高数 第七章 无穷级数 知识点知识讲解

合集下载

高等数学第七章无穷级数.ppt

高等数学第七章无穷级数.ppt

推论 (比较审敛法) 设
是两个正项级数,
且存在
对一切

则有
(1) 若强级数 收敛 , 则弱级数
(常数 k > 0 ), 也收敛 ;
(2) 若弱级数 发散 , 则强级数 也发散 .
例1.
讨论
p
级数1
1 2p
1 3p
1 np
(常数
p
>
0)
的敛散性.
解: 1) 若 p 1, 因为对一切
1 n
而调和级数
知存在 N Z , 当n N 时, un1 1
un
收敛 , 由比较审敛法可知 un 收敛.
(2) 当 1 或 时,必存在 N Z , uN 0,当n N

从而
un1 un un1 uN
因此
lim
n
un
uN
0,
所以级数发散.
说明: 当 lim un1 1 时,级数可能收敛也可能发散.
不存在 , 因此级数发散.
由定义, 讨论 级数敛散性的方法 1. 先求部分和; 2. 求部分和的极限.
综合 1)、2)可知, q 1 时, 等比级数收敛 ;
q 1 时, 等比级数发散 .
利用此结论,可以直接判别某此级数的敛散性。例如:
例如:
公比 q 1 ,
2
q 1,
n1
(1) n1 2n1
3.按基本性质.
第三节 正项级数
第七章
一、正项级数收敛的基本定理 二、比较审敛法 三、比值审敛法 四、根值审敛法
一、正项级数收敛的基本定理
若 un 0, 则称 un 为正项级数 . n1
分析特点:部分和序列 单调递增。

无穷级数知识点

无穷级数知识点

⽆穷级数知识点⽆穷级数知识点⽆穷级数1. 级数收敛充要条件:部分和存在且极值唯⼀,即:1lim n k n k S u ∞→∞==∑存在,称级数收敛。

2.若任意项级数1n n u ∞=∑收敛,1n n u ∞=∑发散,则称1n n u ∞=∑条件收敛,若1n n u ∞=∑收敛,则称级数1nn u ∞=∑绝对收敛,绝对收敛的级数⼀定条件收敛。

. 2. 任何级数收敛的必要条件是lim 0n n u →∞=3.若有两个级数1n n u ∞=∑和1n n v ∞=∑,11,n n n n u s v σ∞∞====∑∑则①1()n n n u v s σ∞=±=±∑,11n n n n u v s σ∞∞===∑∑。

②1n n u ∞=∑收敛,1n n v ∞=∑发散,则1()n n n u v ∞=+∑发散。

③若⼆者都发散,则1()n n n u v ∞=+∑不确定,如()111, 1k k ∞∞==-∑∑发散,⽽()1110k ∞=-=∑收敛。

4.三个必须记住的常⽤于⽐较判敛的参考级数:a) 等⽐级数:0111n n ar ar r ∞=?-=??≥?∑,收敛,r 发散,b) P 级数: 11p n n ∞=>?=?≤?∑收敛,p 1发散,p 1c) 对数级数: 21ln pn n n ∞=>?=?≤?∑收敛,p 1发散,p 15.三个重要结论①11()n n n a a ∞-=-∑收敛lim n n a →∞存在②正项(不变号)级数n a ∑收2n a ?∑收,反之不成⽴,③2n a ∑和2n b ∑都收敛n n a b ?∑收,n na b n n∑∑或收6.常⽤收敛快慢正整数 ln (0)(1)!n n n n a a n n αα→>→>→→由慢到快连续型 ln (0)(1)x x x x a a x αα→>→>→由慢到快7.正项(不变号)级数敛散性的判据与常⽤技巧1.达朗贝尔⽐值法 11,lim 1,lim 0)1,n n n n n n l u l l u l µµ+→∞→+∞=>≠??=??收发(实际上导致了单独讨论(当为连乘时)2. 柯西根值法 1,1,1,n n n n l u l l n l µ=>??=?收发(当为某次⽅时)单独讨论3. ⽐阶法①代数式 1111n n n n n n n n n n u v v u u v ∞∞∞∞====≤∑∑∑∑收敛收敛,发散发散②极限式 lim nn nu A v →∞=,其中:1n n u ∞=∑和1n n v ∞=∑都是正项级数。

高等数学无穷级数知识点总结

高等数学无穷级数知识点总结

高等数学无穷级数知识点总结
无穷级数是高等数学中的一个重要内容,它涉及到很多重要的概念和定理。

以下是一些高等数学无穷级数的知识点总结:
1. 无穷级数的基本概念:无穷级数是指一个数列的项按一定规律相加而成的数列。

其中,无穷级数的定义域可以是实数集或复数集。

2. 无穷级数的分类:无穷级数可以分为数项级数和函数项级数两大类。

数项级数是指以常数项级数的形式表示的无穷级数,而函数项级数则是以函数项的形式表示的无穷级数。

3. 无穷级数的敛散性:无穷级数的敛散性是指级数是否收敛或发散。

如果一个无穷级数收敛,则称其为收敛级数,反之则称为发散级数。

4. 无穷级数的判别法:无穷级数的判别法是指判断一个无穷级数是否收敛的方法。

常用的判别法包括比较判别法、比值判别法、根值判别法和莱布尼兹判别法等。

5. 无穷级数的和应用:无穷级数在数学中有着广泛的应用,例如求和、积分、微积分等。

在实际应用中,无穷级数往往被用来求解各种问题。

6. 无穷级数的和函数:无穷级数的和函数是指级数的每一项相加得到的总和。

无穷级数的和函数具有很多重要的性质,例如连续性、可导性等。

7. 无穷级数的广义性质:无穷级数的广义性质是指关于无穷级数的一些扩展概念和定理。

例如,无穷级数的前 n 项和的广义性质、
无穷级数的广义收敛性等。

以上是高等数学无穷级数的一些重要知识点总结。

希望能对读者有所帮助。

高等数学-无穷级数ppt

高等数学-无穷级数ppt
级数分类
根据级数项的性质,无穷级数可分为正项级数、交错级数和任意 项级数。
收敛与发散性质பைடு நூலகம்
收敛性质
如果无穷级数的部分和数列有极限, 则称该无穷级数收敛,此时极限值称 为级数的和。
发散性质
如果无穷级数的部分和数列没有极限 ,或者极限为无穷大,则称该无穷级 数发散。
绝对收敛与条件收敛
绝对收敛
如果无穷级数的每一项的绝对值所构 成的级数收敛,则称原级数为绝对收 敛。
在量子力学中,波函数通常表示为无穷级数形式,用于 描述微观粒子的状态和行为。
电磁学中的场强计算
通过无穷级数的展开,可以计算电磁场中各点的场强分 布,进而分析电磁现象。
在工程学中的应用,如信号处理、控制系统设计等
信号处理中的滤波
在信号处理领域,利用无穷级数设计的滤波器可以对 信号进行平滑处理、降噪等操作。
要点二
洛朗级数展开
将函数f(z)在圆环域D内展开成双边幂级数形式,即f(z) = ... + a-2/z^2 + a-1/z + a0 + a1z + a2z^2 + ...,其中an是 洛朗系数,可通过计算f(z)在D内的各阶导数求得。
泰勒级数与洛朗级数的比较
适用范围不同
泰勒级数适用于在一点处展开 的情况,而洛朗级数适用于在 圆环域内展开的情况。
控制系统设计中的稳定性分析
在控制系统设计中,通过无穷级数的稳定性分析方法 ,可以判断控制系统的稳定性并进行相应的优化设计 。
THANK YOU
感谢聆听
幂级数展开
幂级数是指形如$sum_{n=0}^{infty} a_n x^n$的级数,其 中$a_n$为常数。幂级数在收敛域内可以逐项求导和逐项积 分,具有连续性和可微性。

无穷级数知识点

无穷级数知识点

无穷级数知识点
嘿,朋友们!今天咱来聊聊无穷级数这个有意思的知识点。

啥是无穷级数呢?简单来说,就是把一堆数按照一定规则加起来,不过这堆数有无穷多个呢!就好像你有无限多的糖果,然后把它们一个一个地加起来。

无穷级数有很多种类型哦。

比如说正项级数,这些数都是正数呢。

那怎么判断一个正项级数收不收敛呢?有好多方法呀!就像我们判断一件事情能不能成功一样,有各种标准。

还有交错级数,这些数一会儿正一会儿负,就像坐过山车一样起起伏伏。

对于交错级数,也有专门的判别法来看看它是不是收敛的。

那无穷级数有啥用呢?哎呀,用处可大啦!比如在数学的很多领域都能看到它的身影。

它就像是一把万能钥匙,可以打开很多知识的大门。

想象一下,如果没有无穷级数,很多数学问题就没办法解决啦,那该多可惜呀!它就像一个神奇的工具,帮助我们更好地理解和探索数学的奥秘。

在物理学中,无穷级数也常常出现呢!比如在研究一些波动现象的时候,无穷级数就能发挥大作用啦。

总之,无穷级数是数学中非常重要的一部分,它充满了魅力和神奇。

它让我们看到了数学的无限可能,让我们对知识的追求永无止境。

所以呀,大家可别小看了无穷级数哦,它真的超级厉害的!。

无穷级数知识点高一

无穷级数知识点高一

无穷级数知识点高一无穷级数是数学中的一个重要概念,也是高一学习数学时必须掌握的知识点之一。

掌握无穷级数的概念及其相关性质,对于以后的数学学习和应用有很大的帮助。

本文将从定义、收敛性和求和公式三个方面介绍高一学生需要了解的无穷级数知识。

一、定义无穷级数是由一列数按照一定规律排列形成的数列的和。

形式上,一个无穷级数可以表示为:S = a₁ + a₂ + a₃ + ...其中,a₁, a₂, a₃, ... 是数列的项。

无穷级数一般用符号"∑"来表示。

二、收敛性对于一个无穷级数,我们关注它是否有确定的和。

如果一个无穷级数的部分和数列{Sₙ}的极限存在,那么我们称这个无穷级数是收敛的,部分和数列的极限就是该无穷级数的和。

有两个常见的收敛判定准则:1. 比值判别法:若极限 lim(aₙ₊₁/aₙ) 存在且小于1,则无穷级数收敛;若大于1,则无穷级数发散;若等于1,则判定不确定。

2. 积分判别法:对于正项级数∑aₙ,若能找到连续、正值的函数f(x)使得 f(n) = aₙ,则∫f(x)dx从1到正无穷收敛,则原级数收敛;若发散,则原级数发散。

三、求和公式对于一些特定的无穷级数,我们可以找到它们的求和公式,从而便于计算。

以下是一些常见的求和公式:1. 等差数列求和公式:S = (n/2)(a₁ + aₙ)2. 等比数列求和公式:S = a₁ / (1 - r),其中|r| < 13. 幂级数求和公式:对于幂级数∑(aₙxₙ),当|x| < 1时,S =a₁ / (1 - x)注意,这里提到的求和公式只是一些常见的情况,实际上,很多无穷级数并不容易求和,需要借助更高级的数学方法来求解。

综上所述,无穷级数是高一数学中的重要内容,学生需要掌握无穷级数的概念、收敛性及求和公式。

理解无穷级数的概念和性质有助于培养学生的数学思维,提高问题解决能力。

同时,也为将来学习数学的更深层次打下了坚实的基础。

无穷级数知识点总结

无穷级数知识点总结

无穷级数知识点总结一、无穷级数的定义无穷级数是指由无限个实数或复数项组成的数列之和。

一般地,我们用数列 {a_n} 来表示无穷级数的各项,那么无穷级数就可以表示为:S = a_1 + a_2 + a_3 + ...其中 S 代表无穷级数的和,而 a_1, a_2, a_3, ... 分别代表无穷级数的各项。

无穷级数通常可以用极限的概念来进行定义,即无穷级数的和就是数列的极限。

如果数列 {S_n} 的部分和数列收敛到某个数 L,那么无穷级数 S 的和便为 L,即:S = lim (n->∞) S_n = L这里的 S_n 代表无穷级数的部分和数列,它可以写成:S_n = a_1 + a_2 + ... + a_n无穷级数的定义是无穷数列极限的推广,它引入了无穷个数的概念,因此无穷级数的性质和收敛性等问题相对于有限级数来说更加复杂和多样。

二、无穷级数的性质无穷级数在数学中有着许多重要的性质,这些性质对于研究无穷级数的收敛性、计算方法以及应用等方面都有着重要的作用。

下面我们将详细介绍无穷级数的一些重要性质。

1. 无穷级数的有限项相加结果相同如果无穷级数的有限项相加的结果相同,那么这个无穷级数的和也相同。

即如果无穷级数S = a_1 + a_2 + a_3 + ... 的前 n 项之和等于 S_n,而无穷级数 T = b_1 + b_2 + b_3 + ... 的前 n 项之和等于 T_n,并且 S_n = T_n,那么这两个无穷级数的和也相等,即 S = T。

2. 无穷级数的倒序相加结果相同如果无穷级数的倒序相加的结果与原来的无穷级数相同,那么这个无穷级数的和同样相同,即如果无穷级数 S = a_1 + a_2 + a_3 + ... 的倒序相加的结果也等于 S,那么这个无穷级数的和就等于 S。

3. 无穷级数的部分和数列的有界性如果无穷级数的部分和数列 {S_n} 是有界的,即存在一个正数 M,使得对于所有的正整数n,都有 |S_n| <= M,那么这个无穷级数是收敛的。

大一高数无穷级数知识点

大一高数无穷级数知识点

大一高数无穷级数知识点在大一高等数学课程中,无穷级数是一个重要的内容,具有广泛的应用。

了解无穷级数的概念、性质和收敛条件等知识点对于学好这门课程是至关重要的。

本文将介绍大一高数无穷级数的基本知识点,并对其应用进行简要探讨。

一、无穷级数的概念无穷级数是由一系列数的和构成的数列。

设a₁、a₂、a₃、⋯、aₙ、⋯是一列实数,将它们相加所得的数列称为无穷级数,表示为:S = a₁ + a₂ + a₃ + ⋯ + aₙ + ⋯二、无穷级数的收敛和发散1. 收敛的定义:若一个无穷级数的部分和数列{Sₙ}收敛于某个实数S,即lim(n→∞)Sₙ = S,则称该无穷级数收敛,否则称为发散。

2. 收敛的必要条件:无穷级数收敛的必要条件是它的通项数列趋于零,即lim(n→∞)aₙ = 0。

3. 通项数列趋于零的充分条件:若无穷级数的通项数列满足aₙ≤aₙ₊₁(n≥N,N为某个自然数),则该无穷级数收敛。

三、常见的无穷级数1. 等差数列的无穷级数:若等差数列a₁、a₂、a₃、⋯、aₙ、⋯的公差不为零,即aₙ₊₁ - aₙ = d ≠ 0,则其部分和数列为等差数列,即Sₙ = (n/2)(2a₁ + (n-1)d)。

若d>0并且|a₁|/(|a₁ + d| < 1,则该无穷级数收敛,反之发散。

2. 等比数列的无穷级数:若等比数列a₁、a₂、a₃、⋯、aₙ、⋯的公比不为零,即aₙ₊₁/aₙ = q ≠ 0,则其部分和数列为等比数列,即Sₙ = a₁(1-qⁿ)/(1-q)。

当|q|<1时,该无穷级数收敛,否则发散。

四、收敛级数的运算性质1. 收敛级数的有界性:收敛级数的部分和数列有界。

2. 收敛级数的加法性:有限个收敛级数的和仍然是收敛级数。

3. 收敛级数的乘法性:若级数{aₙ}收敛,级数{bₙ}绝对收敛,则乘积级数{aₙbₙ}收敛。

五、收敛级数的应用无穷级数在数学和实际问题中有广泛的应用,以下介绍两个常见的应用:1. 泰勒级数:泰勒级数是一种无穷级数展开式,用于将函数表示成无穷级数的形式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高数第七章无穷级
数知识点
第七章 无穷级数
一、敛散性判断(单调有界,必有极限;从上往下,具有优先顺序性):
1、形如∑∞
=-11n n aq 的几何级数(等比级数):当1<q 时收敛,当1
≥q 时发散。

2、形如∑∞
=1
1
n p
n
的P 级数:当1>p 时收敛,当1≤p 时发散。

3、⇒
≠∞
→0lim n n U 级数发散; 级数收敛
lim =⇒∞
→n n U
4、比值判别法(适用于多个因式相乘除):若正项级数
∑∞
=1
n n
U
,满
足条件
l
U U n
n n =+∞→1
lim

①当1<l 时,级数收敛;
②当1>l 时,级数发散(或+∞=l ); ③当1=l 时,无法判断。

5、根值判别法(适用于含有因式的n 次幂):若正项级数∑∞
=1n n
U
,满
足条件λ
=∞
→n n n U lim :
①当1<λ时,级数收敛;
②当1>λ时,级数发散(或+∞=λ); ③当1=λ时,无法判断。

注:当1,1==λl 时,方法失灵。

6、比较判别法:大的收敛,小的收敛;小的发散,大的发散。

(通过不等式的放缩) 推论:若∑∞
=1
n n
U

∑∞
=1
n n
V
均为正项级数,且
l
V U n
n
n =∞→lim
(n V 是已知敛散
性的级数)
①若+∞<<l 0,则级数∑∞
=1n n
U

∑∞
=1
n n
V
有相同的敛散性;
②若0=l 且级数∑∞
=1
n n
V
收敛,则级数
∑∞
=1
n n
U
收敛;
③若+∞=l 且级数∑∞
=1n n
V
发散,则级数
∑∞
=1
n n
U
发散。

7、定义判断:若

=∞
→C S n n lim 收敛,若n
n S ∞→lim 无极限⇒发散。

8、判断交错级数的敛散性(莱布尼茨定理):
满足1+≥n n U U ,⇒=∞→0lim n n U 收敛,其和1u S ≤。

9、绝对收敛:级数加上绝对值后才收敛。

条件收敛:级数本身收敛,加上绝对值后发散。

二、无穷级数的基本性质:
1、两个都收敛的无穷级数,其和可加减。

2、收敛的无穷级数
∑∞
=1
n n
U
,其和为S ,则∑∞
=1
n n
aU
,其和为aS (0≠a )
(级数的每一项乘以不为0的常数后,敛散性不变) 3、①级数收敛,加括号后同样收敛,和不变。

(逆否命题:加括号后发散,则原级数发散) ②加括号后级数收敛,原级数未必收敛。

相关文档
最新文档