板式精馏塔设计方案

合集下载

板式精馏塔的设计

板式精馏塔的设计

密封件的设计需要考虑到密封性能、耐高温和耐腐蚀性等因素。在实际设计 中,一般选用机械密封或填料密封等形式,并需要对密封件的材料和制造工艺进 行严格筛选和考核。 4.3支架设计支架是板式精馏塔的支撑部件,主要作用是固 定板片和密封件等元件。支架的设计需要考虑到设备的强度、稳定性和操作方便 性等因素。
2.3数据采集为了进பைடு நூலகம்板式精馏塔的设计,需要采集物料的物性参数、操作 条件以及类似设备的运行数据等。
2.4设计参数计算根据采集的数据和流程规划,计算板式精馏塔的主要参数, 包括塔高、塔径、板数、间距、流体力学等。
2.5辅助设计进行辅助设计,包括塔内件的材料选择、制造工艺、结构设计 等,确保塔体和内部构件的稳定性和耐用性。
传感器设计需要考虑到测量的准确性、稳定性和可靠性等因素。在实际设计 中,一般选用电感式、电容式、光电式等传感器形式,并需要对传感器的位置和 数量进行合理布置和选择。 5.
感谢观看
2、基本设计流程板式精馏塔的设计流程包括以下几个方面:
2.1设计目标确定首先需要明确板式精馏塔的设计目标,包括分离的物料种 类、分离的纯度、处理能力、操作压力和温度等。
2.2流程规划根据设计目标,确定板式精馏塔的流程。流程规划包括物料的 预处理、进料方式、操作模式、加热和冷却方式以及塔内件的结构设计等。
板式精馏塔的设计
基本内容
板式精馏塔是一种广泛应用于化工、石油、食品和医药等行业的蒸馏设备。 它通过将液体混合物进行多次汽化和冷凝,从而将不同沸点的组分分离出来。本 次演示将详细介绍板式精馏塔的设计流程、塔体设计、传质元件设计、控制系统 设计以及数据分析与结果呈现。
1、引言板式精馏塔是一种高效的分离设备,通过多次汽化和冷凝将液体混 合物分离成不同沸点的组分。在化工、石油、食品和医药等行业,板式精馏塔被 广泛应用于原料的预处理、产品的提纯和分离以及废液的处理等。因此,板式精 馏塔的设计对于工业生产过程的经济性和效率具有重要意义。

乙醇水分离板式精馏塔设计方案

乙醇水分离板式精馏塔设计方案

乙醇水分离板式精馏塔设计方案一、课题名称乙醇——水分离板式精馏塔设计二、课题条件(原始数据)原料:乙醇、水溶液处理量:1550Kg/h原料组成:28%(乙醇的质量分率)料液初温:20℃操作压力、回流比、单板压降:自选进料状态:冷液体进料塔顶产品浓度:93%(质量分率)塔底釜液含乙醇含量不高于0.1%(质量分率)塔顶:全凝器塔釜:饱和蒸汽间接加热塔板形式:筛板生产时间:300天/年,每天24h运行冷却水温度:20℃设备形式:筛板塔厂址:滨州市三、设计容(包括设计、计算、论述、实验、应绘图纸等根据目录列出大标题即可)1 、设计方案的选定2、精馏塔的物料衡算3、塔板数的确定4、精馏塔的工艺条件及有关物性数据的计算(加热物料进出口温度、密度、粘度、比热、导热系数)5、精馏塔塔体工艺尺寸的计算6、塔板主要工艺尺寸的计算7、塔板的流体力学验算8、塔板负荷性能图(精馏段)9、换热器设计10、馏塔接管尺寸计算11、制生产工艺流程图(带控制点、机绘,A2图纸)12、绘制板式精馏塔的总装置图(包括部分构件)(手绘,A1图纸)13、撰写课程设计说明书一份设计说明书的基本容⑴课程设计任务书⑵课程设计成绩评定表⑶中英文摘要⑷目录⑸设计计算与说明⑹设计结果汇总⑺小结⑻参考文献14、有关物性数据可查相关手册15、注意事项●写出详细计算步骤,并注明选用数据的来源●每项设计结束后列出计算结果明细表●设计最终需装订成册上交四、进度计划(列出完成项目设计容、绘图等具体起始日期)1.设计动员,下达设计任务书0.5天2.收集资料,阅读教材,拟定设计进度1-2天3.初步确定设计方案及设计计算容5-6天4.绘制总装置图2-3天5.整理设计资料,撰写设计说明书2天6.设计小结及答辩1天目录摘要 (1)第一章概述 (1)1.1精馏操作对塔设备的要求 (1)1.2板式塔类型 (2)第二章设计方案的确定 (3)2.1操作条件的确定 (3)2.2确定设计方案的原则 (4)第三章塔的工艺尺寸得计算 (6)3.1精馏塔的物料衡算 (6)3.1.1摩尔分率 (6)3.1.2平均摩尔质量 (6)3.1.3 物料衡算 (6)3.1.4 回收率 (7)3.2塔板数的确定 (7)3.2.1理论板层数N的求取 (7)3.3 精馏塔有关物性数据的计算 (11)3.3.1 操作压力计算 (11)3.3.2 操作温度计算 (11)3.3.3 平均摩尔质量计算 (11)3.3.4 平均密度计算 (12)3.3.5 液体平均表面力计算 (13)3.3.6 液体平均黏度计算 (14)3.4 精馏塔的塔体工艺尺寸设计 (14)3.4.1 塔径的计算 (14)3.4.2 精馏塔有效高度的计算 (14)3.5 塔板主要工艺尺寸的计算 (18)3.5.1 溢流装置计算 (18)3.5.2 塔板布置 (21)3.6 筛板的流体力学验算 (24)3.6.1 塔板压降 (24)3.6.2液面落差 (26)3.6.3 液沫夹带 (26)3.6.4 漏液 (26)3.6.5 液泛 (27)3.7 塔板负荷性能图 (27)3.7.1 漏液线 (28)3.7.2 液沫夹带线 (28)3.7.3 液相负荷下限线 (29)3.7.4 液相负荷上限线 (30)3.7.5 液泛线 (31)第四章塔附属设计 (35)4.1 塔附件设计 (35)4.2 筒体与封头 (38)4.3 塔总体高度设计 (38)4.3.1 塔的顶部空间高度 (38)4.3.2 塔的底部空间高度 (39)4.3.3 塔体高度 (39)4.4 附属设备设计 (39)4.4.1 冷凝器的选择 (39)4.4.2 泵的选择 (40)设计小结 (41)附录 (42)参考文献 (39)摘要化工生产过程中所处理的原料,中间产物,粗产品几乎都是由若干组分组成的混合物,而且其部分都是均相物质。

苯-氯苯板式精馏塔的工艺设计

苯-氯苯板式精馏塔的工艺设计

化工原理课程设计——苯-氯苯板式精馏塔的工艺设计工艺计算书目录苯-氯苯分离过程板式精馏塔设计任务 (1)一.设计题目 (1)二.操作条件 (1)三.塔板类型 (1)四.工作日 (2)五.厂址........................................ 错误!未定义书签。

六.设计内容 (2)七.设计基础数据 (2)符号说明 (2)设计方案 (5)一.设计方案的思考 (5)二.设计方案的特点 (5)三.工艺流程 (5)苯-氯苯板式精馏塔的工艺计算书 (5)一.设计方案的确定及工艺流程的说明 (5)二.全塔的物料衡算 (6)三.塔板数的确定 (6)四.塔的精馏段操作工艺条件及相关物性数据的计算 (9)五.精馏段的汽液负荷计算........................ 错误!未定义书签。

六.塔和塔板主要工艺结构尺寸的计算 (13)七.塔板负荷性能图 (17)八.附属设备的的计算及选型 (21)筛板塔设计计算结果 (31)设计评述 (32)一.设计原则确定 (32)二.操作条件的确定 (33)设计感想 (34)苯-氯苯板式精馏塔的工艺设计苯-氯苯分离过程板式精馏塔设计任务一.设计条件年产纯度为99.5%的氯苯4万吨,原料液为苯和氯苯的的混合液,其中氯苯含量中为38%(质量百分数),其余为苯,采用泡点进料,要求塔顶氯苯含量不高于2%,精馏塔顶压强为4kPa(表压),单板压降不大于0.7kPa,采用300天/年工作日连续生产。

二.操作条件1.塔顶压强4kPa(表压);2.进料热状况,泡点进料;3.回流比,自选;4.压降不大于0.7kPa;三.塔板类型筛板或浮阀塔板(F1型)。

四.工作日每年300天,每天24小时连续运行五.计内容1.精馏塔的物料衡算;2.塔板数的确定;3.精馏塔的工艺条件及有关物性数据的计算;4.精馏塔的塔体工艺尺寸计算;5.塔板主要工艺尺寸的计算;6.塔板的流体力学验算;7.塔板负荷性能图;8.设计计算结果总表。

塔板式精馏塔设计(图文表)

塔板式精馏塔设计(图文表)

塔板式精馏塔设计(图文表)(一)设计方案的确定本设计任务为乙醇-水混合物。

设计条件为塔顶常压操作,对于二元混合物的分离,应采用连续精馏流程。

酒精精馏与化工精馏过程不同点就在于它不仅是一个将酒精浓缩的过程,而且还担负着把粗酒精中50多种挥发性杂质除去的任务,所以浓缩酒精和除去杂质的过程在酒精工业中称为精馏。

物料中的杂质基本上是在发酵过程中生成的,只是很少数的杂质是在蒸煮和蒸馏过程中生成的。

本次设计的精馏塔用板式塔,内部装有塔板、降液管、各种物料的进出口及附属结构(如全凝器等)。

此外,在塔板上有时还焊有保温材料的支撑圈,为了方便检修,在塔顶还装有可转动的吊柱。

塔板是板式塔的主要构件,本设计所用的塔板为筛板塔板。

筛板塔的突出优点是结构简单造价低,合理的设计和适当的操作能使筛板塔满足要求的操作弹性,而且效率高,并且采用筛板可解决堵塞问题,还能适当控制漏液。

设计中采用泡点进料,将原料液通过预热器加热至泡点后送人精馏塔内。

塔顶上升蒸汽采用全凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷却器冷却后送至储罐。

该物系属不易分离物系,最小回流比较小,采用其1.5倍。

设计中采用图解法求理论塔板数,在溢流装置选择方面选择单溢流弓形降液管。

塔釜采用间接蒸汽加热,塔顶产品经冷却后送至储罐。

(二)精馏塔的物料衡算1.原料液及塔顶、塔底产品的摩尔分率乙醇的摩尔质量 M 乙醇=46kg/kmol纯水的摩尔质量 M 水 =18kg/kmolx F =18/65.046/35.046/35.0+=0.174x D =18/1.046/9.046/9.0+=0.779x W =46/995.018/005.018/005.0+=0.0022.原料液及塔顶、塔底产品的平均摩尔质量M F =0.174×46+18×(1-0.174)= 22.872 kg/kmol M D =0.779×46+18×(1-0.779)= 39.812 kg/kmol M W =0.002×46+18×(1-0.002)= 18.056 kg/kmol3.物料衡算 D=30024812.3948000000⨯⨯=167.454 kmol/hF=D+WF ·x F =D ·x D +W ·x W解得 F=756.464 kmol/h W=589.01 kmol/h{(三)塔板数的确定1.回流比的选择由任务书提供的乙醇-水物系的气液平衡数据绘出x-y 图;由于设计中选用泡点式进料,q=1,故在图中对角线上自点a(x D,x D)作垂线,与Y轴截距oa=x D/(R min+1)=0.415 即最小回流比R min=x D/oa-1=0.877取比例系数为1.5,故操作回流比R为R=1.5×0.877=1.3162.精馏塔的气液相负荷的计算L=RD=1.316×167.454=220.369 kmol/hV=L+D=(R+1)D=2.316×167.454=387.823 kmol/h L ’=L+qF=220.369+756.464=976.833 kmol/h V ’=V+(q-1)F=V=387.823 kmol/h3.操作线方程精馏段操作线方程为 y=1+R R x+11+R x D =1316.1316.1+x+11.3161+×0.779即:y=0.568x+0.336提馏段操作线方程为y=F q D R qF RD )1()1(--++x-F q D R DF )1()1(--+-x W=1.316*167.454+1*756.464(1.316+1)*167.454x-756.464167.454(1.3161)*167.454-+×0.002 即:y=2.519x-0.0034.采用图解法求理论塔板数塔顶操作压力P D=101.3 KPa单板压降△P=0.7 kPa进料板压力P F=0.7×18+101.3=113.9 kPa塔底操作压力P W=101.3+0.7×26=119.5 kPa精馏段平均压力P m=(101.3+113.9)/2=107.6 kPa 压力P m=(113.9+119.5)/2=116.7 kPa2.操作温度计算计算全塔效率时已知塔顶温度t D=78.43 o C进料板温度 t F=83.75 o C塔底温度t W=99.53 o C精馏段平均温度t m=(t D+t F)/2=(78.43+83.75)/2=81.09 o C提馏段平均温度t m=(t W+t F)/2=(99.53+83.75)/2=91.64 o C3.平均摩尔质量计算塔顶平均摩尔质量计算由x D=y1=0.779 查上图可得x1=0.741M VDm=0.779×46+(1-0.779)×18=39.812 g/molM LDm=0.741×46+(1-0.741)×18=38.748 g/mol进料板平均摩尔质量计算 t f=83.74 o C由y F=0.518 查上图可得x F=0.183M VFm =0.518×46+(1-0.518)×18=32.504 g/mol M LFm =0.183×46+(1-0.183)×18=23.124 g/mol 精馏平均摩尔质量M Vm =( M VDm + M VFm )/2=36.158 g/molM Lm =( M LDm + M LFm )/2=30.936 g/mol4.平均密度计算气相平均密度计算由理想气体状态方程计算,即ρVm =RT PMv =)15.27309.81(314.8158.366.107+⨯⨯=1.321 kg/m 3 液相平均密度计算液相平均密度依1/ρLm =∑αi /ρi 计算 塔顶液相平均密度计算t D =78.43 o C 时 ρ乙醇=740 kg/m 3 ρ水=972.742 kg/m 3ρLDm =)742.972/1.0740/9.0(1+=758.14 kg/m 3进料板液相平均密度计算t F =83.75 o C 时 ρ乙醇=735 kg/m 3 ρ水=969.363 kg/m 3ρLFm =)363.969/636.0735/364.0(1+=868.554 kg/m 3塔底液相平均密度计算t W =99.53 o C 时 ρ乙醇=720 kg/m 3 ρ水=958.724 kg/m 3ρLWm =)724.958/995.0720/005.0(1 =957.137 kg/m 3精馏段液相平均密度计算ρLm =(ρLFm +ρLDm )/2=(758.14+868.554)/2=813.347 kg/m 3提馏段液相平均密度计算ρLm =(ρLFm +ρLWm )/2=(957.137+868.554)/2=912.846 kg/m 35.液体平均表面张力计算液体平均表面张力依σLm =∑x i σi 计算塔顶液相平均表面张力计算t D =78.43时 σ乙醇=62.866 mN/m σ水=17.8 mN/m σLDm =0.779×17.8+0.221×62.886=84.446 mN/m 进料板液相平均表面张力计算t F =83.75时 σ乙醇=61.889 mN/m σ水=17.3 mN/m σLFm =0.183×17.3+0.817×61.889=53.729 mN/m 塔底液相平均表面张力计算t W =99.53时 σ乙醇=58.947 mN/m σ水=15.9 mN/m σLWm =0.005×15.9+0.995×58.947=58.732 mN/m 精馏段液相平均表面张力计算σLm =(84.446+53.729)/2=69.088 mN/m 提馏段液相平均表面张力计算σLm =(58.732+53.729)/2=56.231 mN/m6.液体平均粘度计算液体平均粘度依lgμLm=∑x i lgμi计算塔顶液相平均粘度计算t D=78.43o C时μ乙醇=0.364mPa·s μ水=0.455 mPa·slgμLDm=0.779lg(0.455)+0.221lg(0.364)=-0.363μLDm =0.436 mPa·s进料液相平均粘度计算t F=83.75 o C时μ乙醇=0.341mPa·s μ水=0.415 mPa·slgμLFm=0.183lg(0.415)+0.817lg(0.341)=-0.452μLFm=0.353 mPa·s塔底液相平均粘度计算t W=99.53 o C时μ乙醇=0.285mPa·s μ水=0.335 mPa·slgμLWm=0.002lg(0.335)+0.998lg(0.285)=-0.544μLWm=0.285 mPa·s精馏段液相平均粘度计算μLm=(0.436+0.353)/2=0.395 mPa·s提馏段液相平均粘度计算μLm=(0.285+0.353)/2=0.319 mPa·s(五)精馏塔的塔体工艺尺寸计算1.塔径的计算精馏段的气液相体积流率为V S =ρ3600VM =2.949 m 3/s L S =ρ3600LM =0.0023 m 3/s 查史密斯关联图,横坐标为Vh Lh (vlρρ)21=949.20023.0(321.1347.813) 1/2=0.0196取板间距H T =0.45m ,板上液层高度h L =0.06m , 则H T -h L =0.39m 查图可得C 20=0.08 由C=C 20(20L σ)0.2=0.08(69.088/20)0.2=0.103u max =C (ρL -ρV )/ ρV =2.554 m/s取安全系数为0.7,则空塔气速为 u=0.7u max =1.788 m/sD=4V s /πu=788.1/14.3/949.2*4=1.39 m 按标准塔径元整后 D=1.4 m 塔截面积A T =(π/4)×1.42=1.539 ㎡ 实际空塔气速为 u=2.717/1.539=1.765 m/s 2.精馏塔有效高度的计算精馏段有效高度为Z 精=(N 精-1)H T =7.65 m 提馏段有效高度为Z 提=(N 提-1)H T =3.15 m在进料板上方开一人孔,其高度为 1m 故精馏塔的有效高度为 Z=Z 精+Z 提+1=7.65+3.15+1=11.8 m(六)塔板主要工艺尺寸的计算1.溢流装置计算因塔径D=1.4 m ,可选用单溢流弓形降液管 堰长l W =0.7×1.4=0.98 m 2.溢流强度i 的校核i=L h /l W =0.0023×3600/0.98=8.449≤100~130m 3/h ·m 故堰长符合标准 3.溢流堰高度h W平直堰堰上液层高度h ow =100084.2E (L h /l W )2/3由于L h 不大,通过液流收缩系数计算图可知E 近似可取E=1h ow =100084.2×1×(L h /l W )2/3=0.0119 mh W =h L -h ow =0.06-0.0119=0.0481 m 4.降液管尺寸计算查弓形降液管参数图,横坐标l W /D=0.7 可查得A f /A T =0.093 W d /D=0.151 故 A f =0.093A T =0.143 ㎡ W d =0.151W d =0.211 ㎡留管时间θ=3600A T H T /L H =27.64 s >5 s 符合设计要求5.降液管底隙高度h oh O =L h /3600l W u 0’=0.0023/0.98×0.08=0.03 m h W -h O =0.0481-0.03=0.0181 m >0.006 m 6.塔板布置塔板的分块 D=1400 mm >800 mm ,故塔板采用分块式。

精馏塔课程设计--苯-甲苯板式精馏塔的工艺设计

精馏塔课程设计--苯-甲苯板式精馏塔的工艺设计

第一章绪论1.1精馏的特点与分类精馏是分离液体混合物的典型单元操作。

它是通过加热造成气液两相物系,利利用物系中各组分挥发度的不同的特性来实现分离的。

按精馏方式分为简单精馏、平衡精馏、精馏和特殊精馏。

1.1.1蒸馏分离具有以下特点(1)通过蒸馏分离,可以直接获得所需要的产品。

(2)适用范围广,可分离液态、气态或固态混合物。

(3)蒸馏过程适用于各种浓度混合物的分离。

(4)蒸馏操作耗能较大,节能是个值得重视的问题。

1.1.2平衡蒸馏将混合液在压力p1下加热,然后通过减压阀使压力降低至p2后进入分离器。

过热液体混合物在分离器中部分汽化,将平衡的气、液两相分别从分离器的顶部、底部引出,即实现了混合液的初步分离。

1.1.3简单蒸馏原料液在蒸馏釜中通过间接加热使之部分汽化,产生的蒸气进入冷凝器中冷凝,冷凝液作为馏出液产品排入接受器中。

在一批操作中,馏出液可分段收集,以得到不同组成的馏出液。

1.1.4连续精馏操作流程化工生产以连续精馏为主。

操作时,原料液连续地加入精馏塔内,连续地从再沸器取出部分液体作为塔底产品(称为釜残液);部分液体被汽化,产生上升蒸气,依次通过各层塔板。

塔顶蒸气进入冷凝器被全部冷凝,将部分冷凝液用泵(或借重力作用)送回塔顶作为回流液体,其余部分作为塔顶产品(称为馏出液)采出。

1-精馏塔 2-全凝器3-储槽 4-冷却器5-回流液泵 6-再沸器 7-原料液预热器图1连续精馏装置示意图1.2精馏塔的踏板分类1.2.1塔板的结构形式1.泡罩塔板泡罩塔板是工业上应用最早的塔板,它由升气管与泡罩构成。

泡罩安装在升气管的顶部,分圆形和条形两种,以前者使用较广。

泡罩有φ80mm、φ100mm和φ150mm三种尺寸,可根据塔径大小选择。

泡罩下部周边开有很多齿缝,齿缝一般为三角形、矩形或梯形。

泡罩在塔板上为正三角形排列。

它的优点是操作弹性适中塔板不易堵塞。

缺点是生产能力与板效率较低结构复杂、造价高。

图2泡罩塔板(a)操作示意图 (b)塔板平面图 (c)圆形泡罩2.筛孔塔板筛孔塔板简称筛板,其结构特点是在塔板上开有许多均匀小孔,孔径一般为3~8mm。

精馏塔(板式)设计

精馏塔(板式)设计

精馏塔板的设计还需要考虑到不同物 质的沸点、蒸汽压等物性参数,以及 操作条件下的温度、压力等参数,以 确保分离过程的顺利进行。
精馏塔板的设计需要考虑到液体的流 动特性、蒸汽的流动特性以及它们之 间的相对流动方向,以达到最佳的分 离效果。
设计流程
选择合适的塔板类型
根据设计目标和工艺要求,选 择适合的塔板类型,如泡罩塔 板、浮阀塔板、筛孔塔板等。
详细描述
石油精馏塔设计需要考虑多方面的因素,如原料性质、产品 要求、操作条件等。在设计过程中,需要选择合适的塔板类 型和数量,确定适宜的工艺流程和操作参数,以满足生产需 求。
案例二:酒精精馏塔设计
总结词
酒精精馏塔设计是一种常见的精馏塔设计案例,主要应用于酿酒和生物燃料领域 。
详细描述
酒精精馏塔设计需要考虑酒精的提取和纯化过程。在设计过程中,需要选择适合 的塔板和填料,确定适宜的操作压力和温度,以保证酒精的纯度和回收率。
设计的重要性
01
02
03
提高分离效率
精馏塔板设计的核心目标 是提高分离效率,使产品 达到更高的纯度或回收率。
降低能耗
精馏塔板设计的另一个重 要目标是降低能耗,通过 优化设计,降低操作过程 中的热能消耗。
提高生产能力
良好的精馏塔板设计可以 提高生产能力,从而提高 设备的产能和经济效益。
02 精馏塔(板式)的工艺设计
塔板热力学计算
传热系数
根据物料特性和工艺要求,计算并选 择合适的传热系数,以提高热力学效 率。
温度分布
通过计算温度分布,可以了解物料在 塔板上的温度变化情况,从而优化操 作条件和塔板结构。
03 精馏塔(板式)的设备设计
塔体设计
塔体直径

精馏塔(板式)设计

精馏塔(板式)设计

PA α= ∗ PB
(三)塔板数的确定 1、作出x-y相图 、作出 相图 2、最小回流比及操作回流比 、 3、理论板数及加料位置 、 ①求精馏塔的汽、液相负荷 求精馏塔的汽、

R = 1.5 Rmin
L′ = L + qF = RD + qF
V ′ = V + (q − 1) F = ( R + 1) D + (q − 1) F
化工原理课程设计
(6)冷凝器的选择 ) 塔顶产品(全凝器)和塔釜产品(冷却器) 塔顶产品(全凝器)和塔釜产品(冷却器) (7)加料方式的选择 ) 高位槽或泵 (8)工艺流程 ) 3、正戊烷和正己烷的性质、用途等 、正戊烷和正己烷的性质、
化工原理课程设计
二.工艺计算
主要内容是( 主要内容是(1)物料衡算 (2)确定回流比 (3)确定理论板数和实 际板数 (4)塔的气液负荷计算 (5)热量衡算 塔设备的生产能力一般以千克/小时或吨/年表示, 塔设备的生产能力一般以千克/小时或吨/年表示,但在理论板 计算时均须转换成kmol/h,在塔板设计时 在塔板设计时, 计算时均须转换成kmol/h,在塔板设计时,气液流量又须用体积 流量m /s表示 因此要注意不同的场合应使用不同的流量单位。 表示。 流量 m3/s 表示 。 因此要注意不同的场合应使用不同的流量单位 。 (一)全塔物料衡算 1、原料液及塔顶、塔底产品的摩尔分数 、原料液及塔顶、
化工原理课程设计
②求精馏段、提馏段的操作线方程 求精馏段、
R xD y= x+ R +1 R +1
③作图求出理论板数 ④逐板计算求理论板数
WxW L + qF y′ = x′ − L + qF − W L + qF − W

毕业设计 分离乙醇—水板式精馏塔设计设计说明书

毕业设计 分离乙醇—水板式精馏塔设计设计说明书

毕业设计分离乙醇—水板式精馏塔设计设计说明书课程设计课程名称:化工原理题目名称:分离乙醇—水板式精馏塔设计学生学院:轻工化工学院专业班级:学生学号:学生姓名:指导教师:2010 年 6月20 日1.设计任务 (5)2.工艺流程图 (8)3.设计方案 (8)3.1设计方案的确定 (8)3.1.1塔型的选择 (8)3.1.2操作压力 (8)3.1.3进料方式 (9)3.1.4加热方式 (9)3.1.5热能的利用 (9)3.1.6回流方式 (10)3.2实验方案的说明 (10)4、板式塔的工艺计算 (11)4.1物料衡算 (11)4.2最小回流比RMIN和操作回流比R的确定 (12)4.3操作线的确定 (14)4.3.1精馏段操作曲线方程 (14)4.3.2提馏段操作曲线方程 (14)4.4确定理论板层数NT (15)4.5确定全塔效率ET 和实际塔板层数NP (15)4.5.1相对挥发度 (15)4.5.2物系黏度 (16)4.5.3全塔效率和实际塔板数 (16)4.6操作压强的计算 (17)4.7平均分子量的计算 (18)4.8平均密度的计算 (18)4.9表面张力的计算 (20)4.10平均流量的计算 (21)5、塔体和塔板的工艺尺寸计算 (22)5.1塔径 (22)5.2溢流装置 (25)5.3塔板布置及筛板塔的主要结构参数 (30)5.4塔板流体力学验算 (32)5.4.1塔板阻力HP (32)5.4.2降液管泡沫层高度 (34)5.4.3液体在降液管内的停留时间 (35)5.4.4雾沫夹带量校核 (35)5.4.5漏液点 (37)5.5操作负荷性能图 (38)5.6设计结果 (43)6、辅助设备的计算与选型 (45)6.1料液储罐的选型 (45)6.2换热器的选型 (46)6.2.1预热器 (47)6.2.2再沸器 (48)6.2.3全凝器热负荷及冷却水消耗量 (49)6.2.4产品冷却器 (50)6.3各接管尺寸的确定 (51)6.3.1进料管 (51)6.3.2釜残液出料管 (51)6.3.3回流液管 (51)6.3.4塔顶上升蒸汽管 (52)6.3.5水蒸汽进口管 (52)6.4塔高 (53)6.5法兰 (54)6.6人孔 (56)6.7视镜 (56)6.8塔顶吊柱 (56)6.9泵的计算及选型 (57)7、经济横算 (58)7.1成产成本 (58)7.2水蒸汽费用CS (58)7.3冷却水费用CW (58)7.4设备投资费CD (59)7.5总费用 (59)7.6利润 (59)8心得体会 (60)符号说明:英文字母Aa---- 塔板的开孔区面积,m2Af---- 降液管的截面积, m2Ao---- 筛孔区面积, m2A T----塔的截面积m2△P P----气体通过每层筛板的压降C----负荷因子无因次t----筛孔的中心距C20----表面张力为20mN/m的负荷因子do----筛孔直径u’o----液体通过降液管底隙的速度D----塔径m Wc----边缘无效区宽度e v----液沫夹带量kg液/kg气Wd----弓形降液管的宽度E T----总板效率Ws----破沫区宽度R----回流比Rmin----最小回流比M----平均摩尔质量kg/kmolt m----平均温度℃g----重力加速度9.81m/s2Z----板式塔的有效高度Fo----筛孔气相动能因子kg1/2/(s.m1/2)hl----进口堰与降液管间的水平距离m θ----液体在降液管内停留时间h c----与干板压降相当的液柱高度mυ----粘度hd----与液体流过降液管的压降相当的液注高度m ρ----密度hf----塔板上鼓层高度m σ----表面张力h L----板上清液层高度mΨ----液体密度校正系数h1----与板上液层阻力相当的液注高度m 下标ho----降液管的义底隙高度m max----最大的h ow----堰上液层高度m min----最小的h W----出口堰高度m L----液相的h’W----进口堰高度m V----气相的hσ----与克服表面张力的压降相当的液注高度mH----板式塔高度mH B----塔底空间高度mHd----降液管内清液层高度mH D----塔顶空间高度mH F----进料板处塔板间距mH P----人孔处塔板间距mH T----塔板间距mH1----封头高度mH2----裙座高度mK----稳定系数l W----堰长mLh----液体体积流量m3/hLs----液体体积流量m3/sn----筛孔数目P----操作压力KPa△P---压力降KPa△Pp---气体通过每层筛的压降KPaT----理论板层数u----空塔气速m/su0,min----漏夜点气速m/su o’ ----液体通过降液管底隙的速度m/s V h----气体体积流量m3/hV s----气体体积流量m3/sW c----边缘无效区宽度mW d----弓形降液管宽度mW s ----破沫区宽度mZ ---- 板式塔的有效高度m希腊字母δ----筛板的厚度mθ----液体在降液管内停留的时间sυ----粘度mPa.sρ----密度kg/m3σ----表面张力N/mφ----开孔率无因次α----质量分率无因次下标Max---- 最大的Min ---- 最小的L---- 液相的V---- 气相的1.设计任务1.1题目:分离乙醇—水板式塔精馏塔设计1.2生产原始数据:1)原料:乙醇—水混合物,含乙醇35%(质量分数),温度35℃;2)产品:馏出液含乙醇93%(质量分数),温度38℃,残液中含酒精浓度≤0.5%;3)生产能力:原料液处理量55000t/年,每年实际生产天数330t,一年中有一个月检修;4)热源条件:加热蒸汽为饱和蒸汽,其表压为2.5Kgf/cm2;5)当地冷却水水温25℃;6)操作压力:常压101.325kp a;1.3设计任务及要求1)设计方案的选定,包括塔型的选择及操作条件确定等;2)确定该精馏的流程,绘出带控制点的生产工艺流程图,标明所需的设备、管线及其有关观测或控制所必需的仪表和装置;3)精馏塔的有关工艺计算计算产品量、釜残液量及其组成;最小回流比及操作回流比的确定;计算所需理论塔板层数及实际板层数;确定进料板位置。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

板式精馏塔设计方案一、设计方案确定1.1精馏流程精馏装置包括精馏塔,原料预热器,再沸器,冷凝器,釜液冷却器和产品冷却器等,为保持塔的操作稳定性,流程中用泵直接送入塔原料,乙醇、水混合原料液经预热器加热至泡点后,送入精馏塔。

塔顶上升蒸汽采用全凝器冷凝后经分配器一部分回流,一部分经过冷却器后送入产品储槽,塔釜采用间接蒸汽再沸器供热,塔底产品经冷却后为冷却水循环利用。

塔板是板式塔的主要构件,分为错流式塔板和逆流式塔板两类,工业中以错流式为主,常用的错流式塔板有:泡罩塔板,筛孔塔板,浮阀塔板。

泡罩塔板是工业上应用最早的塔板,其主要的优点是操作弹性较大,液气比范围较大,不易堵塞;但由于生产能力及板效率底,已逐渐被筛孔塔板和浮阀塔板所替代。

筛孔塔板优点是结构简单,造价低,板上液面落差小,气体压强底,生产能力大;其缺点是筛孔易堵塞,易产生漏液,导致操作弹性减小,传质效率下降。

而浮阀塔板是在泡罩塔板和筛孔塔板的基础上发展起来的,它吸收了前述两种塔板的优点。

浮阀塔板结构简单,制造方便,造价底;塔板开孔率大,故生产能力大;由于阀片可随气量变化自由升降,故操作弹性大;因上升气流水平吹入液层,气液接触时间长,故塔板效率较高。

但浮阀塔板也有缺点,即不易处理易结焦、高粘度的物料,而设计的原料是乙醇水溶液,不属于此类。

故总结上述,设计时选择的是浮阀塔板。

1.2设计方案论证及确定1.2.1生产时日及处理量的选择:设计要求塔年处理11.5万吨乙醇一水溶液系统,年工作日300d,每天工作24h。

1.2.2选择用板式塔不用填料塔的原因:因为精馏塔精馏塔对塔设备的要求大致如下:(1)生产能力大:即单位塔截面大的气液相流率,不会产生液泛等不正常流动。

(2)效率高:气液两相在塔内保持充分的密切接触,具有较高的塔板效率或传质效率。

(3)流体阻力小:流体通过塔设备时阻力降小,可以节省动力费用,在减压操作是时,易于达到所要求的真空度。

(4)有一定的操作弹性:当气液相流率有一定波动时,两相均能维持正常的流动,而且不会使效率发生较大的变化。

(5)结构简单,造价低,安装检修方便。

(6)能满足某些工艺的特性:腐蚀性,热敏性,起泡性等。

故选用板式塔。

1.2.3板式精馏塔选择浮阀塔的原因:(1)生产能力大,由于塔板上浮阀安排比较紧凑,其开孔面积大于泡罩塔板,生产能力比泡罩塔板大20%〜40%与筛板塔接近。

(2)操作弹性大,由于阀片可以自由升降以适应气量的变化,因此维持正常操作而允许的负荷波动范围比筛板塔,泡罩塔都大。

(3)塔板效率高,由于上升气体从水平方向吹入液层,故气液接触时间较长,而雾沫夹带量小,塔板效率高。

(4)气体压降及液面落差小,因气液流过浮阀塔板时阻力较小,使气体压降及液面落差比泡罩塔小。

(5)塔的造价较低,浮阀塔的造价是同等生产能力的泡罩塔的 50%〜80% 但是比筛板塔高20%〜30%1.3.操作压力:常压精馏对于乙醇-水体系,在常压下已经是液态,且乙醇-水不是热敏性材料,在常压下也可成功分离,所以选用常压精馏。

因为高压或者真空操作会引起操作上的其他问题以及设备费用的增加,尤其是真空操作不仅需要增加真空设备的投资和操作费用,而且由于真空下气体体积增大,需要的塔径增加,因此塔设备费用增加。

综上所述,选择常压操作。

1.4. q值得选择:泡点进料进料状态有五种,如果选择泡点进料,即 q=1时,操作比较容易控制,且不受季节气温的影响,此外,泡点进料时精馏段和提馏段的塔径相同,设计和制造时比较方便。

1.5.加热方式:间接蒸汽加热蒸馏釜的加热方式通常采用间接蒸汽加热,设置再沸器。

直接蒸汽加热只能用于塔底产物基本是水,由于蒸汽的不断通入,对塔底溶液起了稀释作用,在塔底易挥发物损失量相同的情况下,塔底残液中易挥发组分的浓度应较低,因而塔板数稍有增加,成本增加,故采用间接加热。

1.6回流比:回流比的选择主要从经济观点出发,力求操作费与设备费最低,R=1.2Rmin。

1.7工艺流程草图及说明1.7.1工艺草图1.8工艺流程说明一整套精馏装置应该包括精馏塔、原料预热器、再沸器、冷凝器、釜液冷却器和产品冷却器等设备。

热量自塔釜输入,物料在塔内经多次部分气化与部分冷凝进行精馏分离,由冷凝器和冷却器中的冷却介质将余热带走。

乙醇一水混合液原料经预热器加热到泡点温度后送入精馏塔进料板,在进料板上与自塔上部下降的的回流液体汇合后,逐板溢流,最后流入塔底。

在每层板上,回流液体与上升蒸汽互相接触,进行热和质的传递过程。

操作时,连续地从再沸器取出部分液体作为塔底产品,部分液体气化,产生上升蒸汽,一起通过各层塔板。

塔顶蒸汽进入冷凝器中被冷凝,并将部分冷凝液送回塔顶作为回流液, 其余 部分经冷凝器冷凝后送出作为塔顶产品,经冷凝器冷却后送入贮槽。

塔釜采用再 沸器加热。

塔底产品经冷却后送入贮槽。

工艺计算2.1物料衡算2.1.1. 将质量分数转换成摩尔分数40 46.0684 18.0148 94 46.0684 18.01480.05 46.0684 18.01480.0001956 46.0684 (1 0.0001956)18.0203kg/kmol2.1.3. 物料衡算X F46.0684 40 60 0.206876X D46.0684 94 6 0.859676xw46.0684 99.95 0.00019562.1.2. 平均摩尔质量M D 46.0684 0.8597 (1 0.8597) 18.0148 42.1318kg/kmolM F0.2068 46.0684 (1 0.2068) 18.0148 23.8159kg/kmol 18.0148D' W' 4861.110.94D' 0.0005V' 0.4 4861.1解方程组,得D' 2067.02443W' 2794.07562.1.4. 摩尔流量的计算4861.1 23.8159 204.1112kmol / hF F' MFD D' M D 2067.02443 42.1318 49.0609kmol / h W W' M W2794.0756 18.0203 155.05164kmol/h 2.2塔板数确定2.2.1 .理论塔板数NI的求取由乙醇一水相平衡数据画得相平衡图,作出对角线y=x ,取点(0.859676,0.859676)蒸汽中酒精质蒸汽中液体中酒精质量质量沸点液体中酒精摩尔分酒精摩量分数分数/C 数尔分数0.01 0.13 99.9 0.004 0.0530.1 1.3 99.8 0.04 0.510.15 1.95 99.7 0.055 0.770.2 2.6 99.6 0.08 1.030.3 3.8 99.5 0.12 1.570.4 4.9 99.4 0.16 1.980.5 6.1 99.3 0.19 2.480.6 7.1 99.2 0.23 2.90.7 8.1 99.1 0.27 3.30.8 9 99 0.31 3.7250.9 9.9 98.9 0.35 4.121 10.75 98.75 0.39 4.512 19.7 97.65 0.79 8.763 27.2 96.65 1.19 12.754 33.3 95.8 1.61 16.345 37 94.95 2.01 18.686 41.1 94.15 2.43 21.457 44.6 93.35 2.86 23.968 47.6 92.6 3.29 26.219 50 91.9 3.73 28.1210 52.2 91.3 4.16 29.9211 54.1 90.8 4.61 31.5612 55.8 90.5 5.07 33.0613 57.4 89.7 5.51 34.5714 58.8 89.2 5.98 35.8315 60 89 6.46 36.9816 61.1 88.3 6.86 38.0617 62.2 87.9 7.41 39.1618 63.2 87.7 7.95 40.1819 64.3 87.4 8.41 41.2720 65 87 8.92 42.0921 65.8 86.7 9.42 42.9422 66.6 86.4 9.93 43.8223 67.3 86.2 10.48 44.6124 68 85.95 11 45.4125 68.6 85.7 11.53 46.0826 69.3 85.4 12.08 46.927 69.8 85.2 12.64 47.4928 70.3 85 13.19 48.0829 70.8 84.8 13.77 48.6830 71.3 84.7 14.35 49.331 71.7 84.5 14.95 49.7732 72.1 84.3 15.55 50.2733 72.5 84.2 16.15 50.7834 72.9 83.8 16.77 51.2735 73.2 83.75 17.41 51.6736 73.5 83.7 18.03 52.0437 73.8 83.5 18.68 52.4338 74 83.4 19.34 52.6839 74.3 83.3 20 53.0940 74.6 83.1 20.68 53.4641 74.8 82.95 21.38 53.7642 75.1 82.78 22.07 54.1243 75.4 82.65 22.79 54.5444 75.6 82.5 23.51 54.845 75.9 82.45 24.25 55.2246 76.1 82.35 25 55.4847 76.3 82.3 25.75 55.7448 76.5 82.15 26.53 56.0349 76.8 82 27.32 56.4451 77.3 81.8 28.93 57.1252 77.5 81.7 29.8 57.4153 77.7 81.6 30.61 57.754 78 81.5 31.47 58.1155 78.2 81.4 32.34 58.3956 78.5 81.3 33.24 58.7857 78.7 81.25 34.16 59.158 79 81.2 35.09 59.5559 79.2 81.1 36.02 59.8460 79.5 81 36.98 60.2961 79.7 80.95 37.91 60.5862 80 80.85 38.95 61.0263 80.3 80.75 40 61.4464 80.5 80.65 41.02 61.7665 80.8 80.6 42.09 62.2266 81 80.5 43.17 62.5267 81.3 80.45 44.27 62.9968 81.6 80.4 45.41 63.4369 81.9 80.3 46.55 63.9170 82.1 80.2 47.72 64.2171 82.4 80.1 48.92 64.772 82.8 80 50.16 65.3473 83.1 79.95 51.39 65.8174 83.4 79.85 52.68 66.2875 83.8 79.75 54 66.9376 84.1 79.72 55.34 67.4277 84.5 79.7 56.71 68.0778 84.9 79.65 58.71 68.7679 85.4 79.55 59.55 69.5980 85.8 79.5 61.02 70.2981 86.3 79.4 62.52 71.1482 86.7 79.3 64.05 71.8683 87.2 79.2 65.64 72.7184 87.7 79.1 67.27 73.6185 88.3 78.95 68.92 74.6986 88.9 78.85 70.62 75.8187 89.5 78.75 72.36 76.9388 90.1 78.65 74.15 7889 90.7 78.6 75.99 79.2690 91.3 78.5 77.88 80.4291 92 78.4 79.82 81.8392 92.65 78.3 81.82 83.1593 93.4 78.27 83.87 84.795 95.05 78.18 88.15 88.25 95.57 95.57 78.15 89.41 89.41从像图中可知在点(0.7788;0.8042)处有斜率最大值。

相关文档
最新文档