物探简介

合集下载

物探工作简介

物探工作简介

利用地下水在不同地质体间的流动规律, 对地质构造、地层界面等信息进行探测和 分析。
物探工作设备
数据采集设备
包括各种传感器、测量仪器等,用于采集物探数据。
数据处理设备
包括计算机、软件等,用于处理、分析、解释采集到 的数据。
辅助设备
包括交通工具、通讯设备等,用于保障物探工作的顺 利进行。
03
物探工作实例
数值模拟与虚拟现实技术
数值模拟和虚拟现实技术的应用将使物探工作更加直观、 形象,能够更好地模拟地质体特征和地下结构,为地质勘 探和资源开发提供更准确的指导。
跨学科融合发展
地球化学与地球物理相结合
地球化学方法能够提供关于地下隐伏构造和矿产资源分布的更多信息,与地球物理方法相 结合能够更好地综合分析地质体特征和地下结构。
综合运用多种方法
综合运用多种物探方法可以相互印证和补充,提 高物探解释的精度和可靠性。
物探工作的标准化和规范化
制定标准操作流程
01
制定标准操作流程可以规范物探工作的各个环节,确
保数据的准确性和一致性。
强化质量管理体系
02 强化质量管理体系可以确保物探工作的质量,提高工
作效率和客户满意度。
推广行业规范
02
物探工作流程与技术
物探工作流程
现场勘查
对探测目标所在区域进行实地 勘查,了解现场地形、地貌、 地质等特征。
数据处理
对采集到的数据进行处理、分 析、解释等,提取有用的信息 。
探测目标分析
对探测目标进行详细分析,确 定探测任务、目的、要求等。
数据采集
根据探测任务和技术要求,选 择合适的物探方法和技术进行 数据采集。
结果评估
对处理后的数据进行评估,判 断探测结果是否符合要求,提 出改进意见。

地球物理勘查方法简介

地球物理勘查方法简介

地球物理勘查方法简介地球物理勘查简称物探.是地球物理学的一个分支。

它是以物理学理论为基础,以地球为主要调查研究对象;具有快速、遥测、信息量大等特点,较易吸收现代科学技术,是深部地质调查的基本方法,也是矿产资源勘查、评价不可缺少的手段。

基于物理学的原理、方法和观测技术,物探方法一般划分为:磁法、重力法、电法(含电磁法).弹性波法(含地震法和声波法).核法(放射性法)、热法(地温法)与测井等7大类,和地面,航空、海洋,地下4个工作空域。

地震勘探技术地震勘探是地球物理勘探中重要的方法之一,它具有高精确度、高分辨率,探测深度一般为数十米到数千米。

目前的石油、天燃气和煤探井孔位的确定均以地震勘探资料为重要依据,在水文工程地质调查、沉积成层矿产的勘查、城市活断层探测以及地壳测深等工作中,地震勘探也发挥着越来越重要的作用。

最新的研究成果表明:对于不规则块状硫化物金属矿体,采用散射波地震方法能够开展非沉积型金属矿勘查。

地震勘探的物理基础是岩石的弹性差异。

地震勘探就是通过人工方法激发地震波,研究地震波在地层中的传播情况,查明地下地层和构造的分布,为寻找矿产资源、探测城市活断层及其它勘探目的服务的一种地球物理勘探方法。

地震勘探方法比较复杂,其基本原理可用回声测距来说明。

当我们前面不远处有一座直立的高山时,为了解我们到高山的距离,简单的办法是大喊一声,测定我们从发声开始到耳朵听到回声的时间,根据声音在空气中传播的已知速度,就可以计算出高山离我们的距离。

用地震勘探方法探测埋藏在地下的目标,其原理大体也是这样,只不过是地下岩层和土壤要比空气不均匀的多,因而地震勘探也远比回声测距困难复杂的多。

根据地震方法的特点,地震勘探需要在背景比较平静的环境下开展,为使该方法技术能够在城市强干扰条件下开展工作,物化探所研究开发出了抗干扰高分辨率地震勘探技术,解决了常规地震勘探方法无法解决的地质问题。

物化探所长期从事弹性波场探测和复杂条件下地震方法技术的研究和勘查工作,拥有先进的地震仪器配套设备和专用地震数据处理软件。

物探的工作内容

物探的工作内容

物探的工作内容
物探是指利用地球物理、地球化学、地质学等科学方法,探测地下的物质分布、构造特征、物理性质等信息,为矿产资源勘查、地质灾害预测、水文地质调查等提供技术支持的一项专业技术。

物探工作的内容主要包括以下几个方面:
1.地球物理勘探:通过测量地球物理场,如地震波、电磁场、地热场、重力场等,来探测地下的物质分布和构造特征,为矿产资源勘查、地质灾害预测、水文地质调查等提供技术支持。

2.地球化学勘探:通过采集地下水、土壤、岩石等样品,对样品中的化学元素、同位素等进行分析,以获得地下矿产资源的信息,为矿产资源勘查、环境污染监测等提供技术支持。

3.钻探勘探:通过钻探井口,获取地下的岩石、土壤等样本,进行地质分析,
为矿产资源勘查、地质灾害预测、水文地质调查等提供技术支持。

4.数据处理和解释:对采集的地球物理、地球化学、钻探等数据进行处理和解释,形成地下物质分布、构造特征、物理性质等图像和模型,为矿产资源勘查、
地质灾害预测、水文地质调查等提供决策依据。

总之,物探工作的内容非常丰富和多样化,需要综合运用地球物理、地球化学、地质学等学科知识和技术手段,以获取地下物质的信息,为矿产资源勘查、地质灾害预测、水文地质调查等提供有力支持。

物探工作简介

物探工作简介
3.2.2 编写投标文件
3.2、物探工作程序中重要环节
3.2.3 施工设计编写—《煤炭煤层气地震勘探规范》( MT/T 897-2000)
3.2.3设计编制提纲3.2.3.1序言: 叙述项目来源、地质任务、工作范围,施工区的行政区划、交通位置及自然地理概况等。3.2.3.2施工区地质概况及地球物理特征: a)地质概况(包括地层、煤层和主要构造情况); b)地球物理特征; c)以往勘探程度及存在的主要问题。3.2.3.3 施工方法及工程量: a)生产前的试验工作; b)施工方法、因素的选择及其依据; c)地震工程布置及工程量; d)质量要求; e)测量工作及精度要求。3.2.3.4 资料处理、解释和报告提交: a)资料处理; b)资料解释及精度要求; c)报告提交的内容和时间。3.2.3.5 主要技术措施。3.2.3.6 设计附图: a)地形地质及地震工程布置图; b)综合柱状图; c)其它有关图件(包括以往地质、物探工作研究程度图)。3.2.3.7 水文地震勘探设计应增加水文地质内容。3.2.4 设计的审批 设计由编制单位初审,任务来源单位审批。设计未经批准,不得正式生产。工作中若设计有较大的改变,应报请设计批准单位同意。
5.4.3 接收线距宜为道距的整数倍,一般为道距的2~6倍,最大线距应小于第一菲涅尔带半径。
3.2、物探工作程序中重要环节
3.2.3 施工设计编写—《浅层地震勘查技术规范》( DZ/T 0170-1997 )
探地雷达
探地雷达





地震勘探
浅层折射波法


浅层反射波法

瑞雷波法


弹性波测试
声波法


地球物理勘探

地球物理勘探

03 地球物理场
02 分类 04 发展方向
05 方法
07 考古探测
目录
06 地下管线探测
勘探方法
勘探方法
相关课程书籍
地球物理勘探所给出的是根据物理现象对地质体或地质构造做出解释推断的结果,因此,它是间 接的勘探方法。此外,用地球物理方法研究或勘查地质体或地质构造,是根据测量数据或所观测 的地球物理场求解场源体的问题,是地球物理场的反演的问题,而反演的结果一般是多解的,因 此,地球物理勘探存在多解性的问题。为了获得更准确更有效的解释结果,一般尽可能通过多种 物探方法配合,进行对比研究,同时,要注重与地质调查和地质理论的研究相结合,进行综合分 析判断。人类居住的地球,表层是由岩石圈组成的地壳,石油和天然气就埋藏于地壳的岩石中, 埋藏可深达数千米,眼看不到,手摸不着,所以,要找到油气首先需要搞清地下岩石情况。怎样 才能搞清地下岩石的情况呢?这要从岩石的物理性质谈起。岩石物理性质是指岩石的导电性、磁 性、密度、地震波传播等特性,地下岩石情况不同,岩石的物理性质也随之而变化。
内容摘要
在此基础上,地球物理学为探测地球内部结构与构造、寻找能源、资源和环境监测提供理论、方 法和技术,为灾害预报提供重要依据。已故著名地球物理学家赵九章先生曾这样形容地球物理 学——“上穷碧落下黄泉、两处茫茫都不见”。这句话形象地表达了地球物理学在探索地球奥秘 中的挑战和艰辛。 总体来说,地球物理学的研究内容可以分为应用和理论两个方面。在应用方面,地球物理学家利 用各种地球物理方法对地球进行勘探和研究,包括地壳、地幔和地核等深部地球结构、矿产资源 和能源蕴藏情况等。而在理论方面,地球物理学则致力于研究地球的物理性质和规律,如地球的 重力场、磁场、电场、地震波传播等。 在地球物理学的研究中,人们还涉及到许多交叉学科领域,如数学、物理学、地质学、地理学等。 这些学科的交叉融合为地球物理学的发展提供了更广阔的研究视野和更丰富的研究手段。

物探简介

物探简介

精心整理地球物理勘探一、物探及其分类 二、物探方法简介 三、物探方法的特点:四、物探方法的应用范围与应用条件 1各种物理场。

可分为天然地球物理场和人工激发地球物理场两大类。

天然场;天然存在和形成的地球物理场主要有地球的重力场、地磁场、电磁场、大地电流场、大地热流场、核物理场(放射性射线场)等人工场:由人工激振产生弹性波在地下传播的弹性波场、向地下供电在地下产生的局部电场、向地下发射电磁波激发出的电磁等,发球人工激发的地球物理场。

人工场源的优点是场源参数书籍、便于控制、分辨率高、探测效果好,但成本较大。

地球物理场还可分为正常场和异常场。

正常场:是指场的强度、方向等量符合全球或区域范围总体趋势、正常水平的场的分布。

异常场:是由探测对象所引起的局部地球物理场,往往叠加于正常场之上,以正常二、物探方法简介1、重力勘探重力勘探是研究地下岩层与其相邻层之间、各类地质体与围岩之间的密度差而引起的重力场的变化(即“重力异常”)来勘探矿产、划分地层、研究地质构造的一种物探方法。

重力异常是由密度不均匀引起的重力场的变化,并叠加在地球的正常重力场上。

2、磁法勘探磁法勘探是研究由地下岩层与其相邻层之间、各类地质体与围岩之间的磁性差异而引起的地磁场强度的变化(即“磁异常”)来勘探矿产、划分地层、研究地质构造的一种物探方法。

磁异常是由磁性矿石或岩石在地磁场作用下产生的磁性叠加在正常3等。

4、地震勘探地震勘探是一种使用人工方法激发地震波,观测其在岩体内的传播情况,以研究、探测岩体地质结构和分布的物探方法。

确定分界面的埋藏深度、岩石的组成成分和物理力学性质。

根据所利用弹性波的类型不同,地震勘探的工作方法可分为:反射波法、折射波法、透射波法和瑞雷波法。

5、放射性勘探地壳内的天然放射元素蜕变时会放射出α、β、γ射线,这些射线穿过介质便会产生游离、荧光等特殊的物理现象。

放射性勘探,就是借助研究这些现象来寻找放射性元素矿床和解决有关地质问题、环境问题的一种物探方法。

物探简介

物探简介

•作业及考核方式 作业及考核方式
作业:论文式的学习报告( 作业:论文式的学习报告(2-3次), 计入平时成绩; 计入平时成绩; 期末闭卷笔试。 期末闭卷笔试。 解释大作业 • 教材及参考书
• • • • • 地震勘探原理》 《地震勘探原理》陆基孟主编 上下册 地震勘探》 《地震勘探》董敏煜主编 石油地球物理勘探》 《石油地球物理勘探》秦政编 应用地球物理教程》 《应用地球物理教程》--- 地震勘探 何樵登主编 油气地球物理勘探技术》 《油气地球物理勘探技术》 赵殿东等主编
地球物理勘探简介
• 一、普通物探概述 • 二、重力勘探 • 三、磁法勘探 • 四、电法勘探
一、普通物探概述
• (一)地球物理勘探的基本原理 地球物理勘探的基本原理 • 重力勘探:以岩石的密度差为依据。 重力勘探:以岩石的密度差为依据。 在地面上测量由密度差引起的重力变 化的方法。 化的方法。 • 磁法勘探:以岩石的磁性差异(磁化 磁法勘探:以岩石的磁性差异( 为依据,在地面、 率)为依据,在地面、海上或航空测 量由磁性体引起的磁场变化的方法。 量由磁性体引起的磁场变化的方法。
• 重力布格异常的高 正)低(负)反映上地幔的隆 重力布格异常的高(正 低 负 反映上地幔的隆 起和凹陷,即地壳的薄与厚; 起和凹陷,即地壳的薄与厚 • 布格重力异常走向上的规律性反映深部地壳构 造走向的变化规律, 造走向的变化规律,重力异常密集带与山脉之 间相对应; 间相对应; • 平稳的区域重力异常与坚固的地台区相对应; 平稳的区域重力异常与坚固的地台区相对应; • 布格重力异常的密集带及相互交汇的地区是天 然地震相对活动区。 然地震相对活动区。
青海
1.99 2.41 2.33 2.37 2.45 2.62 2.64 2.65

物探资料

物探资料

(1)地球物理勘探方法:是以岩、矿石等介质的物理性质差异为物质基础,利用物理学原理,通过观察和研究地球物理场的空间与时间分布规律以实现基础地质研究、环境工程勘察和地质找矿等目的的一门应用科学。

(2)岩矿石介质物理性质或物性参数:密度、磁性(磁导率、磁化率、剩余磁性)、电性、放射性、导热性及弹性(3)地球物理勘探方法:重力勘探、磁法勘探、电法勘探、地震勘探、放射线勘探、地热勘探(4)地球物理异常:组成地球物理的各种岩石之间,总是在磁性、密度、放射性、温度、电性、弹性等物理性质方面存在差异,这些差异引起相应的地球物理空间上的变化(5)地球物理场:指存在地球内部的及其周围,具有物理作用的空间。

如:弹性波场、重力场、地磁场、地电场、地热场、辐射场(6)磁化率:表征磁介质属性的物理量。

等于磁化强度M与磁场强度H之比(7)重力异常:大地水准面上的重力值与相应点在地球椭球面上的正常重力值之差;或地球自然表面上的重力观测值与相应点在近似地形面上的正常重力值之差(8)布格重力异常:是对观测值进行地形矫正,布格矫正和正常场矫正后获得的(9)磁异常:地磁场的理论分布是有变化的。

而实际上测得的地球磁场强度和理论磁场强度是有区别的,这种区别称地磁异常(10)电阻率法:是根据岩石和矿石导电性的差别,研究地下岩、矿石电阻率变化,进行找矿勘探的法(11)视电阻率:在实际情况下,测得电场控制范围内各种岩石综合影响结果而得到的(12)真电阻率:当电场控制范围内仅有一种岩石并且它的导电性是均匀时候测得的(13)时间剖面:实测地震资料经过各种处理后,同相轴变换成地下界面的形状,由于同相轴代表的界面到地表的距离不是深度,而是时间,这种剖面(14)激发极化效应:通常将供电时,地下电场随时间增长的过程称为充电过程,断电后 电场随时间衰减的过程称为放电过程。

这种在充、放电过程中,由于电化学作用产生随时间变化的附加电场的现象(15)决定岩矿石密度的因素1组成岩石的各种矿物成分及其含量的多少2)岩石中孔隙大小及孔隙中的充填物成分3)岩石所承受的压力等火成岩的密度主要取决于矿物成分及其含量的百分比,由酸性→中性→基性→超基性岩,随着密度大的铁镁暗色矿物含量的增多,密度逐渐增大, 成岩过程中的冷凝.结晶分异作用也会造成不同岩相带岩石的密度差异.不同成岩环境也会造成同一岩类的密度有较大的差异沉积岩的密度;主要取决于孔隙度的大小,充填物的成分及充填空隙占所有空隙的比例,随着成岩时代的久远及埋深的加大,密度也会大变质岩的密度因素:矿物成分及其含量,孔隙度,主要因素:变质的性质和程度(16)岩石磁性的最主要因素:1)岩石中铁磁性矿物含量2)岩石中磁性矿物颗粒大小。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

地球物理勘探一、物探及其分类二、物探方法简介三、物探方法的特点:四、物探方法的应用范围与应用条件五、物探在工程勘探中的应用一、物探及其分类1、地球物理勘探地球物理勘探,简称物探,是以地下岩体的物理性质的差异为基础,通过探测地表或地下地球物理场,分析其变化规律,来确定被探测地质体在地下赋存的空间范围(大小、形状、埋深等)和物理性质,达到寻找矿产资源或解决水文、工程、环境问题为目的的一类探测方法。

物理性质:岩体的物理性质主要有密度、磁性、电性、弹性、放射性等。

主要物性参数密度、磁场强度、磁化率、电阻率、极化率、介电常数、弹性波速、放射性伽马强度等。

地球物理场:物理场可理解为某种可以感知或被仪器测量的物理量的分布。

地球物理场是指由地球、太空、人类活动等因素形成的、分布于地球内部和外部近地表的各种物理场。

可分为天然地球物理场和人工激发地球物理场两大类。

天然场;天然存在和形成的地球物理场主要有地球的重力场、地磁场、电磁场、大地电流场、大地热流场、核物理场(放射性射线场)等人工场:由人工激振产生弹性波在地下传播的弹性波场、向地下供电在地下产生的局部电场、向地下发射电磁波激发出的电磁等,发球人工激发的地球物理场。

人工场源的优点是场源参数书籍、便于控制、分辨率高、探测效果好,但成本较大。

地球物理场还可分为正常场和异常场。

正常场:是指场的强度、方向等量符合全球或区域范围总体趋势、正常水平的场的分布。

异常场:是由探测对象所引起的局部地球物理场,往往叠加于正常场之上,以正常场为背景的场的局部差异和变化。

例如富存在地下的磁铁矿体或磁性岩体产生的异常磁场,叠加在正常磁场之中;铬铁矿的密度比围岩的密度大,盐丘岩体的密度比围岩的密度小,分别引起重力场局部增强或减弱的异常现象。

2、地球物理勘探分类二、物探方法简介1、重力勘探重力勘探是研究地下岩层与其相邻层之间、各类地质体与围岩之间的密度差而引起的重力场的变化(即“重力异常”)来勘探矿产、划分地层、研究地质构造的一种物探方法。

重力异常是由密度不均匀引起的重力场的变化,并叠加在地球的正常重力场上。

2、磁法勘探磁法勘探是研究由地下岩层与其相邻层之间、各类地质体与围岩之间的磁性差异而引起的地磁场强度的变化(即“磁异常”)来勘探矿产、划分地层、研究地质构造的一种物探方法。

磁异常是由磁性矿石或岩石在地磁场作用下产生的磁性叠加在正常场上形成的,与地质构造及某些矿产的分布有着密切的关系。

磁法勘探按观测磁场的方式可以分为地面磁测和航空磁测两类基本方法。

3、电法勘探电法勘探是以岩石、矿物等介质的电学性质为基础,研究天然的或人工形成的电场、电磁场的分布规律,勘探矿产、划分地层、研究地质构造、解决水文工程地质问题的一类物探方法,也是物探方法中分类最多的一大类探测方法。

按照电场性质不同,可分为直流电法和交流电法两类直流电法勘探主要包括电剖面法、电测深法、充电法、激发极化法及自然电场法等。

交流电法勘探,即电磁法勘探,按场源的形式可分为人工场源(或称主动场源)和天然场源两大类。

人工场源类电磁法主要有无线电波透射法、甚低频法、瞬变电磁法、可控源间频大地测深法、地质雷达法等。

天然场源类电磁法包括天然音频大地电磁法、大地电磁法等。

4、地震勘探地震勘探是一种使用人工方法激发地震波,观测其在岩体内的传播情况,以研究、探测岩体地质结构和分布的物探方法。

确定分界面的埋藏深度、岩石的组成成分和物理力学性质。

根据所利用弹性波的类型不同,地震勘探的工作方法可分为:反射波法、折射波法、透射波法和瑞雷波法。

5、放射性勘探地壳内的天然放射元素蜕变时会放射出α、β、γ射线,这些射线穿过介质便会产生游离、荧光等特殊的物理现象。

放射性勘探,就是借助研究这些现象来寻找放射性元素矿床和解决有关地质问题、环境问题的一种物探方法。

6、地球物理测井地球物理测井,简称为测井,就是通过研究钻孔中岩石的物理性质,诸如电性、电化学活动性、放射性、磁性、密度、弹性以及隙度、渗透性等来解决钻孔中有关地质问题的一类物方法。

测井方法包括电测井、磁测井及电磁测井、声波测井、地震测井、放射性测井、钻孔全孔壁数字成像、钻孔电视,以及井径测量、井斜测量、井温测量以及井中流体测量。

三、物探方法的特点:1、探测地质体与围岩之间的具有较为明显的物性差异;2、采用相应的仪器设备观测和测量地球物理场的信息,并用数据处理技术进行处理,对异常进行识别和解释;3、成本低,效率高;4、多解性物探解释结果是根据物探仪器观测到的地球物理数据求解场源体的反演过程,反演具有多解性;同时物探理论是建立在一定的数学模型基础之上,具有确定的条件(物性,地质、地形等),但实际上难以完全满足,也影响了物探解释的精度。

为了获得更加准确的物探成果,应注意以下几点:1、选择适合的方法。

应根据探测目的层与相邻地层的物性特征、地质条件、地形条件等因素综合分析,有针对性的选择物探方法。

2、尽可能采用多种物探方法配合,相互对比、相互补充、相互验证、去伪存真。

3、物探剖面尽可能通过钻孔、探井等已知点,对物探解释提供参数和验证。

4、注重与地质调查和地质理论相结合,进行综合分析判断。

四、物探方法的应用范围与应用条件1、应用范围(1)区域地质调查及矿产勘查划分地层、探测地质构造,寻找矿体及与成矿有关的地层或构造主要方法:重力、磁法、电法,地震(石油、煤田)、放射性(铀矿)、测井(2)水文地质勘察及找水划分地层、探测地质构造,寻找储水地层或构造,确定含水层的埋深、厚度、含水量,划分咸淡水界面等主要方法:电法(电阻率、激电、电磁法),测井、地震、放射性、(3)工程地质勘察、环境地质勘察探测覆盖层、基岩风化带厚度及其分布;隐伏构造、岩溶裂隙发育带等。

主要方法:电法(电阻率、激电、电磁法),测井、地震、放射性(4)工程测试与检测土壤电阻率测试、岩体质量检测、岩土力学参数测试、混泥土质量检测、放射性检测、桩基检测、地下管线探测等。

主要方法:电法(电阻率、探地雷达),地震波及声波测试(测井)、放射性测试2、应用条件(1)探测目的层与相邻地层或目的体与围岩之间的具有明显的物性差异;(2)探测目的层或目的体相对于埋深具有一定的规模;(3)探测目的层与相邻地层的岩性、物性及产状较为稳定;(4)满足各方法的地形条件要求;(5)不能有较强的干扰源存在。

3、常用工程物探方法的应用范围与应用条件常用工程物探方法的应用范围及适用条件(1)直流电阻率法将直流电通过电极接地供入地下,建立稳定的人工电场,在地表观测某点垂直方向(电测深法)或沿某一测线的水平方向(电剖面法)的电阻率变化,从而了解岩土介质的分布或地质构造特点的方法,称电阻率法。

为解决不同的地质问题,常采用不同的电极排列形式和移动方式(称为装置),根据装置的不同,可将电阻率法分为电测深法、电剖面法和高密度电阻率法。

·电阻率法的应用范围与条件·应用范围1)电测深法主要用于解决与深度有关的地质问题,包括分层探测如基岩面、地层层面、地下水位、风化层面等的埋藏深度以及电性异常体探测如构造破碎带、喀斯特、洞穴等。

2)电剖面法主要用于探测地层、岩性在水平方向的电性变化,解决与平面位置有关的地质问题,如断层、破碎带、岩层接触界面、喀斯特洞穴位置等。

3)高密度电法具有电测深和电剖面的双重特点,探测密度高、信息量大、工作效率高。

·应用条件1)被探测目的层的分布相对而言于装置长度和埋深近水平无限,被探测目的相对于装置长度和埋深有一定的规模。

被探测目的层与相邻地层或目的体与周边介质有电性差异。

电性界面与地质界面对应。

2)地形起伏不大。

采用电极接地测量方式时要求被探测目的层或目的体上方没有极高电阻屏蔽层。

采用线框或天线测量方式时要求被探测目的层或目的体上方没有极低电阻屏蔽层。

3)各地层及目的体电性稳定,异常范围和幅值等特征可以被测量和追踪。

4)测区内没有较强的工业游散电流、大地电流或电磁干扰。

5)水上工作时,水流速度较缓。

6)电测深法要求地下电性层次不多,被探测各层与供电极距相比水平无限,且具有一定厚度,电性标志层稳定;适用于层状和似层状介质的勘探,下伏基岩面或被探测目的层层面与地面交角应小于20°;有一定数量的中间层电阻率资料;在各种测量装置中,四极对称装置能更准确并经济地解决问题,应用罗为广泛,其他装置的应用条件则相对较为严格。

7)电剖面法探测的地质界面或构造线与地面交角应大于30°。

(2)音频大地电磁测深入法(AMT)音频大地电磁法(AMT)的频率范围约为0.1~10kHz,甚至100 kHz,勘探深度为几米至几公里,在矿产勘查和工程勘探中应用广泛。

·应用范围1)探测第四纪覆盖层厚度。

2)探测地层分层。

3)探测隐伏岩溶及构造(断层、裂隙层、破碎带)。

4)探测塌滑体厚度。

5)探测地下水,确定含水层厚度。

·应用条件1)被探测目的体或目的层与围岩之间存在明显的电性差异电性界面与地质界面对应。

2)被探测目的层或目的体位于探测盲区以下。

3)各地层及目的体电性稳定。

4)测区内没有较强的工业游散电流、大地电流或电磁干扰。

5)被追踪地层应具有一定的厚度,被追踪地质体具有一定规模。

6)天然电磁场信号强度微弱,极化不稳定,受各种噪声影响强烈,通常需要多周期的叠加才能获得有交的功率谱,因此野外记录时间应足够长。

·优点和局限性(1)主要优点。

1)使用电磁波频率丰富,探测深度范围较大,可从几十米至上千米。

2)不高阻屏蔽,对低阻分辨率高,对勘测场地范围要求低。

3)受地形影响小。

(2)主要局限性。

1)抗电磁干扰能力差。

2)虽然探测深度较深,但深部是低频信号的反映,因此在加大探测深度的同时,也降低了异常分辨率,在使用该方法进行深部探测时,应充分考虑到深度与分辨率的关系。

3)对于硬质出露地区,裸露岩石致密坚硬,会大大限制电偶极子场源送入地下的电流强度,并导致测量电极接地电阻过高,干扰信号过强,有效信号太弱等不利影响,因此在硬件质基岩裸露地区不宜使用此类方法。

(3)浅层折射波法浅层折射波法,是利用人工激发的地震波在岩土界面上产生的折射现象,对浅部具有速度差异的地层或构造进行探测的一种地震方法,是目前工程地震勘探中技术最成熟、应用最广泛的方法。

·应用范围1)探测第四纪覆盖层厚度及其分层,或探测基岩面埋藏深度、埋藏深槽、古河床及其起伏形态。

2)探测风化卸荷带厚度。

3)探测隐伏构造(断层、裂隙带、破碎带)。

4)探测塌滑体厚度。

5)探测松散层中的地下水位,确定含水层厚度。

6)测试岩土体纵波速度,用速度对岩体进行完整性分类。

7)检测岩体质量。

·应用条件1)适用于层状和似层状介质的探测。

2)被追踪地层的速度应大于上覆各层的速度,且各层之间存在明显的波速差异。

相关文档
最新文档