第6章_互感耦合电路
耦合电感的计算

所以
i1 t ( 1 0 t 2 0 )
uab t R1i1t 10(10t 20) (100t 200)V
ubc
t
L1
di dt
5 d dt
(10t
20)
50V
uac t uab tubc(t) (100t 150)V
ude
t
M di1 dt
d10t 20
1 dt
10V
在t≥2s时
i1(t)=0
在0≤t≤时,
i1(t)=10tA (由给出的波形写出)
所以
uab t R1i1 t 10 10t 100tV
ubc t
Li
dii dt
5 d 10t 50V
dt
uac t uab t ubc t 100t 50V
ude
t
M
di1 dt
d 10t
1 dt
10V
在1≤t≤2s时
6.2 耦合电感的去耦等效
6.2.1 耦合电感的串联等效 6.2.2 耦合电感的T型等效
6.2.1 耦合电感的串联等效
图6.10(a)所示相串联的两互感线圈,其相连的端钮
是异名端,这种形式的串联称为顺接串联。
由所设电压、电流参考方向及互感线圈上电压、电流
关系,得 式中
u
u1
u2
L1
di dt
该线圈中的自感电压同号。即自感电压取正号时互感电压亦
取正号,自感电压取负号时互感电压亦取负号;否则,当两
线圈电流从异名端流入(或流出)时,由于线圈中磁通相消,
故互感电压与自感电压异号,即自感电压取正号时互感电压
取负号,反之亦然。
6.1.3 同名端
互感耦合等效电路

互感耦合等效电路互感耦合是指在电路中两个电感元件之间存在相互影响的现象。
互感耦合的等效电路是一种简化的电路模型,用于描述互感耦合对电路的影响。
本文将介绍互感耦合等效电路的基本概念、特性以及在电路设计中的应用。
一、互感耦合的基本概念互感耦合是指两个电感元件之间通过磁场相互影响,从而导致电路中的电流和电压发生变化。
当两个电感元件之间存在互感耦合时,它们的磁场会相互耦合,使得其中一个电感元件中的电流变化会导致另一个电感元件中的电流发生变化。
二、互感耦合等效电路的特性互感耦合等效电路可以将互感耦合的影响用一个等效电路来描述。
在互感耦合等效电路中,两个电感元件之间的耦合作用可以用一个互感系数k来表示。
互感系数k的取值范围为0到1,其中0表示完全无耦合,1表示完全耦合。
互感耦合等效电路的特性有以下几点:1. 电感元件之间的耦合作用可以通过一个互感元件来表示,该互感元件的电感值为互感系数k乘以两个电感元件的电感值的乘积。
2. 互感耦合等效电路中的电感元件之间存在互感耦合,因此它们的电流和电压之间存在相互影响。
3. 互感耦合等效电路中的电感元件之间的耦合作用可以增大或减小电路中的电流和电压,从而改变电路的性能。
三、互感耦合等效电路的应用互感耦合等效电路在电路设计中有着广泛的应用。
以下列举几个常见的应用场景:1. 互感耦合等效电路在无线通信系统中的应用。
无线通信系统中常常使用天线与射频电路之间的互感耦合来传输信号。
2. 互感耦合等效电路在功率变换器中的应用。
功率变换器中常常使用互感耦合来实现电能的传输和转换。
3. 互感耦合等效电路在变压器中的应用。
变压器是一种利用互感耦合实现电能传输和电压变换的设备。
四、总结互感耦合等效电路是一种用于描述互感耦合对电路的影响的简化电路模型。
它能够准确地描述互感耦合的特性,并在电路设计中有着广泛的应用。
通过了解互感耦合等效电路的基本概念、特性以及应用场景,我们可以更好地理解互感耦合现象,并在电路设计中灵活应用。
耦合电感_精品文档

线圈电流产生的磁通全部与耦合线圈交链Mmax =
;
K 近于1时称为紧耦合;K 值较小时称为松耦合;K=0 称
为无耦合。
上一页 返回
第二节 有耦合电感的正弦电路
含有耦合电感电路(简称互感电路)的正弦稳态计算可采用 相量法。分析时要注意耦合电感上的电压是由自感电压和互 感电压叠加而成的。根据电压、电流的参考方向及耦合电感 的同名端确定互感电压的方向是互感电路分析计算的难点。 由于耦合电感支路的电压不仅与本支路电流有关,还和与之 有耦合支路的电流有关,列写节点电压方程较困难,所以互 感电路的分析计算一般采用支路电流法(网孔法)。
第六章 耦 合 电 路
第一节 耦合电感 第二节 有耦合电感的正弦电路 第三节 空心变压器 第四节 理想变压器
第一节 耦合电感
一、互感
1. 互感现象 我们先观察下面这个实验。图6−1 所示的实验电路中,线
圈2 两端接一灵敏检流计。当开关S 闭合瞬间,可以观察到 检流计指针偏转一下之后又回到零位。发生这种现象的原因 是由于开关S 闭合的瞬间,线圈1 产生变化的磁通Φ 11,其 中的一部分磁通Φ 12与线圈2 交链,使线圈2 产生感应电动 势,因而产生感应电流使检流计指针偏转。S 闭合后,线圈 1 的电流不再发生变化,虽然仍有磁通与线圈2 交链,但该 磁通是不变化的,所以不产生感应电动势,没有电流流过检 流计,因而检流计的指针回到零位。
上一页 下一页 返回
第一节 耦合电感
在同频正弦稳态电路中,耦合电感的伏安关系可以用相量形 式表示,式(6−5)可表示为
(6−8)
例6−3 电路如图6−8 所示,已知R1=1 Ω,L1=L2=1 H, M=0.5 H,uS=10sin 4t。试求u2。
电路基础(第3版_王慧玲)电子教案 电路基础第3版电子教案 3第6章 互感耦合电路

本章教学内容
互感耦合电路的概念,同名端,互感线圈的 串联、并联,互感电路的应用。
6-1 互感耦合的概念
重点内容: 互感、耦合系数、互感电压的概念。
教学要求: 1.深刻理解互感的概念,了解互感现象及
耦合系数的意义 。 2.掌握互感电压与电流关系。
6-1 互感耦合的概念
一、互感耦合
1.互感耦合:如果两个线圈的磁场存在相互作 用,这两个线圈就称为磁耦合或具有互感。
例如:
i1 1
+ uM1 Ⅰ 1'
i2 2 1 i1
M
i2 2
+
*
Ⅱ uM1 +
-
uM1
2' _
*
+ uM2 _
1'
2'
图6-4 互感线圈的同名端及互感的电路符号
2.同名端的判定
直接判定 需知各线圈的实际绕向。
例6-1 电路如图,试判断同名端。
解: 根据同名端的定义,图(a)中,2、4、5为
同名端或1、3、6为同名端。图(b)中,1、3为
▪若U24 约等于U12和U34之差, 则1、3为同名端;
▪若U24 约等于U12和U34之和, 则1、3为异名端。
小结:
同名端即同极性端,对耦合电路的分析极 为重要。同名端与两线圈绕向和它们的相对位 置有关。工程实际常用实验方法判别同名端, 有直流判别法和交流判别法。
6-3 互感的线圈串联、并联
一、空心变压器
空心变压器等效电路如图
M
+ uS -
i1
**
L1
L2
i2
+
ZL uL
R1
R2
电路基础3第6章 互感耦合电路

5.如果选择电流i2的参考方向以及uM1的参考方向与 Ψ12的参考方向都符合右螺旋定则时
uM2
M
di1 dt
2020/4/29
6-2 互感线圈的同名端
重点内容: ·同名端的概念 ·实验法判断同名端
教学要求: ·会确定互感线圈的同名端
2020/4/29
6-2 互感线圈的同名端
1.同名端的定义 互感线圈中,无论某一线圈的电流如何变化,
产生了变化的互感磁通Ψ21,而Ψ21的变化将在线
圈Ⅱ中产生互感电压uM2。
如果选择电流i1的参考方向以及uM2的参考方向
与Ψ21的参考方向都符合右螺旋定则时,则
uM2
d21Md1i
dt
dt
2020/4/29
互感线圈的电压与电流
Ⅰ
Ⅱ
12
22
N1 i2 N2
+ uM1 -
同理,当线圈 Ⅱ中的电流i2变动时,在线圈Ⅰ中
2020/4/29
2.同名端的判定
直接判定 需知各线圈的实际绕向。
例6-1 电路如图,试判断同名端。
解: 根据同名端的定义,图(a)中,2、4、5为
同名端或1、3、6为同名端。图(b)中,1、3为
同名端或2、4为同名端。
i*
**
1 23
45
(a)
1 i1
+* u-M1
6
2
例6-1题图
(b)
i2 3 *+
2020/4/29
二、互感系数M与耦合系数k
1.互感系数M
在非磁性介质中,磁链与电流大小成正比,若磁 通与电流的参考方向符合右手螺旋定则时,可得
Ψ 21=M21i1 或 Ψ 12=M12i1
互感电路PPT资料26页

U 13 j (L 1 M )I1 j M I3
M-M
U 23 j (L 2 M )I2 j M I3
书山有路勤为径●▂●学海无涯苦
12
作舟 专业分享,敬请收藏
小结: 同侧T型
异侧T型
L1 - M L2 - M M
L1 + M L2 + M -M
书山有路勤为径●▂●学海无涯苦
第六章 互感电路
第一节 第二节 第三节 第四节 第五节
互感及互感电压 耦合电感的伏安关系 耦合电感的连接及等效变换 耦合电感的T型连接及等效变换 空心变压器
书山有路勤为径●▂●学海无涯苦
1
作舟 专业分享,敬请收藏
6-1、互感及互感电压 i1
i2
(空芯耦合线圈)
u11dd1t1L1
d1i dt
2、未知线圈绕向判断
M 1• •2
L1
1’
L2
2’
四、耦合系数: K M L1L2
意义:表示线圈磁耦合的紧密程度。
书山有路勤为径●▂●学海无涯苦
4
作舟 专业分享,敬请收藏
6-2 耦合电感的伏安关系
一、时域关系
iI1 1
Ii22
Uu 11
L1 L2 Uu 22
u1(t)
L1
d1i(t) dt
j5I1j5(I1I2)1 00
j5I2j5 (I1 I2) 1I 0 2 0
j1I 0 1j1I 0 210 0 0
j1I0 1(1 0j1)0 I20
200 j300
《互感耦合电路》课件

阻抗与导纳的关系
阻抗的定义
阻抗是衡量电路对交流电阻碍作用的 量,由电阻、电感和电容共同决定。 在互感耦合电路中,阻抗的大小和性 质对于分析电路的工作状态和性能具 有重要意义。
导纳的定义
导纳是衡量电路导通能力的量,由电 导和电纳共同决定。导纳与阻抗互为 倒数关系,对于理解电路的交流特性 具有重要意义。
应用
在电力系统中,变压器用 于升高或降低电压;在电 子设备中,变压器用于信 号传输和匹配阻抗等。
传输线
定义
传输线是用于传输电信号的媒介,由芯线和绝缘 材料组成。
工作原理
传输线中的信号通过电磁场进行传播,受到线路 参数和外部环境的影响。
应用
在通信、测量和电子设备中,传输线用于信号传 输和匹配网络等。
《互感耦合电路》 PPT课件
目录
• 互感耦合电路概述 • 互感耦合电路的基本元件 • 互感耦合电路的分析方法 • 互感耦合电路的特性分析 • 互感耦合电路的设计与优化 • 互感耦合电路的应用实例
01
互感耦合电路概述
定义与工作原理
定义
互感耦合电路是指通过磁场相互耦合的电路。
工作原理
当一个电路中的电流发生变化时,会在周围产生 磁场,这个磁场会对其他电路产生感应电动势, 从而影响其他电路中的电流。
04
互感耦合电路的特性分析
电压与电流的关系
电压与电流的相位差
在互感耦合电路中,电压和电流的相位差是重要的特性之一。这个相位差的大小和方向可以通过测量或计算得出 ,对于理解电路的工作原理和性能至关重要。
电压与电流的幅度关系
在理想情况下,电压和电流的幅度是成正比的,即当电压增加时,电流也增加,反之亦然。然而,在实际的互感 耦合电路中,由于各种因素的影响,这种比例关系可能会发生变化。
互感耦合电路解析

uM2 MI1
uM1 MI2
i uM 2 较 1超前 90
u M 1较 i2 超前 90
用相量表示:
•
U M2
MI190
X M I190
•
U M1
MI290
X M I 290
XM
M
具有电抗的性质,称为互感抗,
单位与自感抗相同,也是
当两个线圈通入电流,所产生的磁通量为相 同方向时,两个线圈的电流流入端(或流出) 为同名端,用符号“• ”或“﹡”标记
互感电压与产生它的电流对同名端的参考方
向一致
u M 1的参考方向
是1正2负
uM 2 的参考方向 是3正4负
互 具有互感的两个线圈串联,有两种连接方
感 式:顺向串联和反向串联 顺向串联: 将两个线圈的异名端连在一起
线
形成一个串联电路,电流均由
两个线圈同名端流入(或流出)
圈
的 串
u LS
其中:
i t
M
、
k
L1L2
其中:L1 L2 分别是线圈1和线圈2中的自感
k 接近于零时——弱耦合
k 近似为1时——强耦合
k =1——两个线圈为全耦合,自感磁通全
部为互感磁通
u M2
21
t
M
i1 t
u M1
12
t
M
i2 t
结论:互感电压与产生它的电流的变化率成正比,与
互感成正比
当两个线圈通过正弦交流电流时,互感
第6章 互感耦合电路
本章内容
3.1 互感 3.2 互感线圈的串联
3.3 变压器
互 感
互感现象:由于一个线圈的电流变化,导致
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
φ1 uL1 i1 uM2
L2
φ12
1
L1
L2
通过两线圈的电流是交变 的电流,交变电流产生交变的 磁场,当交变的磁链穿过线圈 L1和L2时,引起的自感电压:
φ1
di1 di2 u L1 L1 , u L2 L2 , dt dt
uL1 i1 uM1
uM2 i2 uL2
φ21 φ2 φБайду номын сангаас2
M uL1 uM1
L2
uM2 uL2
*
同理 两线圈反串时等效电感量为: L反
L1 L2 - 2M
U U 1 U 2 j ( L1 L2 2M ) I jL反 I
13
6.2.2
耦合线圈的并联
1. 两对同名端分别相联后并接在电路两端,称为同侧 相并,如下图所示; 根据图中电压、电流参考方向可得:
Z L R jX
若次级回路接上负载ZL,则回路方程为:
( R1 jL1 ) I 1 jM I 2 U S
[(R2 R) j ( X L2 X )] I 2 jM I 1 0
17
左图为空芯变压器的相量 模型图,其中令:
I1
jω M I2
1
+
抗 Z1r反映了空芯变压器次级回路通过互感对初级回 路产生的影响。
19
引入反射阻抗的概念之后,次级回路对初级回路 的影响就可以用反射阻抗来计算。这样,我们就可以 得到如下图所示的由电源端看进去的空芯变压器的等 效电路。当我们只需要求解初级电流时,可利用这一 等效电路迅速求得结果。 I1 R1
1
+
US
假设电流同时由1和2流入, 两电流的磁场相互增强,因此可 以判断:1和2是一对同名端;同理, 1'和2'也是一对同名端。
S 1 *
判断下图两线圈的同名端。已知在开关S闭合 时,线圈2两端所接电压表的指针正偏。
M
+
2* + V 正偏 2' -
开关S闭合时,电流由零增 - - 大且由1流向1',由于线圈2与 1' 线圈1之间存在互感,所以 当线圈1中的电流变化时,首先要在线圈1中引起一个 自感电压,这个自感电压的极性和线圈中的电流成关 联方向(吸收电能、建立磁场);
i + 1
理想变压器的电路模型: u1
-
n:1 * *
N1
i2 +
N2
u2
-
21
二、理想变压器的主要性能 1.变压关系
理想变压器在图示参考方 向下,其初级和次级端电压有 效值之比为:U1/U2=N1/N2=n
i + 1 n:1 * N1 * N2 i2 - i + 1 n:1 * * N1
i2 + N2
3
互感现象的应用和危害
互感现象在电工电子技术中有着广泛的应用,变 压器就是互感现象应用的重要例子。 变压器一般由绕在同一铁芯上的两个匝数不同的 线圈组成,当其中一个线圈中通上交流电时,另 一线圈中就会感应出数值不同的感应电动势,输 出不同的电压,从而达到变换电压的目的。利用 这个原理,可以把十几伏特的低电压升高到几万 甚至几十万伏特。如高压感应圈、电视机行输出 变压器、电压、电流互感器等。 互感现象的主要危害:由于互感的存在,电子电 路中许多电感性器件之间存在着不希望有的互感 场干扰,这种干扰影响电路中信号的传输质量。
第六章 互感耦合电路
6.1 互 感
两个相邻的闭合线圈L1和L2,若一个线圈中的电 流发生变化时,在本线圈中引起的电磁感应现象称为 自感,在相邻线圈中引起的电磁感应现象称为互感。
在本线圈中相应产生的感应 电压称为自感电压,用uL表 示;在相邻线圈中产生的感 应电压称为互感电压,用uM 表示。注脚中的12是说明线 圈1的磁场在线圈2中的作用。
两线圈套在同一个芯子上,因此它们电流的磁场 不仅穿过本线圈,还有相当一部分穿过相邻线圈, 因此这部分交变的磁链在相邻线圈中也必定引起互 感现象,由互感现象产生的感应电压称为互感电压:
u M2
di1 di2 M , u M1 M dt dt
2
互感电压中的“M”称为互感系数,单位和自感系数 L 相同,都是亨利[H]。 互感系数简称互感,其大小只与相邻两线圈的几 何尺寸、线圈的匝数、相互位置及线圈所处位置媒质 的磁导率有关。互感的大小反映了两相邻线圈之间相 互感应的强弱程度。
10
6.2 互感线圈的连接
6.2.1 耦合线圈的串联
(1)一对异名端相联,另一对异名端与电路相接,这种 连接方法称为顺接串联(顺串),下图所示;
i *
L1 M
互感线圈L1和L2相串联时有两种情况:
uL1 uM1
*
L2
uM2 uL2
1.两线圈顺串时,电流同时由同名端流入(或流出), 因此它们的磁场相互增强,自感电压和互感电压同方向, di di di 有: u L M L M
i *
M
u
*
L2
L1
i1
i2
di1 di2 u L1 M dt dt di2 di1 u L2 M dt dt i = i 1 +i 2
L1 L2 M 2 解得同侧相并的等效电感量: L同 L1 L2 2M
14
2. 两对异名端分别相联后并接在电路两端,称为异 侧相并,如下图所示: 根据图中电压、电流参考方向可得:
4
二、耦合系数
两互感线圈之间电磁感应现象的强弱程度不仅与它 们之间的互感系数有关,还与它们各自的自感系数有关。 我们把表征两线圈之间耦合的程度用耦合系数“k” 来表示: M
k
L1 L2
通常一个线圈产生的磁通不能全部穿过另一个线圈 ,所以一般情况下耦合系数k<1,若漏磁通很小且可忽 略不计时:k=1;若两线圈之间无互感,则M=0,k=0。因 此,耦合系数的变化范围:0 ≤ k ≤ 1。
dt dt dt di di di u 2 L2 M L2 M dt dt dt
1 1 1
11
总电压
di di u u1 u 2 L1 L2 M L顺 dt dt
即两线圈顺串时等效电感量为: 对于向量形式也可以表示为:
L顺 L1 L2 2M
变压器是利用电磁感应原理传输电能或电信号的 器件。通常有一个初级线圈和一个次级线圈,初级线 圈接电源,次级线圈接负载,能量可以通过磁场的耦 合,由电源传递给负载。 因变压器是利用电磁感应原理而制成的,故可以 用耦合电感来构成它的模型。这一模型常用于分析空 芯变压器电路。
16
1 uS 1'
i1
L1
M
US
+
uL
由于两个线圈之间存在互感,所以线圈1中的电 流变化必定在线圈2中也要引起互感电压,这个互感 电压正是电压表所指示的数值,因电压表正偏,所以 互感电压的极性与电压表的极性相符,可以判断: 1和2是一对同名端!
依据图中所示参考方向可 φ21 列出两线圈的伏安关系: φ2 di1 di2 φ1 u1 L1 M φ12 dt dt uL1 uM2 i1 i2 di2 di1 uM1 uL2 u 2 L2 M dt dt 自感电压总是与本线圈中通过的电流取关联参考 方向,因此前面均取正号;而互感电压前面的正、负 号要依据两线圈电流的磁场是否一致。如上图所示两 线圈电流产生的磁场方向一致,因此两线圈中的磁场 相互增强,这时它们产生的互感电压前面取正号;若 两线圈电流产生的磁场相互消弱时,它们产生的感应 电压前面应取负号。
i2
L2
* *
2
u20
ZL
R1
R2
2'
左图所示为空芯变压器的电路模 型。其中左端称为空芯变压器的初 级回路,右端为空芯变压器的次级 回路。 图中uS为信号源电压,u20为次级 回路的开路电压。
由图可列出空芯变压器的电压方程式为:
( R1 jL1 ) I 1 U S
jM I 1 U 20
-
jXL1 ω 2M 2
1'
Z22
反射阻抗的算法不难记忆:用ω2M2除以次级回 路的总阻抗Z22即可。
20
6.4 理想变压器
理想变压器是一种特殊的无损耗全耦合变压器,它 是从实际变压器抽象出来的。 一、理想变压器应满足下列三个条件 (1)变压器本身无损耗,这意味着绕线圈的金属导线 无任 何电阻, (2)耦合系数k=1,即为全耦合; (3)自感系数L1、L2、 M均为无穷大。
5
三、同名端
♣ 两互感线圈感应电压极性始终保持一致的端子称为 同名端。 ♣ 电流同时由两线圈上的同名端流入(或流出)时,两 互感线圈的磁场相互增强;否则相互消弱。
* *
·
·
用一对符号“●”予以标注,另一对无标志端也是 同名端。
6
判断下列线圈的同名端。
* *
1
i1
i2
2
1'· 1
2' · 2
u1
-
u2
-
u1
-
u2
+
左图示理想变压器的初级和次 级端电压对同名端不一致,这时u1 与u2相位相差180°,为反相关系。 这点在列写回路方程时要注意。
22
2. 变流关系 理想变压器在变换电压的同时也在变换着电流, 其电流变换关系为: I2/I1=N1/N2=n
23
24
25
26
U U 1 U 2 ( jL1 I jM I ) ( jL2 I jM I ) j ( L1 L2 2 M ) I jL顺 I