第四章 一维纳米材料
一维纳米材料概述

概述§1 一维纳米材料的发现及发展1.1气-液-固的生长机制制备半导体纳米线1.2层状卷曲机制制备一维纳米材料§2 纳米碳管的发展现状§3 纳米碳管的应用前景及发展方向3.1应用前景3.2发展方向§1一维纳米材料的发现及发展准一维纳米材料是指在两维方向上为纳米尺度,长度为宏观尺度的新型纳米材料。
1.1 气-液-固的生长机制制备半导体纳米线利用气-液-固的生长机制的激光烧蚀法制备半导体纳米线,通过控制催化剂合金颗粒的粒径和生长时间,实现了对多种纳米线的直径与长度的控制。
表1.1 用激光烧蚀法制备的半导体纳米线1.2 层状卷曲机制制备一维纳米材料主要利用低温水热合成方法制备一维纳米材料。
图1.1 层状卷曲机制示意图图1.2 层状卷曲机制制备的一维纳米材料(a)金属Bi纳米线;(b) 二硫化钨纳米线;(c) 金属钨单晶纳米线;(d) ZnO单晶有序阵列表1.2 层状卷曲机制制备的一维纳米材料§2 纳米碳管的发展现状1970年日本的大泽映二准确画出了C60的图形1985年H. W.Kroto和R. E. Smalley等用质谱仪研究激光蒸发石墨电极时发现了C60,并把具有类似的笼状结构的物质命名为富勒烯1990年W. Kratschmer等用石墨作电极通过直流电弧放电得到宏观量的C60,进而推动了富勒烯的研究1991年日本的饭岛博士首次用电弧蒸发法在高分辨电镜中发现了纳米碳管1992年T. W. Ebbesen和P. M. Ajayan合成了纯度更高的克量级纳米碳管1993年M. J. Yacaman等用化学气相沉积法以乙炔为碳源用铁作催化剂合成了多壁纳米碳管1994年S. Amelinckx用化学气相沉积法合成螺旋状纳米碳管1994年T. Gao等用激光照射含有镍和钴的碳靶得到单壁纳米碳管1994年P. M. Ajayan等将多壁纳米碳管与聚合物复合切成50-200nm后的薄片后首次得到排列整齐的多壁纳米碳管1996年A. Thess等用双脉冲激光照射含Ni/Co催化剂颗粒的炭块得到单壁纳米碳管形成的管束1996年戴宏杰等以CO为气源纳米颗粒的钼为催化剂合成出了单壁纳米碳管1997年C. Journet等用Ni/Y作催化剂得到高产率的单壁纳米碳管1998年成会明等首次得到了直径为1-2nm的单壁纳米碳管和由多根单壁纳米碳管形成的阵列以及由该阵列形成的数厘米长的条带1998年戴宏杰首先实现了在简单电路上生长单根单壁纳米碳管1999年成会明等开发出制备大量高纯度单壁纳米碳管的半连续氢电弧法2000年解思深等制得最小内径为0.5nm的多壁纳米碳管2001年R. R. Schlittler等热解有纳米图形的前驱体通过自组装合成了单壁纳米碳管单晶图1.3 各种纤维状炭的直径与平均层间距(d200)的比较§3 纳米碳管的应用前景及发展方向3.1 应用前景诺贝尔奖获得者R. E. Smalley称“纳米碳管将是价格便宜,环境友好并为人类创造奇迹的新材料”,可从以下六个方面进行说明:3.1.1 纳米尺度的器件表1.3 纳米碳管的可能应用领域3.1.2 制造纳米材料的模板图1.4 纳米碳管作模板进行的填充、包敷和空间限制反应的示意图3.1.3 电子材料和器件纳米碳管的特殊电性能使之适用于微电路中的量子线和异质结。
一维纳米材料制备

导热性能(声子传送特性) 当硅纳米线直径小于20 nm时,声子色散的关系可能会改
变(由声子局限效应造成),导致声波速度和热导率大大 低于标准值。分子动力学模拟还表明,在200K到500K的温 度范围内,硅纳米线的热导率比硅块低2个等级。
纳米线的特性及其应用
导电性能 尺寸下降导致导电性能的转变。如Bi纳米线在52nm时由金 属转变为半导体;Si纳米线在15nm时由半导体转变为绝缘 体
通过对一些氧化物纳米线(如SnO2) 电学输运性能(如 电导率)的检测,就可能对其所处的化学环境作出检测,可 用于医疗,环境,或安全检查。
纳米线的制备策略
问题:如何控制晶核(纳米颗粒)的尺寸和生长方向?
局限于特殊结 构的材料
VLS 机制
晶体结构的各项异性导致定向生 长。生长速率 Si {111}< Si{110}
• 液相自发组装
• 基于模板合成(模板法)
• 静电纺丝
纳米线的自发生长
• 气相法 - 气-固(VS)生长机理 - 气-液-固(VLS)生长机理
• 液相法 - 溶液-液相-固相机理 (SLS) - “毒化”晶面控制生长的机理(包覆法); - 溶剂热合成方法。
气相法
在合成纳米线时, 气相合成可能是用得最多的方法。
气-固生长机理又称为位错机理,是通过气-固反应形核并长成纳米线的过程。 是一种经常采用的晶须生长机理。 气固机理的发生过程: • 通过热蒸发或气相反应等方法产生气相; • 气相分子或原子被传输到低温区并沉积在基底上; • 在基底表面反应、形核与生长,通常是以气固界面上微观缺陷 (位错、
孪晶等) 为形核中心生长出一维材料。
碳纳米管制造人造卫星的拖绳
一维纳米材料

一维纳米材料一维纳米材料是指在一个维度上具有纳米尺度的尺寸特征的材料。
由于其尺寸非常小,一维纳米材料具有许多特殊的性能和应用潜力,因此受到了广泛的关注和研究。
一维纳米材料的制备方法有很多,比如纳米线的可控生长、纳米棒的光化学方法和碳纳米管的化学气相沉积等。
其中,碳纳米管是最具代表性的一维纳米材料之一。
碳纳米管是由碳原子以一种特定的方式排列而成,具有优异的力学性能、导电性能和热导性能。
由于这些优异的性能,碳纳米管在电子器件、储能材料和生物医学领域等方面具有广泛的应用前景。
另一个代表性的一维纳米材料是纳米线。
纳米线具有高比表面积和表面活性,使其具有优异的光学、电学和化学特性。
纳米线可以用来制备柔性电子器件、可拉伸电缆和高效的光电催化剂等。
同时,纳米线还可以用来制备纳米传感器,用于检测环境中的有害气体和微量分子。
除了碳纳米管和纳米线,金属纳米线、半导体纳米线和聚合物纳米线等一维纳米材料也具有重要的研究和应用价值。
金属纳米线由金属原子组成,具有窄的禁带宽度和高的载流子迁移率,可以用来制备高效的传感器和电子器件。
半导体纳米线由半导体材料构成,可以用于制备高效的太阳能电池和光电器件。
聚合物纳米线则可以用来制备高性能的有机场效应晶体管和柔性纳米电子器件。
一维纳米材料具有多种重要的应用潜力。
例如,它们可以用于制备高性能的传感器、储能材料和光电器件。
一维纳米材料还可以用于制备高效的催化剂,提高反应速率和选择性。
此外,一维纳米材料还可以用于生物医学领域,例如用于药物传输和疾病诊断。
总之,一维纳米材料具有许多独特的性能和应用潜力,对于科学研究和技术发展具有重要的意义。
随着纳米技术的不断发展,我们相信一维纳米材料将在各个领域得到更广泛的应用。
第四章-一维纳米材料ppt课件

Au-Ag-Au-Ag nanowire
17
1.3 硬模板:碳纳米管(carbon nanotubes)
用于制备碳化物纳米棒的反应路线示意图
18
碳纳米管
以碳纳米管为模板合成的
GaN纳米线
19
1.4 硬模板:外延模板法
“外延模板法”制备单晶GaN 纳米管的过程示意图 20
A) TEM images of Ag/SiO2 coaxial nanocables that were prepared by directly coating silver nanowires with an amorphous silica sheath using the sol-gel method.
10
1.2 硬模板:多孔氧化铝膜(AAO)
结构特点是孔洞为六边形或圆形且垂直于膜面,呈 有序平行排列。孔径在5至200nm 范围内调节,孔密 度可高达1011 个/cm2。
184nm
477nm
666nm
11
利用AAO模板合成纳米材料
沉积
电抛光 纳米棒
阳极氧化
Al 纳米有序阵列复合结构
纳米管
纳米粒子
32
2.6 软模板法特点: (1) 模拟生物矿化; (2)软模板的形态具有多样性; (3)容易构筑,不需要复杂的设备; (4)稳定性较差,模板效率不够高。
33
2.7 模板法制备纳米材料的比较 共性:能提供一个有限大小的反应空间 区别:硬模板提供的是静态的孔道,物质只能从开口
处进入孔道内部 软模板:提供的则是处于动态平衡的空腔,物质可以
杂后的C60表现出良好的导电性和超导性。 57
碳60超导体
C60中掺杂,引入碱金属、碱土金属原子,
一维纳米材料的制备与性能研究

一维纳米材料的制备与性能研究纳米材料是指在纳米尺度下具有特殊性质和应用潜力的材料。
其中,一维纳米材料是指在至少一个维度上具有纳米尺度的材料。
一维纳米材料的制备与性能研究是纳米科学与纳米技术领域的重要研究方向之一。
一维纳米材料的制备方法多种多样,其中最常见的方法是化学合成法。
化学合成法通过控制反应条件和添加特定的助剂,可以实现对纳米材料形貌、尺寸和结构的精确调控。
例如,碳纳米管就是一种常见的一维纳米材料,它可以通过化学气相沉积法、电弧放电法等方法制备得到。
此外,金属纳米线、半导体纳米线等也是常见的一维纳米材料,它们可以通过模板法、溶液法等方法制备。
一维纳米材料的制备方法对其性能具有重要影响。
首先,制备方法可以影响纳米材料的形貌和尺寸。
例如,碳纳米管的直径和壁厚可以通过调控反应温度和碳源浓度来控制。
其次,制备方法还可以影响纳米材料的结构和组成。
例如,金属纳米线的晶格结构和晶面取向可以通过控制溶液中的配位剂和表面活性剂来调控。
最后,制备方法还可以影响纳米材料的表面性质和界面特性。
例如,通过在化学合成过程中加入特定的表面改性剂,可以实现对纳米材料表面的修饰,从而改变其表面能和化学活性。
一维纳米材料的性能研究是纳米科学与纳米技术领域的热点研究方向之一。
一维纳米材料具有独特的电子、光学、热学和力学性质,因此在能源、电子、光电和生物医学等领域具有广泛的应用前景。
例如,碳纳米管具有优异的导电性和力学性能,可以用于制备高性能的导电材料和复合材料。
金属纳米线具有优异的电子输运性能,可以用于制备高性能的电子器件和传感器。
半导体纳米线具有优异的光学性能,可以用于制备高效的光电器件和光催化材料。
此外,一维纳米材料还具有较大的比表面积和较好的可控性,可以用于制备高效的催化剂和吸附材料。
在一维纳米材料的性能研究中,表征方法的发展起到了重要的推动作用。
传统的表征方法如透射电子显微镜、扫描电子显微镜和X射线衍射等可以用于观察纳米材料的形貌和晶体结构。
一维纳米材料

一维纳米材料
一维纳米材料是指至少有一个尺寸在纳米尺度(10^-9米)范围内的材料,但
其它两个维度的尺寸可以远远大于纳米尺度。
一维纳米材料包括纳米线、纳米棒、纳米管等,这些材料在纳米尺度下呈现出特殊的物理和化学性质,因此被广泛应用于各种领域。
一维纳米材料的制备方法多种多样,包括化学气相沉积、溶液法合成、电化学
沉积等。
其中,化学气相沉积是一种常用的方法,通过在高温下将气态前驱体转化为固态纳米材料,可以制备出高质量、高纯度的一维纳米材料。
溶液法合成则是通过在溶液中加入适当的前驱体,利用溶剂的挥发或化学反应来制备一维纳米材料,这种方法简单易行,适用于大规模生产。
一维纳米材料具有许多独特的性质,例如,纳米线的电学性质优异,可以用于
制备高性能的电子器件;纳米管具有优异的力学性能和热学性能,被广泛应用于纳米材料复合材料的制备;而纳米棒则具有优异的光学性能,可用于制备高效的光电器件。
这些特殊的性质使得一维纳米材料在电子、光电、传感、催化等领域有着广泛的应用前景。
除了应用领域的广泛性外,一维纳米材料还具有很强的研究价值。
通过对一维
纳米材料的研究,可以深入了解纳米尺度下的物理和化学性质,为纳米材料的设计与制备提供理论基础。
同时,一维纳米材料还可以作为纳米材料复合材料的增强相,提高复合材料的力学性能和热学性能。
总的来说,一维纳米材料具有独特的物理和化学性质,具有广泛的应用前景和
研究价值。
随着纳米技术的不断发展,一维纳米材料必将在各个领域发挥重要作用,推动科技的进步。
一维纳米材料定义

一维纳米材料定义一维纳米材料是指至少有一个维度在纳米尺度范围内的材料,通常包括纳米线、纳米棒、纳米管等。
这些材料在纳米尺度下具有独特的物理、化学和电子性质,因此被广泛应用于纳米科技领域。
一维纳米材料的定义和研究对于理解纳米世界的特殊性质和开发新型纳米材料具有重要意义。
一维纳米材料的定义首先可以从其尺寸范围入手。
纳米尺度是指材料的尺寸在纳米级别,即10^-9米的量级。
一维纳米材料至少有一个维度在纳米尺度范围内,比如直径或者厚度在纳米级别。
这种尺寸特征使得一维纳米材料在表面积、电子输运、光学性质等方面表现出与宏观材料完全不同的特性,因而具有广泛的应用前景。
其次,一维纳米材料的结构也是其定义的重要组成部分。
常见的一维纳米材料包括纳米线、纳米棒和纳米管等。
这些结构在纳米尺度下呈现出独特的形貌和晶体结构,使得其在光电、催化、传感等领域具有重要的应用价值。
例如,纳米线由于其高比表面积和优异的电子输运性能,在太阳能电池、柔性电子器件等领域具有广泛的应用前景。
此外,一维纳米材料的制备方法也是其定义的重要内容。
目前,制备一维纳米材料的方法包括化学气相沉积、溶液法合成、电化学沉积等多种途径。
这些方法可以实现对一维纳米材料的精确控制,包括尺寸、形貌、结构和组分等方面的调控,为其在能源、催化、传感等领域的应用提供了重要的技术支持。
总之,一维纳米材料是指至少有一个维度在纳米尺度范围内的材料,具有独特的物理、化学和电子性质。
其定义涉及到尺寸范围、结构特征和制备方法等多个方面。
对一维纳米材料的定义和研究有助于深入理解纳米世界的特殊性质,推动纳米科技的发展,为新型纳米材料的设计和应用提供重要的理论和技术支持。
第四章 一维纳米材料

二次成核条件
Hirth和Pound提出,下面等式成立,二次成核便开始进 行
( p pe )crin exp( h 2 65k 2T 2 )
p—晶须晶体表面附近气相压力,Pa Pe—晶体表面附近气相处于平衡状态下的压力,Pa γ—晶体表面能,J/m2 Ω—分子体积,m3 k—Boltyman常数,1.38×10-23J/K T—热力学常数,K
激光烧蚀法
靶材为Si0.9Fe0.1,抽真空,通入Ar/H2混合载流气,通电加热 当温度>=1207℃后,开启激光器,在靶材上烧蚀,1~2h后, 可在靶材后的衬底或石英管壁上收集到Si纳米线
材料学院
第四章 一维纳米材料
激光烧蚀法合成的Si纳米线平均直径在10nm左右 Si纳米线外层包裹了一层均匀的非晶SiO2层 在Si纳米线的一端常存在着一个团球状颗粒,直径略大于Si纳米线,这是VLS 法生长的典型特征
材料学院
第四章 一维纳米材料
实例一 Chen等人通过低温热蒸发合成了SnO2纳米线,并 验证了自催化VLS生长机制 他们以SnO粉作为热蒸发的源材料,在680℃下, 发生如下反应: 2SnO(g) Sn(L)+SnO2 SnO2(s) SnO(g)+0.5O2 高温分解产生的纳米级Sn液滴发挥着金属催化剂 的作用,吸附其它气相分子,最终生成SnO2纳米 线
晶须的形成是晶核内螺旋位错延伸的结果,决定了晶 须快速生长的方向
②防止晶须侧面成核(横向条件)
晶须侧面是低能面,结合在其上的气相原子结合能低、 解析率高,将导致晶须纵向生长非常缓慢。为此,晶须侧 面的气相的过饱和度必须足够低,以防止侧面二次成核, 即引起径向(横向)生长
材料学院
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
纳米碳管模板法普适反应模式
碳纳米管
+易挥发的金属 或非金属氧化物 (MO)
+易挥发的金属 或非金属卤化物 (MX4)
金属碳化物纳米丝 +CO 例: 2C(S)+SiO(V)
金属碳化物纳米丝 +2X2
Ar气 1700℃ SiC(S)+CO(V)
(8)其它方法
① Self-Assembly of Nanoparticles
(7) 模板法
① Templating Against Features on Solid Substrates
Schematic illustrations of procedures that generated 1D nanostructures by (A) shadow evaporation; (B) reconstruction at the bottom of V-grooves; (C) cleaved-edge overgrowth on the cross-section of a multilayer film and (D) templating against step edges on the surface of a solid substrate.
Ge纳米线的生长过程
700-900℃分解
GeI2
Ge(V) Au cluster
360℃ Ge-Au(L)合金
(~12%Ge)
过饱和
在固液界面生长
(3) Solution-Liquid-Solid methods(SLS方法)
• 原理 催化剂:低熔点金属,如In、 Sn、Bi等
156.6 231.9 271.3
SEM images of t-Te nanowires and nanorods
2Te(OH)6+3N2H4
B. SEM images of t-Se nanowires with a mean diameter of 32nm
2Te+3N2+12H2O
H2SeO3+N2H4(肼)
Se+N2+3H2O
Si、Ge、B-elemental semiconductor GaN、GaAs 、 GaP 、 InP 、 InAs-III-V semiconductor ZnS、ZnSe、CdS、CdSe-II-VI semiconductor ZnO、MgO、SiO2-oxides
(2) 气-液-固方法(VLS方法)
Triangular planar (Mo3Se3 间距0.45nm 分子线直径约2nm )-
(6) 各向异性结晶生长法
⑤ Se、Te
A. An illustration of the crystal structure of t-Se composed of hexagonally packed, helical chains of Se atoms paralled to each other along the c-axis
(2) 气-液-固方法(VLS方法)
• 原理
激光蒸发、热挥发、电弧放电-物理法 Vapor来源: Chemical vapor transport and deposition-化学法
纳米线的直径由Au团簇或粒子的尺寸决定 • 优点:可用于制备单晶纳米线;产量相对较大 • 缺点:不能用于制备金属纳米线;金属催化剂的存 在会污染纳米线 • 应用最广泛的方法,制备的纳米线包括:
900℃,氧化 H2/Ar
1200℃ 直接蒸发
MgO MgO nanowire
中间产物的生成有助于降低制备纳米线的温度
(1) 气相生长合成法
例④: Si纳米线的制备
热蒸发 或激光蒸发
Si+SiO2(S)
SixO(V)
Six-1+SiO
X>1
+SiO
可能生长机理:
温度梯度的 存在是纳米 线生长的外 部推动力
第四章 一维纳米材料
one dimensional nanometer materials
• 定义:在两个维度上为纳米尺度的材料 长度:几百纳米至几毫米 • 结构: 横截面:
nanobelt
4.1 纳米丝或纳米棒 • 种类: 4.2 纳米管 4.3同轴纳米电缆
一维纳米材料的制备策略
A) Dictation by the anisotropic B) Confinement by a liquid C) Direction through crystallographic structure of a droplet as in the vaporthe use of a template solid liquid-solid process
• 原理:使溶剂处于高温高压(大于临界点)下,提高固体的 溶解度,加速固体之间的反应。 前驱体+(结晶生长调节剂(如胺))+溶剂
高温、高压
纳米线
例:
GeCl4 or phenyl-GeCl3 烷烃
275℃, 100atm
Ge纳米线 (7~30nm,10m)
• 优点:大多数材料在适当的溶剂中提高压力和温度至临 界点时可溶,即具有普适性。 • 缺点:产率低、纯度低,尺寸、形态均匀性差,用到的 芳烃溶剂环境不友好,体系复杂,反应机理研究困难。
(5) Solution-Phase Methods Based on Capping Reagents
例① 三辛基氧化膦 CdSe前驱体 己基磷酸 例② AgNO3+乙二醇+PVP(聚乙烯基吡咯烷酮) Pt纳米粒子 Ag纳米线
(B)
CdSe nanorod
A) Formation of bimodal silver nanoparticles through heterogeneous nucleation on Pt seeds and homogeneous nucleation B) Evolution of rod-shaped Ag nanostructure as directed by the capping reagent, poly(vinyl pyrrolidone) C) Growth if the Ag nanorods into wires at the expense of small Ag nanoparticles
T
Si+SiO2
SixO液体,起催化剂作用,有助于Si原子吸 收、扩散、沉积 SiO2壳层,由SiO分解而来,有助于阻止横 向生长
Adv. Mater. 2000, 12, No. 18, p1343
(1) 气相生长合成法
例⑤: GaAs纳米线的制备 GaAs+Ga2O3 生长机理: 在[111]生长方向的GaAs结晶核外面包覆了一层Ga2O3 氧化物辅助纳米线生长方法优点: ①无需金属催化剂; ②消除了金属原子对纳米线的污染 GaAs纳米线
Transport to Growth zone
MgO
氧化 MgO(Al2O3, ZnO, SnO2)
Mg蒸汽
石墨舟 MgO衬底
两步法有助于降低过饱和度
(1) 气相生长合成法
例②: Cu2S 纳米线的制备 Cu+O2 Cu+air
H2 S Cu2O 室温
△
Cu2S
CuO nanowire
Cu2O 例③: MgO 纳米线的制备 MgB2 MgO
② Size Reduction
• Isotropic deformation of a polycrystalline or asotropic etching of a single crystal • Near-field optical lithography with a phase-shift mask
(7) 模板法
② 介孔材料模板法
nanowire
•聚合物介孔膜 •氧化铝介孔膜 •金属介孔膜
nanotube
③ 分子自组装结构模板法
nanowire
nanotube
(7) 模板法
④ 一维纳米材料模板法
碳纳米管 先沉积Ti Au、Pd、Fe、Al、Pb纳米线
生物大分子法 利用大分子侧基与离子的作用先生成纳米粒子,通 过纳米粒子的连接,生成纳米线 例:利用DNA分子AgNO3或PtNO3可制备Ag、Pt纳米线 纳米线法 例如,AuCl4-、Ag+、PdCl42-、PtCl42-等离子在LiMo3Se3 分子纳米线的还原作用下可分别制得Au、Ag、Pd、Pt纳 米线
4.1.2 纳米丝(或棒)的性质和用途
(1)热性能 两头先熔,再向中间延伸,直接越小,熔点越低
块状Ge,熔点930℃
650℃
848℃
退火温度低 i. 有利于无缺陷纳米线的制备(熔融-重结晶) ii. 有利于在较低温度下进行纳米线之间的焊接、切割、连接, 以制备功能器件及电路 iii. 在纳米线的横截面尺寸和长度下降到一定尺寸时,环境温度 和残余应力变化对纳米线的稳定性影响很大,易发生断裂