上述的例子,如果我们只关心选出哪2本书来阅读,而不关心阅读的顺序,那么这就是一个组合问题。
计算方法为C_{5}^{2}。
解题方法1. 区分排列与组合:首先要明确问题是要求排列还是组合。
如果问题中涉及到元素的顺序,那么就是排列问题;如果不涉及顺序,则是组合问题。
2. 公式运用:根据问题的具体要求,选择合适的排列或组合公式进行计算。
3. 实际应用:排列和组合的知识可以应用于许多实际问题,如概率计算、统计分析等。
在解题时,要结合实际情况,灵活运用所学知识。
练习题1. 有7个人排队,其中甲必须排在乙的前面,问有多少种排队的排列方式?2. 一个班级有10个男生和5个女生,从中选出3个代表,其中至少有1个女生的组合有多少种?通过以上介绍和练习题,相信学生可以更好地理解和掌握排列与组合的概念、公式及解题方法。
在实际解题过程中,要注意区分排列和组合的不同,并正确运用公式,这样才能有效地解决问题。
高二重要数学公式归纳总结

高二重要数学公式归纳总结数学是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。
下面是小编为大家整理的关于高二重要数学公式总结,希望对您有所帮助!高二数学排列公式1.排列及计算公式从n个不同元素中,任取m(mn)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(mn)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号p(n,m)表示.p(n,m)=n(n-1)(n-2)(n-m+1)=n!/(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(mn)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(mn)个元素的所有组合的'个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m)表示.c(n,m)=p(n,m)/m!=n!/((n-m)!_m!);c(n,m)=c(n,n-m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!_n2!_..._nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).排列(Pnm(n为下标,m为上标))Pnm=n(n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标)=n!;0!=1;Pn1(n为下标1为上标)=n 组合(Cnm(n为下标,m为上标))Cnm=Pnm/Pmm;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标)=1;Cn1(n为下标1为上标)=n;Cnm=Cnn-m高二数学向量公式1.单位向量:单位向量a0=向量a/|向量a|2.P(x,y) 那么向量OP=x向量i+y向量j|向量OP|=根号(x平方+y 平方)3.P1(x1,y1) P2(x2,y2)那么向量P1P2={x2-x1,y2-y1}|向量P1P2|=根号[(x2-x1)平方+(y2-y1)平方]4.向量a={x1,x2}向量b={x2,y2}向量a_向量b=|向量a|_|向量b|_Cos=x1x2+y1y2Cos=向量a_向量b/|向量a|_|向量b|(x1x2+y1y2)=根号(x1平方+y1平方)_根号(x2平方+y2平方)5.空间向量:同上推论(提示:向量a={x,y,z})6.充要条件:如果向量a向量b那么向量a_向量b=0如果向量a//向量b那么向量a_向量b=|向量a|_|向量b|或者x1/x2=y1/y27.|向量a向量b|平方=|向量a|平方+|向量b|平方2向量a_向量b=(向量a向量b)平方高中数学三角函数公式锐角三角函数公式sin α=∠α的对边 / 斜边cos α=∠α的邻边 / 斜边tan α=∠α的对边/ ∠α的.邻边cot α=∠α的邻边/ ∠α的对边倍角公式Sin2A=2SinA?CosACos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1tan2A=(2tanA)/(1-tanA^2)(注:SinA^2 是sinA的平方 sin2(A) )三倍角公式sin3α=4sinα·sin(π/3+α)sin(π/3-α)cos3α=4cosα·cos(π/3+α)cos(π/3-α)tan3a = tan a · tan(π/3+a)· tan(π/3-a)三倍角公式推导sin3a=sin(2a+a)=sin2acosa+cos2asina辅助角公式Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中sint=B/(A^2+B^2)^(1/2)cost=A/(A^2+B^2)^(1/2)tant=B/AAsinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B 降幂公式sin^2(α)=(1-cos(2α))/2=versin(2α)/2cos^2(α)=(1+cos(2α))/2=covers(2α)/2tan^2(α)=(1-cos(2α))/(1+cos(2α))。
高二数学《排列组合》复习课件

4、(徐州二模)从6人中选4人组成4×100m接 力赛,其中甲跑第一棒,乙不跑最后一棒,有多 少种选法?
分析:(一)直接法
(二)间接法
A A A 2 A A4
3 4 3 5 1 2
2 4
=48
5、(南通一模)一个三位数,其十位上的数字 既小于百位上的数字也小于个位上的数字(如 735,414等),那么这样的三位数有 285 个. 2 2 2 2
排列组合复习课
*
一、复习回顾: (一)、知识结构 排列 基 本 原 理 排列数公式 应 用 问 题
组合数公式
组合
组合数性质
(二)、重点难点 1. 两个基本原理
2. 排列、组合的意义
3. 排列数、组合数计算公式
4. 组合数的两个性质 5. 排列组合应用题
1. 两个基本原理
①分类记数原理(加法原理):完成一件事,有 n类办法,在第1类办法中有m1种不同的方法, 在第2类办法中有m2种不同的方法……在第n类 办法中有mn种不同的方法,那么完成这件事共有 N= m1+ m2 +…..+ mn种不同的方法. ②分步记数原理(乘法原理):完成一件事需要 n个步骤,做第1步有m1种不同的方法,做第2 步有m2种不同的方法, ……做第n步有mn种不 同的方法,那么完成这件事共有N= m1× m2 ×.…..× mn种不同的方法.
C C .
5. 排列组合应用题
(1) 正确判断是排列问题,还是组合 问题,还是排列与组合的综合问题。 (2) 解决比较复杂的排列组合问题时, 往往需要既分类又分步。正确分类,不 重不漏;正确分步,连续完整。 (3) 掌握基本方法,并能灵活选择使 用。
(三)、常用解题方法及适用题目类型
5.2排列与排列数排列数公式课件-高二上学期数学北师大版选择性

(2) 元素的有序性
判断关键是看选出的元素有没有顺序要求.
2、排列数及公式
排列数公式:从n个不同元素中取出m (m≤n,且m,n∈N+)个元素的排 列共有n(n-1)(n-2)·…·[n-(m-1)]种,所以
分析:每组任意2支队之间进行的1场比赛, 可以看作是从该组6支 队中选2支,按“主队、客队”的顺序排成一个排列.
解 可以先从6支队选1支队为主队,然后从剩下的5支队中选1支队 为客队,按分步乘法计数原理,每组进行的比赛场数为:6×5=30.
§2 排列 第1课时 排列与排列数、排列数公式
➢1.通过实例,理解排列的概念,能利用计数原理推导排 列数公式,达到数学运算和数学抽象核心素养水平一的层 次; ➢利用排列数公式解决一些简单的实际问题,达到逻辑推 理和数学建模核心素养水平一的层次。
环节一
排列的概念
1、排列的概念
思考1:3名同学排成一行照相,共有多少种排法?
环节二
排列数及公式
2、排列数及公式
2、排列数及公式
第1步:第一个位置可以从n个不同元素中任选1个,有n种方法 ; 第2步:第二个位置可以从除了确定排在第一个位置的那个元素 之外的(n-1)个中任选1个,有(n-1)种方法,即第一个位置的 每一种方法都对应(n-1)种方法
2、排列数及公式
提示:从n个不同元素中取出m (m≤n,且m,n∈N+)个元素的排列,看成 从n个不同的球中取出m个球,放入排好的m个盒子中,每个盒子里放一个 球,我们根据分步乘法计数原理排列这些球: 第1步,从全体n个球中任选一个放入第1个盒子,有n种方法; 第2步,从剩下的(n-1)个球中任选一个放入第2个盒子,有(n-1)种方法 ;
(2)甲、乙两人不相邻的排法有多少种?
高二排列组合知识点总结

高二排列组合知识点总结排列组合是高中数学中的重要内容,涉及到许多基本概念和重要定理。
本文将对高二阶段学习的排列组合知识点进行总结,以帮助学生复习和加深对该知识领域的理解。
一、排列与组合的基本概念1. 排列:从给定的元素集合中,选取若干个元素按照一定的顺序排列组成不同的序列。
2. 组合:从给定的元素集合中,选取若干个元素组成一个集合,不考虑元素的排列顺序。
3. 排列数:表示从n个不同元素中,按一定顺序选取k个元素进行排列的方法数,用符号A(n,k)表示,计算公式为A(n,k) =n!/(n-k)!。
4. 组合数:表示从n个不同元素中,选取k个元素组成一个集合的方法数,用符号C(n,k)表示,计算公式为C(n,k) = n!/[(n-k)!k!]。
二、排列与组合的性质与应用1. 乘法原理:若某事件发生的方式有m种,每种方式发生的次数有n1、n2、...、nm次,则该事件发生的总次数为n1 * n2 * ... * nm。
2. 加法原理:若某件事情的发生可以分成两个互斥事件A和B,则事件A发生的次数与事件B发生的次数之和等于该事情发生的总次数。
3. 逆排列:将n个元素的排列倒序排列,得到的新排列称为逆排列,用符号A(n)*表示。
4. 重复排列:当选取元素中存在相同元素时,不同元素之间的排列方式是不同的,需要考虑重复排列的问题。
5. 标志多项式:指数为n的标志多项式的系数表示从n个元素中选取k个元素排列的方法数,用符号P(n,k)表示。
三、排列组合的常见问题类型1. 从给定元素中选取特定元素进行排列与组合的问题。
例:从10个人中选取3个人进行排队的方式有多少种?解:根据排列数的计算公式,A(10,3) = 10!/(10-3)! = 10*9*8 = 720种方式。
2. 简化条件下的排列与组合问题。
例:3个不同的小球放入2个不同的盒子,每个盒子至少放1个小球,共有多少种放法?解:根据组合数的计算公式,C(3,1) = 3!/(3-1)!1! = 3种方式。
高二数学排列、排列数公式人教版知识精讲

高二数学排列、排列数公式人教版【同步教育信息】一. 本周教学内容:排列、排列数公式二. 重点、难点:重点:1. 排列的概念、排列数公式2. 排列的应用难点:有附加条件的排列数的计算,排列应用问题等是这部分内容的难点。
【典型例题】例1. 一排有8个座位3个人去坐,若每个人左右均有空位,有多少种坐法?分析:转化为3个人插5个空的模型:每个人都拿着一把椅子,先排其余的5个椅子(一种排法),它们之间产生4个空档,再把手拿椅子的3个人排到这4个空档中,共有A 43=24种。
例2. 把1、2、3、4、5这五个数字组成无重复数字的五位数,并把它们按从小到大的顺序排列,构成一个数列。
(1)43251是这个数列的第几项?(2)这个数列的第96项是多少?(3)求这个数列的各项和。
解:(1)本题实际上是求不大于43251的五位数有多少个的问题,逆向考虑,将大于它的数分成如下三种情况。
答:43251是此数列的第88项。
(2)用排除法逆向分析,此数列共有120项,第96项以后还有120-96=24项,即比第96项所表示的五位数大的五位数有24个,而以5打头的五位数恰好有A 44=24(个),所以小于以5打头的五位数中最大的一个就是该数列的第96项,即为45321.答:这个数列的第96项是45321.(2)实际上是求所组成的五位数的和,因为1、2、3、4、5各在万位上时都有44P 个五位数,所以在万位上的和为10000)54321(44⋅++++P 。
同理,它们在千位、百位、十位、个位上也都有44P 个五位数,所以其和为)1000100101()54321(44+++⋅++++P 。
∴综上可知,这个数列的和为:答:这个数列的各项和为3999960。
说明:本题中的逆向思维的分析方法是解决问题的重要方法,当从正面解决问题比较困难时,可以考虑从它的反面入手,问题往往就可以迎刃而解。
例3. 一场晚会有5个唱歌和3个舞蹈共8个节目,问按下列要求各可排出多少种不同的节目单?(1)前4个节目中即要有唱歌又要有舞蹈;(4)3个舞蹈节目的先后顺序一定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[单选,A1型题]湿热所致的腹泻、痢疾,胃热所致的呕吐均可选用的药物是()A.黄芩B.黄连C.黄柏D.大黄E.龙胆草 [单选]“医院”的正确读音是()。A、yiyuànB、yīyuànC、yīyuàngD、yīyuè [单选]目前大面积深度烧伤感染中,最常见的致病菌是()A.金黄色葡萄球菌B.沙雷菌C.肠球菌D.铜绿假单胞菌E.大肠杆菌 [单选,A1型题]下列哪项不是时行感冒的特征()。A.传染性强B.证候相似C.集中发病D.老幼易感E.流行性强 [单选,A2型题,A1/A2型题]属于节律异常的脉搏是()A.缓脉B.丝脉C.绌脉D.洪脉E.速脉 [单选]管线穿过道路以防重压须埋入地下深度至少()。A.0.2mB.0.4mC.0.6mD.0.8m [单选,A2型题,A1/A2型题]下列小儿急性肠套叠的治疗原则中,正确的是()A.小儿急性肠套叠一经确诊应立即手术B.已有腹膜炎症状的患儿也可使用空气或钡剂灌肠C.术后复发性肠套叠以小肠套叠为主,应尽快手术D.伴发高热、休克患者应采取保守治疗E.空气灌肠时最高压力可到300mmHg [单选]“夫百病之始生也,皆生于风雨寒暑,清湿喜怒”之“清湿”是指()。A.湿邪B.风湿C.痰湿D.寒湿E.湿热 [多选]金属分类开关设备按主开关与柜体的配合方式可分为()。A.铠装式B.固定式C.间隔式D.移动式 [单选]引起艾滋病的病毒是()A.HPVB.HSVC.HIVD.HCV [单选]以下哪种肺癌副癌综合征的说法是不正确的()A.重症肌无力B.库欣综合征C.中叶综合征D.感觉性神经病E.类癌综合征 [多选]矿业工程项目的成本由建筑安装工程费,设备及工器具购置费及()构成。A.工程建设其他费B.建设期贷款利息C.企业管理费D.措施费E.预备费 [单选,A型题]有关“气性坏疽”的叙述,哪一项是错误的()A.伤口及时处理、扩创B.严密隔离病人C.早期用多价抗毒素血清治疗D.用大剂量青霉素杀死病原菌E.可接种类毒素预防 [单选]上消化道出血时产生黑粪是由于每日出血量超过()A.50mlB.20mlC.40mlD.30mlE.100ml [单选,A2型题,A1/A2型题]以下有关局部振动对机体可以引起的影响,其中错误的是()。A.手部肌肉萎缩B.上肢骨质疏松C.高频段听力下降D.周围毛细血管变形E.上肢手臂末梢神经障碍 [单选,A2型题,A1/A2型题]女性,60岁,颈后局限性肿痛6天,伴有畏寒、发热38.5℃,来急诊时已用抗生素治疗3天。体格检查见颈后发际下方肿胀,皮肤红肿,质地坚韧,界限不清,中央多个小脓头伴坏死组织,白细胞数16×10/L,中性粒细胞0.90(90%)。此时最恰当的治疗是选择()A.继 [单选,A2型题,A1/A2型题]银屑病理疗中的PUVA疗法,正确的是()A.长波紫外线加8-MOP是常用的光化学疗法B.局部治疗前2小时服用8-MOP后短波紫外线照射治疗部位C.全身治疗前3小时按治疗剂量服用8-MOP后全身照射长波紫外线D.局部治疗时,也可在照射前1小时涂补骨脂素溶液,再用长波紫 [单选,A1型题]有关血栓闭塞性脉管炎的说法,下列不恰当的是()A.患者多数为男性,好发于青壮年B.主要侵袭四肢,尤其是下肢的中、小动静脉,以动脉为主C.是一种累及血管的炎症和慢性闭塞性疾病D.又称Buerger病E.以上都对 [单选]新型DZL水管锅炉,采用高效传热的()来代替原DZ系列采用的光管,使锅炉烟管的传热效率大大提高。A、烟道B、对流管束C、喉管D、螺纹烟管 [单选]脑梗塞的病因不是()A.脑动脉粥样硬化B.各种脑动脉炎C.有心脏形成的脑栓塞D.糖尿病E.以上均不是 [单选]性联鱼鳞病的临床特点不正确的是()A.仅见于男性,女性仅为携带者B.皮损往往遍布全身,面、颈部亦常受累C.掌趾无角化过度D.症状随年龄增长而减轻 [问答题,简答题]野外作业遇雷雨时,作业人员应遵守那些规定? [单选]导致膀胱肿瘤的危险因素是()A.吸烟B.膀胱慢性感染C.长期接触联苯胺D.上述都是E.上述都不是 [填空题]档板“三对应”的内容:()、()、()三者之间对应。 [单选]注册建造师王某与原施工单位解除了聘用合同,选择一家在本专业有多项工程服务资质的单位担任建设工程施工的项目经理,则他必须进行()。A.初始注册B.延续注册C.变更注册D.增项注册 [判断题]有关手术体位安置,只要手术需要,可将病人安置在超过忍受限度的强迫体位上。A.正确B.错误 [单选]在化工生产工艺技术路线选择中,首先要选择的原则是()。A、工艺路线的先进性;B、工艺技术路线的可靠性;C、工艺路线经济的合理性;D、工艺路线先进性及经济合理性。 [单选]()反映的是企业的经营业绩情况,是业绩考核的重要指标。A.资产B.利润C.收入D.所有者权益 [单选]Allinflatableliferaftshave().A.safetystrapsfromtheoverheadB.builtinseatsC.releasinghooksateachendD.waterstabilizingpocket [单选]沸点温度是随着压力增加而()。A.增加B.降低C.先增加后降低D.不变 [单选]VHF电台的语音信号携带于相应的AM信号的()。A.边带项B.载波项C.边带项和载波项 [单选]某企业现金收支状况比较稳定,全年的现金需要量为500万元,其每次转换现金转换金额为40万元,每次的转换成本为0.1万元,有价证券的年报酬率为8%,则该企业现有情况持有现金总成本为()万元。A.2.83B.4.75C.2.85D.18.75 [单选]下列选项中,冷换设备泄漏处理方法错误的是()。A、立即组织紧漏B、立即用火抢修C、因憋压造成的,应查明原因D、无法紧的漏点,应立即切换抢修 [填空题]()是科技职业道德的核心内容,是科技工作者进行科技活动的出发点和归宿。 [单选]本、邻桩之问净距小于5m时,应待邻桩混凝土强度达到()后,方可进行本桩钻孔。A.3MPaB.5MPaC.8MPaD.IOMPa [单选,A2型题,A1/A2型题]以下关于正常妇女双合诊检查的描述,正确的是()A.双手同时放入阴道检查B.均有宫颈抬举痛C.可触到输卵管D.子宫固定E.一般触不到卵巢 [单选]印刷业经营者在印刷经营活动中发现违法犯罪行为,应当及时向()或者出版行政部门报告。A.工商行政部门B.公安部门C.文化行政部门D.党委宣传部门 [单选,A2型题,A1/A2型题]胸外心脏按压的正确部位是()A.胸骨上中1/3交界处B.胸骨下1/3C.胸骨左缘第4肋间D.胸骨中下1/3交界处E.胸骨左缘第4肋间腋中线上 [单选]()是当事人一方以订立合同为目的,就合同的主要条款向另一方提出建议的意思表示。A.要约B.承诺C.还盘D.邀请发盘 [名词解