碳纳米管作为一维纳米材料

合集下载

碳纳米管材料

碳纳米管材料

碳纳米管材料的性能
电学性能
但是目前人们在制备碳纳米管时, 目前还无法按照所需的要求制备出具 有特定电学特性的碳纳米管[23]。仅这 一点,就使得碳纳米管在纳米电子学 的应用中仍然存在着一些必须尽早解 决的问题。为了改变这种状况,人们 正采用半导体材料改性的同样方法, 通过化学掺杂的方式来制备n 型或p 型的碳纳米管,以求控制和改变碳纳 米管的电子学特性。
碳纳米管材料的性能
力学性能
弹性:与金刚石的三维结构不同,碳 纳米管作为一维纳米材料可弯可拉具 有相当好的弹性[ 18 ]。通常碳纳米管 发生很大的拉伸变形,只要不发生原 子共价键发生断裂,通常碳纳都能完 全恢复到原来的状态[ 19]。实验表明碳 纳米管在拉升达原来长度的136%时 仍 然可以恢复到原来的样子[20]。而且 即使受到了很大的外加应力,碳纳米 管也不会发生脆性断裂 。
其中制备碳纳米管最为主 要的有三种方法,分别为:电 弧放电法、激光蒸发法和化学 气相沉积法(CVD)。其他还有热 解聚合物法、电解法、太阳能 法。
碳纳米管材料的制备
1石墨电弧法
最早制备CNTs的工艺方法是石墨电弧法,电弧实质上是一 种气体放电现象,其主要工艺是在真空反应室中充惰性气体(He、 NH4),采用较细石墨棒作为阳极,粗大的石墨棒作为阴极,在 电弧放电的过程和高温的条件下,固体碳源蒸发并进行结构重 排,阳极石墨被蒸发消耗的同时阴极石墨上会沉积CNTs,从而 生产出CNTs。Iijima在1991年就是利用此法制各出的CNTs:石 墨电弧法具有简单快速的特点,而且所制各的CNTs管直,石墨 化程度高,但该法所产生的CNTs缺陷较多,而且CNTs烧结成束, 束中夹杂很多非晶态杂质。
LOGO
组长:计俊 小组成员:卜力敏、陆唯一、谢颍洁、 朱晨、李骏、李康斌

碳纳米管的制备技术与应用

碳纳米管的制备技术与应用

碳纳米管的制备技术与应用碳纳米管(Carbon nanotubes,CNTs)是一种以碳元素为原材料制备的一维纳米材料,由于其具有良好的力学性能、电学特性以及化学稳定性等特点,已经成为当今研究领域中最为热门的材料之一。

本文将介绍碳纳米管的制备技术以及其在各个领域的应用。

一、碳纳米管的制备技术碳纳米管的制备技术可以分为两种类型:单壁碳纳米管(Single-walled carbon nanotubes,SWCNTs)和多壁碳纳米管(Multi-walled carbon nanotubes,MWCNTs)。

1. SWCNTs的制备技术SWCNTs是由单个碳原子组成的圆柱形分子,其直径只有1纳米左右,是碳纳米管中最小的一种。

目前SWCNTs的制备技术主要有以下几种:(1) 弧放电法:将石墨电极在惰性气体氛围下通电,随着通电时间的延长,在电极表面就会形成一个由碳原子组成的弧,此时就会产生SWCNTs。

(2) 化学气相沉积法:将碳源放入通有气源的高温管道中,在特定的条件下产生SWCNTs。

(3) 气味解法:将金属铝、镁等材料和碳合成物物质放入高温的石墨炉中加热,从而产生SWCNTs。

2. MWCNTs的制备技术MWCNTs是由许多个碳单层环形结构套在一起形成的管状结构,由于其具有较高的机械强度和导电性能,因此在材料科学等领域有着广泛的应用。

其制备主要有以下几种方式:(1) 化学气相沉积法:将碳源放入通有气源的高温管道中,在特定的条件下产生MWCNTs。

(2) 电磁纺丝法:将金属铜制成细丝,并加热到一定温度,然后向铜丝上喷射石墨或其它碳源,从而产生MWCNTs。

(3) 化学还原法:将单壁和多壁碳纳米管分散在水溶液中,然后将还原剂缓慢加入到溶液中,之后用超离心机或过滤器将沉淀的MWCNTs分离出来。

二、碳纳米管在材料科学中的应用碳纳米管因其高催化性能、热稳定性及导电性能等优异特点,将在材料科学领域中得到广泛的应用。

碳纳米管的性能及应用领域

碳纳米管的性能及应用领域

碳纳米管的性能及应用领域碳纳米管作为一维纳米材料,重量轻,六边形结构连接完美,具有很多异常的力学、电学和化学性能。

近些年随着碳纳米管及纳米材料讨论的深入其广阔的应用前景也不断地呈现出来。

一、碳纳米管的性能1.1力学性能不同类型的碳纳米管碳纳米管具有良好的力学性能,碳纳米管的硬度与金刚石相当,却拥有良好的柔韧性,可以拉伸。

碳纳米管的结构虽然与高分子材料的结构相像,但其结构却比高分子材料稳定得多。

碳纳米管是目前可制备出的具有最高比强度的材料。

若将以其他工程材料为基体与碳纳米管制成复合材料,可使复合材料表现出良好的强度、弹性、抗疲乏性及各向同性,给复合材料的性能带来极大的改善。

1.2导电性能碳纳米管制成的透亮导电薄膜碳纳米管上碳原子的P电子形成大范围的离域键,由于共轭效应显著,碳纳米管具有一些特别的电学性质。

碳纳米管具有良好的导电性能,由于碳纳米管的结构与石墨的片层结构相同,所以具有很好的电学性能。

对于一个给定的纳米管,在某个方向上表现出金属性,是良好的导体,否则表现为半导体。

对于这个的方向,碳纳米管表现出良好的导电性,电导率通常可达铜的1万倍。

1.3传热性能采纳了碳纳米管涂层的热水器内胆碳纳米管具有良好的传热性能,碳纳米管具有特别大的长径比,因而其沿着长度方向的热交换性能很高,相对的其垂直方向的热交换性能较低,通过合适的取向,碳纳米管可以合成高各向异性的热传导材料。

另外,碳纳米管有着较高的热导率,只要在复合材料中掺杂微量的碳纳米管,该复合材料的热导率将会可能得到很大的改善。

二、碳纳米管的应用2.1电子领域碳纳米电子管(CNTS)是一种具有显著电子、机械和化学特性的独特材料。

其导电本领不同于一般的导体。

性能方面的区分取决于应用,或许是优点,或许是缺点,或许是机会。

在一理想纳米碳管内,电传导以低温漂轨道传播的,假如电子管能无缝交接,低温漂是计算机芯片的优点。

诸如电连接等的混乱极大地修改了这行为。

对十较慢的模拟信号的处理速度,四周环围着平向球分子的碳纳米管充当传播者已被试验证明。

一维纳米材料

一维纳米材料

一维纳米材料一维纳米材料是指在一个维度上具有纳米尺度的尺寸特征的材料。

由于其尺寸非常小,一维纳米材料具有许多特殊的性能和应用潜力,因此受到了广泛的关注和研究。

一维纳米材料的制备方法有很多,比如纳米线的可控生长、纳米棒的光化学方法和碳纳米管的化学气相沉积等。

其中,碳纳米管是最具代表性的一维纳米材料之一。

碳纳米管是由碳原子以一种特定的方式排列而成,具有优异的力学性能、导电性能和热导性能。

由于这些优异的性能,碳纳米管在电子器件、储能材料和生物医学领域等方面具有广泛的应用前景。

另一个代表性的一维纳米材料是纳米线。

纳米线具有高比表面积和表面活性,使其具有优异的光学、电学和化学特性。

纳米线可以用来制备柔性电子器件、可拉伸电缆和高效的光电催化剂等。

同时,纳米线还可以用来制备纳米传感器,用于检测环境中的有害气体和微量分子。

除了碳纳米管和纳米线,金属纳米线、半导体纳米线和聚合物纳米线等一维纳米材料也具有重要的研究和应用价值。

金属纳米线由金属原子组成,具有窄的禁带宽度和高的载流子迁移率,可以用来制备高效的传感器和电子器件。

半导体纳米线由半导体材料构成,可以用于制备高效的太阳能电池和光电器件。

聚合物纳米线则可以用来制备高性能的有机场效应晶体管和柔性纳米电子器件。

一维纳米材料具有多种重要的应用潜力。

例如,它们可以用于制备高性能的传感器、储能材料和光电器件。

一维纳米材料还可以用于制备高效的催化剂,提高反应速率和选择性。

此外,一维纳米材料还可以用于生物医学领域,例如用于药物传输和疾病诊断。

总之,一维纳米材料具有许多独特的性能和应用潜力,对于科学研究和技术发展具有重要的意义。

随着纳米技术的不断发展,我们相信一维纳米材料将在各个领域得到更广泛的应用。

一维纳米材料的制备与性能研究

一维纳米材料的制备与性能研究

一维纳米材料的制备与性能研究纳米材料是指在纳米尺度下具有特殊性质和应用潜力的材料。

其中,一维纳米材料是指在至少一个维度上具有纳米尺度的材料。

一维纳米材料的制备与性能研究是纳米科学与纳米技术领域的重要研究方向之一。

一维纳米材料的制备方法多种多样,其中最常见的方法是化学合成法。

化学合成法通过控制反应条件和添加特定的助剂,可以实现对纳米材料形貌、尺寸和结构的精确调控。

例如,碳纳米管就是一种常见的一维纳米材料,它可以通过化学气相沉积法、电弧放电法等方法制备得到。

此外,金属纳米线、半导体纳米线等也是常见的一维纳米材料,它们可以通过模板法、溶液法等方法制备。

一维纳米材料的制备方法对其性能具有重要影响。

首先,制备方法可以影响纳米材料的形貌和尺寸。

例如,碳纳米管的直径和壁厚可以通过调控反应温度和碳源浓度来控制。

其次,制备方法还可以影响纳米材料的结构和组成。

例如,金属纳米线的晶格结构和晶面取向可以通过控制溶液中的配位剂和表面活性剂来调控。

最后,制备方法还可以影响纳米材料的表面性质和界面特性。

例如,通过在化学合成过程中加入特定的表面改性剂,可以实现对纳米材料表面的修饰,从而改变其表面能和化学活性。

一维纳米材料的性能研究是纳米科学与纳米技术领域的热点研究方向之一。

一维纳米材料具有独特的电子、光学、热学和力学性质,因此在能源、电子、光电和生物医学等领域具有广泛的应用前景。

例如,碳纳米管具有优异的导电性和力学性能,可以用于制备高性能的导电材料和复合材料。

金属纳米线具有优异的电子输运性能,可以用于制备高性能的电子器件和传感器。

半导体纳米线具有优异的光学性能,可以用于制备高效的光电器件和光催化材料。

此外,一维纳米材料还具有较大的比表面积和较好的可控性,可以用于制备高效的催化剂和吸附材料。

在一维纳米材料的性能研究中,表征方法的发展起到了重要的推动作用。

传统的表征方法如透射电子显微镜、扫描电子显微镜和X射线衍射等可以用于观察纳米材料的形貌和晶体结构。

碳纳米管导电原理

碳纳米管导电原理

碳纳米管导电原理
碳纳米管是一种一维纳米材料,由碳原子通过特定方法排列而成的管状结构。

碳纳米管具有优异的力学、电学和热学性质,因此在纳米电子器件中具有广泛的应用前景。

碳纳米管的导电原理主要涉及其内部结构和碳原子之间的相互作用。

首先,碳纳米管内部的碳原子按照一定的规则排列成不同的结构,其中最常见的是单壁碳纳米管和多壁碳纳米管。

在单壁碳纳米管中,碳原子呈现出螺旋状排列,而多壁碳纳米管则由多个壁组成。

其次,碳纳米管的导电性主要依赖于碳原子之间的化学键和共轭作用。

碳原子之间的σ键和π键是导致碳纳米管导电的主要原因。

具体来说,σ键是由碳原子之间的共价键形成的,能够
提供一定的电子导电性。

而π键是由共面排列的p轨道形成的,具有高度的电子共享性,可以形成π电子云区域,进一步增强碳纳米管的导电性能。

此外,碳纳米管的导电性还受到其长度、直径和结构缺陷等因素的影响。

一般来说,碳纳米管的导电性随着长度的增加而降低,这主要是因为长碳纳米管中存在较多的结构缺陷和杂质,导致电子在导电过程中发生散射损失。

而碳纳米管的直径也会影响其导电性能,较小直径的碳纳米管具有较高的导电性。

综上所述,碳纳米管的导电原理主要包括内部结构的排列、碳原子之间的化学键和共轭作用等因素。

深入理解碳纳米管的导电特性有助于进一步开发纳米电子器件并应用于各种领域。

金属-碳纳米管

金属-碳纳米管

金属-碳纳米管
金属-碳纳米管是一种新型复合材料,它将金属和碳纳米管结合在一起,形成了独特的纳米结构,具有许多优异的性能。

碳纳米管是一种典型的一维纳米材料,又名巴基管,是由单层或多层石墨片围绕中心轴按一定的螺旋角卷曲而成的无缝碳纳米管。

在微观尺度下,单根碳纳米管的拉伸强度可达200GPa,是碳素钢的100倍,而密度只有钢的1/7~1/6,弹性模量是钢的5倍;电导率可以达到108S·m-1,具有比铜高两个数量级的载流能力。

将金属和碳纳米管结合后,这种新型材料可以同时具备金属和碳纳米管的优异性能。

例如,它的强度和韧性可以得到显著提高,同时还具备良好的导电性和导热性。

此外,金属-碳纳米管复合材料还具有独特的结构和形态,可以用于制造各种高科技产品,如电子元件、传感器和医疗器械等。

总的来说,金属-碳纳米管复合材料具有广阔的应用前景和发展潜力,是一种极具前途的新型材料。

化学气相沉积法制备其他一维纳米材料

化学气相沉积法制备其他一维纳米材料

化学气相沉积法制备其他一维纳米材料化学气相沉积(Chemical Vapor Deposition,CVD)是一种常用的制备纳米材料的方法。

它是一种在高温环境下,通过在气相中化学反应形成纳米材料的过程。

该方法具有材料成分可控、沉积速度快、制备尺寸可调控等优点,在制备一维纳米材料方面也得到了广泛应用。

一维纳米材料是指其在一个方向上尺寸远小于其他两个方向的材料。

常见的一维纳米材料包括纳米线、纳米棒和纳米管等。

下面将介绍几种常见的一维纳米材料的制备方法及其在化学气相沉积中的应用。

一、碳纳米管(Carbon Nanotube,CNT)碳纳米管是由碳原子通过碳-碳键连接形成的一维纳米材料。

碳纳米管具有优异的电子传输性能和力学性能,因此在纳米电子器件、传感器、储氢材料等领域具有广泛应用。

碳纳米管的制备可以通过化学气相沉积方法实现。

主要步骤包括:将催化剂(如金属颗粒)沉积在基底上,然后将含有碳源(如甲烷气体)的气体通过加热分解的方式使其在催化剂表面发生化学反应,最终在催化剂表面成长碳纳米管。

二、二氧化硅纳米线(Silicon Dioxide Nanowire,SiO2 Nanowire)二氧化硅纳米线是由二氧化硅材料形成的一维纳米材料。

SiO2纳米线具有优异的光学、电学和力学性能,并且可以制备出具有不同形态和尺寸的纳米线。

制备SiO2纳米线的方法中,化学气相沉积是一种常用的方法。

通常采用的方法是,在高温气氛中,使硅烷类气体(如SiH4)在金属催化剂的作用下分解并发生氧化反应,从而在催化剂表面沉积出纳米尺寸的SiO2纳米线。

三、金属氧化物纳米棒(Metal Oxide Nanorod)金属氧化物纳米棒是由金属氧化物材料形成的一维纳米材料。

金属氧化物纳米棒具有优异的光学、电学和催化性能,可用于光电器件、催化剂和传感器等领域。

以上介绍的碳纳米管、二氧化硅纳米线和金属氧化物纳米棒只是化学气相沉积法制备一维纳米材料的几个例子,实际上化学气相沉积方法还可以制备其他一维纳米材料。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

碳纳米管作为一维纳米材料,重量轻,六边形结构连接完美,具有许多异常的力学、电学和化学性能……碳纳米管具有典型的层状中空结构特征,构成碳纳米管的层片之间存在一定的夹角碳纳米管的管身是准圆管结构,并且大多数由五边形截面所组成。

管身由六边形碳环微结构单元组成, 端帽部分由含五边形的碳环组成的多边形结构,或者称为多边锥形多壁结构。

是一种具有特殊结构(径向尺寸为纳米量级,轴向尺寸为微米量级、管子两端基本上都封口)的一维量子材料
由于碳纳米管中碳原子采取SP2杂化,相比SP3杂化,SP2杂化中S轨道成分比较大,使碳纳米管具有高模量、高强度。

碳纳米管具有良好的力学性能,CNTs抗拉强度达到50~200GPa,是钢的100倍,密度却只有钢的1/6,至少比常规石墨纤维高一个数量级;它的弹性模量可达1TPa,与金刚石的弹性模量相当,约为钢的5倍。

对于具有理想结构的单层壁的碳纳米管,其抗拉强度约800GPa。

碳纳米管的结构虽然与高分子材料的结构相似,但其结构却比高分子材料稳定得多。

碳纳米管是目前可制备出的具有最高比强度的材料。

若将以其他工程材料为基体与碳纳米管制成复合材料, 可使复合材料表现出良好的强度、弹性、抗疲劳性及各向同性,给复合材料的性能带来极大的改善。

碳纳米管上碳原子的P电子形成大范围的离域π键,由于共轭效应显著,碳纳米管具有一些特殊的电学性质。

碳纳米管具有良好的导电性能,由于碳纳米管的结构与石墨的片层结构相同,所以具有很好的电学性能。

理论预测其导电性能取决于其管径和管壁的螺旋角。

当CNTs的管径大于6nm时,导电性能下降;当管径小于6nm时,CNTs可以被看成具有良好导电性能的一维量子导线。

有报道说Huang通过计算认为直径为0.7nm的碳纳米管具有超导性,尽管其超导转变温度只有1.5×10-4K,但是预示着碳纳米管在超导领域的应用前景。

碳纳米管具有良好的传热性能,CNTs具有非常大的长径比,因而其沿着长度方向的热交换性能很高,相对的其垂直方向的热交换性能较低,通过合适的取向,碳纳米管可以合成高各向异性的热传导材料。

另外,碳纳米管有着较高的热导率,只要在复合材料中掺杂微量的碳纳米管,该复合材料的热导率将会可能得到很大的改善
( 氢气被很多人视为未来的清洁能源。

但是氢气本身密度低,压缩成液体储存又十分不方便。

碳纳米管自身重量轻,具有中空的结构,可以作为储存氢气的优良容器,储存的氢气密度甚至比液态或固态氢气的密度还高。

适当加热,氢气就可以慢慢释放出来。

研究人员正在试图用碳纳米管制作轻便的可携带式的储氢容器。

在碳纳米管的内部可以填充金属、氧化物等物质,这样碳纳米管可以作为模具,首先用金属等物质灌满碳纳米管,再把碳层腐蚀掉,就可以制备出最细的纳米尺度的导线,或者全新的一维材料,在未来的分子电子学器件或纳米电子学器件中得到应用。

有些碳纳米管本身还可以作为纳米尺度的导线。

这样利用碳纳米管或者相关技术制备的微型导线可以置于硅芯片上,用来生产更加复杂的电路。

利用碳纳米管的性质可以制作出很多性能优异的复合材料。

例如用碳纳米管材料增强的塑料力学性能优良、导电性好、耐腐蚀、屏蔽无线电波。

使用水泥做基体的碳纳米管复合材料耐冲击性好、防静电、耐磨损、稳定性高,不易对环境造成影响。

碳纳米管增强陶瓷复合材料强度高,抗冲击性能好。

碳纳米管上由于存在五元环的缺陷,增强了反应活性,在高温和其他物质存在的条件下,碳纳米管容易在端面处打开,形成一个管子,极易被金属浸润、和金属形成金属基复合材料。

这样的材料强度高、模量高、耐高温、热膨胀系数小、抵抗热变性能强。

碳纳米管还给物理学家提供了研究毛细现象机理最细的毛细管,给化学家提供了进行纳米化学反应最细的试管。

碳纳米管上极小的微粒可以引起碳纳米管在电流中的摆动频率发生变化,利用这一点,1999年,巴西和美国科学家发明了精度在10-17kg精度的“纳米秤”,能够称量单个病毒的质量。

随后德国科学家研制出能称量单个原子的“纳米秤”。

) 1991年日本NEC公司基础研究实验室的电子显微镜专家饭岛(Iijima)在高分辨透射电子显微镜下检验石墨电弧设备中产生的球状碳分子时,意外发现了由管状的同轴纳米管组成的碳分子,这就是现在被称作的“Carbon nanotube”,即碳纳米管,又名巴基管。

非共价作用的表面改性是利用表面活性剂、聚合物或天然生物大分子化合物等吸附在CNTs 表面以增加其溶解性。

这类方法一般只是改变CNTs 的表面性质而不会破坏其原有结构,对于保持CNTs的某些独特的物理性能具有重要意义。

1表面活性剂(两性分子)的亲油端朝向CNTs 的表面,而极性基团端伸向溶剂中,通过静电排斥作用得到分散的CNTs 悬浮液
2聚合物可通过两种方式与CNTs 发生吸附作
用:一种是带有官能团或含有共轭结构聚合物的高
分子链段整体和CNTs 产生非常强的静电吸附、π-
堆垛作用;另一种方式是聚合物只有部分高分子链
段和CNTs 产生相对较弱的吸附作用,其余部分链
段起到空间稳定作用。

CNTs 的共价化学改性就是在CNTs 的表面进行化学改性以改善其性能,该方法具有灵活多样性,近年来很多学者对其进行了研究。

1CNTs 的氧化是其表面化学改性的基础,一般
在提纯过程中通过液相或气相氧化法对其进行氧

2碳纳米管表面加成反应
非平面共轭有机分子的应力主要产生于共轭
碳原子的锥形化和相邻共轭碳原子对的π轨道非
线性化,这是导致CNTs 加成反应的主要原因。

CNTs 管壁上的直接加成反应能够在很大程度上改
善其溶解性,通过有机官能团改性的CNTs 具有良
好的溶解性并被应用于CNTs 的提纯。

相关文档
最新文档