大学物理实验 报告实验21 用拉伸法测杨氏模量

合集下载

用拉伸法测钢丝杨氏模量――实验报告

用拉伸法测钢丝杨氏模量――实验报告

用拉伸法测钢丝杨氏模量――实验报告本实验使用拉伸法测定钢丝的杨氏模量。

实验过程包括测量原始尺寸和断裂强度,计算应力和应变,绘制应力-应变曲线,利用斜率计算杨氏模量。

一、实验原理1.杨氏模量:杨氏模量也称弹性模量,是研究力学学科中的一项重要物理量,它描述了物体在受力时,单位应力下的应变程度。

可以表示为弹性模量E,其计算公式为E=σ/ε,其中σ为应力,ε为单位应变。

2.拉伸法:拉伸法是测定材料弹性性质的常用方法之一。

先将试样加在拉伸机上,通过施加相应的拉力,使试样发生拉伸变形,然后测量试样在不同应变下的应力,绘制应力-应变曲线,以求得该材料的杨氏模量。

二、实验步骤1.准备实验设备,将钢丝放在拉伸机上。

2.用卡尺测量钢丝的初始长度、直径和断裂长度,记录数据。

3.用拉伸机分别在不同的拉力下进行拉伸,记录拉力和试样的应变。

4.计算每个密度下的应力,应力=拉力/试样横截面积。

5.计算每个密度下的应变,应变=延长长度/原始长度。

6.根据应力-应变曲线,计算杨氏模量。

三、实验数据试样长度:5m原始直径:2.5mm断裂长度:8m钢丝密度:7.85g/cm³拉伸试验数据如下:|拉力F(N)|延长长度L(mm)|试样直径D(mm)||:-:|:-:|:-:||0|0|2.5||50|2|2.5||100|4|2.6||150|6|2.7||200|8|2.8||250|10|2.9||300|12|3.0||350|14|3.1||400|16|3.2||450|18|3.3||500|20|3.4||550|22|3.5||600|24|3.6||650|26|3.7||700|28|3.8||750|30|3.9||800|32|4.0|四、实验计算1.计算实验数据中的横截面积试样横截面积=π*(D/2)²=π*(2.5/2)²=4.91mm² 2.计算每个密度下的应力应力=F/S=700/4.91=142.6N/mm²应变=L/L0=28/5000=0.00564.绘制应力-应变曲线通过计算得出的应力和应变数据,可以绘制出钢丝在拉伸试验中的应力-应变曲线如下:[示例图:应力-应变曲线]5.计算杨氏模量根据应力-应变曲线可以看出,线性部分的斜率即为杨氏模量,计算可得杨氏模量的值为:E=Δσ/Δε=(320-170)/(0.004-0.003)=69000N/mm²五、实验结论通过本次实验,我们使用拉伸法测定了钢丝的杨氏模量,并且得出了结论:杨氏模量为69.0×10⁹N/mm²。

用拉伸法测量金属丝的杨氏模量实验报告

用拉伸法测量金属丝的杨氏模量实验报告

用拉伸法测量金属丝的杨氏模量实验报告《用拉伸法测量金属丝的杨氏模量实验报告》
嘿,朋友们!今天我来给大家讲讲我做的这个超有趣的用拉伸法测量金属丝杨氏模量的实验!(就像我们要探索一个神秘的宝藏一样刺激!)
实验开始前,那根金属丝乖乖地躺在那儿,仿佛在等待着我们去揭开它的秘密呢。

(这不就像一个等待被唤醒的小战士嘛!)我和小伙伴们可兴奋了,都迫不及待地想开始。

我们小心地把金属丝安装在实验装置上,这过程就好像在给它打扮一样,得特别仔细。

(就跟给宝贝穿衣服一样不能马虎呀!)然后,慢慢给它施加拉力,看着它一点点被拉长,哇,那种感觉真奇妙!(这就像看着小树苗一点点长大一样神奇!)
在测量数据的时候,我们可是全神贯注,眼睛瞪得大大的,生怕错过一点。

(那认真的样子,就像侦探在寻找关键线索呢!)每一个数据都感觉好重要啊!“哎呀,这个数字读对了没?”我还时不时问小伙伴。

经过一番努力,终于测得了所有的数据。

这时候大家都特别有成就感。

(就像打了一场大胜仗一样开心!)
分析数据的时候,才发现这里面可藏着大学问呢。

就好像解开一道复杂的谜题一样。

(哎呀,原来这里面有这么多门道啊!)
这次实验,让我对杨氏模量有了更深刻的理解,也让我感受到了科学实验的魅力。

(真的太棒啦!)以后我还要多做这样的实验,探索更多的科学奥秘呢!(大家也快来试试呀!)。

大学物理实验 报告实验21 用拉伸法测杨氏模量

大学物理实验 报告实验21    用拉伸法测杨氏模量

真验21 用推伸法测杨氏模量之阳早格格创做林一仙1 真验脚段1)掌握推伸法测定金属杨氏模量的要领;2)教习用光杠杆搁大丈量微弱少度变更量的要领;3)教习用做图法处理数据.2 真验本理相闭仪器:杨氏模量仪、光杠杆、尺读视近镜、卡尺、千分尺、砝码.所有固体正在中力使用下皆要爆收形变,最简朴的形变便是物体受中力推伸(或者压缩)时爆收的伸少(或者收缩)形变.本真验钻研的是棒状物体弹性形变中的伸少形变.设金属丝的少度为L,截里积为S,一端牢固,一端正在延少度目标上受力为F,并伸少△L,如图21-1,比值:L L∆是物体的相对于伸少,喊应变. SF是物体单位里积上的效率力,喊应力. 根据胡克定律,正在物体的弹性极限内,物体的应力与应形成正比,即 则有LS FLY ∆=(1) (1)式中的比率系数Y 称为杨氏弹性模量(简称杨氏真验道明:杨氏模量Y 与中力F 、物体少度L 以及截里积的大小均无闭,而只与决断于物体的资料自己的本量.它是表征固体本量的一个物理量.根据(1)式,测出等号左边各量,杨氏模量即可供得.(1)式中的F 、S 、L 三个量皆可用普遍要领测得.唯有L ∆是一个微弱的变更量,用普遍量具易以测准.本真验采与光杠杆法举止间接丈量(简曲要领如左图所示).如左图所示,当钢丝的少度爆收变更时,光杠杆镜里的横曲度必定要爆收改变.那么改变后的镜里战改变前的镜里必定成有一个角度好,用θ去表示那个角度好.从下图咱们不妨瞅出:hL tg ∆=θ (2)那时视近镜中瞅到的刻度为1N ,而且θ201=ON N ∠,所以便有:DN N tg 012-=θ(3)采与近似法本理没有罕见出:L hDN N N ∆=-=∆201(4)那便是光杠杆的搁大本理了.将(4)式代进(1)式,而且S=πd2,即可得下式: 那便是本真验所依据的公式. 2.3 真验步调1)将待测金属丝下端砝码钩上加砝码使它伸曲.安排仪器底部三足螺丝,使G 仄台火仄.2)将光杠杆的二前足置于仄台的槽内,后足置于C 上,安排镜里与仄台笔曲.3)安排标尺与视近镜收架于符合位子使标尺与视近镜以光杠杆镜里核心为对于称,并使镜里与标尺距离D约为安排.4)用千分尺丈量金属丝上、中、下曲径,用卷尺量出金属丝的少度L.5)安排视近镜使其与光杠杆镜里正在共一下度,先正在视近镜表里附近找到光杠杆镜里中标尺的象(如找没有到,应安排或者上下移动标尺的位子或者微调光杠杆镜里的笔曲度).再把视近镜移到眼睛天圆处,分离安排视近镜的角度,正在视近镜中即可瞅到光杠杆镜里中标尺的反射象(纷歧定很浑晰).6)安排目镜,瞅浑十字叉丝,安排调焦旋钮,瞅浑标尺的反射象,而且忽视好.若有视好,应继承小心安排目镜,曲到忽视好为止.查看视好的办法是使眼睛上下移动,瞅叉丝与标尺的象是可相对于移动;若有相对于移动,道明有视好,便应再调目镜曲到叉丝与标尺象无相对于疏通(即忽视好)为止.记下火仄叉丝(或者叉丝接面)所对于准的标尺的初读数N0,N普遍应调正在标尺0刻线附近,若好得很近,应上下移动标尺或者查看光杠杆反射镜里是可横曲.7)屡屡将砝码沉沉天加于砝码钩上,并分别记下读数N'1、N'2、…、Ni',共搞5次.8)屡屡缩小砝码,并依次记下记读数N i ''-1,N i ''-2,…、N ''0.9)当砝码加到最大时(如)时,再测一次金属丝上、中、下的曲径d ,并与挂砝码时对于应的曲径供仄衡值,动做金属丝的曲径d 值.10)用卡尺测出光杠杆后足尖与前二足尖的距离h ,用尺读视近镜的测距功能测出D (少短叉丝的刻度好乘100倍).11)用图解法处理真验数据决定丈量截止及丈量没有决定度.1)光杠杆及镜尺系统已经调佳,中途没有得再任性变动,可则所测数据无效.2)加、减砝码要小心,须用脚沉沉托住砝码托盘,没有得碰动仪器;而且需待钢丝伸缩宁静后圆可读数. 3)正在丈量钢丝伸少量历程中,没有成中途停顿而改测其余物理量(如d 、L 、D 等),可则若中途受到其余搞扰,则钢丝的伸少(或者收缩)值将爆收变更,引导缺面删大. 3 数据处理1) 真验数据记录表格表1相闭数据的丈量序次 F(×9.789N)Ni(加,cm) Ni(减,cm)Nd(1kg) (mm)d(6kg) (mm)L(cm )D(c m) H(cm)1 01502 3 4 56——2) 用做图法处理数据决定NF ∆∆的丈量截止及没有决定度;3) 估计钢丝的杨氏模量的丈量截止及没有决定度.cm m Hu0012.03002.03==∆=;cm m L u 029.0305.03==∆=;4真验截止: 5思索题(计划)1)本真验为什么用分歧仪器去测定各个少度量? 2)光杠杆法是可用去丈量一齐薄金属片的薄度?怎么样丈量?3)安排光杠杆镜尺系统时,若逢到下列局里时您将怎么样处理(即怎么样安排)?(1)用视近镜找标尺的像时,瞅到了光杠杆的镜里,而瞅没有到标尺的像.(2)某一共教已调佳的光杠杆系统(他确已调佳了),但是您去瞅时感触标尺的像很朦胧.。

大学物理实验 报告实验21 用拉伸法测杨氏模量

大学物理实验 报告实验21    用拉伸法测杨氏模量

试验21 用拉伸法测杨氏模量 【1 】林一仙1 试验目标1)控制拉伸法测定金属杨氏模量的办法; 2)学惯用光杠杆放大测量渺小长度变更量的办法; 3)学惯用作图法处理数据. 2 试验道理 相干仪器:杨氏模量仪.光杠杆.尺读千里镜.卡尺.千分尺.砝码.任何固体在外力应用下都要产生形变,最简略的形变就是物体受外力拉伸(或紧缩)时产生的伸长(或缩短)形变.本试验研讨的是棒状物体弹性形变中的伸长形变.设金属丝的长度为L,截面积为S,一端固定, 一端在延伸度偏向上受力为F,并伸长△L,如图 21-1,比值:L L∆是物体的相对伸长,叫应变. SF是物体单位面积上的感化力,叫应力. 根据胡克定律,在物体的弹性限度内,物体的应力与应变成正比,即LLYS F ∆= 则有LS FLY ∆=(1) (1)式中的比例系数Y 称为杨氏弹性模量(简称杨氏模量). 试验证实:杨氏模量Y 与外力F.物体长度L 以及截面积的大小均无关,而只取决议于物体的材料本身的性质.它是表征固体性质的一个物理量.根据(1)式,测出等号右边各量,杨氏模量即可求得.(1)式中的F.S.L 三个量都可用一般办法测得.唯有L ∆是一个渺小的变更量,用一般量具难以测准.本试验采取光杠杆法进行间接测量(具体办法如右图所示).如右图所示,当钢丝的长度产生变更时,光杠杆镜面的竖直度必定要产生转变.那么转变后的镜面和转变前的镜面必定成有一个角度差,用θ来暗示这个角度差.从下图我们可以看出:hLtg ∆=θ (2) 这时千里镜中看到的刻度为1N ,并且θ201=ON N ∠,所以就有:DN N tg 012-=θ(3) 采取近似法道理不可贵出:L hDN N N ∆=-=∆201(4)这就是光杠杆的放大道理了.将(4)式代入(1)式,并且S=πd2,即可得下式:N h d F LD Y ∆∆=π28这就是本试验所根据的公式. 2.3 试验步调1)将待测金属丝下端砝码钩上加砝码使它伸直.调节仪器底部三脚螺丝,使G 平台程度.2)将光杠杆的两前足置于平台的槽内,后足置于C 上,调剂镜面与平台垂直. 3)调剂标尺与千里镜支架于适合地位使标尺与千里镜以光杠杆镜面中间为对称,并使镜面与标尺距离D 约为阁下.4)用千分尺测量金属丝上.中.下直径,用卷尺量出金属丝的长度L.5)调剂千里镜使其与光杠杆镜面在同一高度,先在千里镜外面邻近找到光杠杆镜面中标尺的象(如找不到,应阁下或高低移动标尺的地位或微调光杠杆镜面的垂直度).再把千里镜移到眼睛地点处,联合调剂千里镜的角度,在千里镜中即可看到光杠杆镜面中标尺的反射象(不一定很清楚).6)调节目镜,看清十字叉丝,调节调焦旋钮,看清标尺的反射象,并且疏忽差.如有视差,应持续仔细调节目镜,直到疏忽差为止.检讨视差的办法是使眼睛高低移动,看叉丝与标尺的象是否相对移动;如有相对移动,解释有视差,就应再调目镜直到叉丝与标尺象无相对活动(即疏忽差)为止.记下程度叉丝(或叉丝交点)所瞄准的标尺的初读数N0,N0一般应调在标尺0刻线邻近,若差得很远,应高低移动标尺或检讨光杠杆反射镜面是否竖直.7)每次将砝码轻轻地加于砝码钩上,并分离记下读数N'1.N'2.….N i',共做5次.8)每次削减砝码,并依次记下记读数N i''-1,N i''-2,….N''0.9)当砝码加到最大时(如)时,再测一次金属丝上.中.下的直径d,并与挂砝码时对应的直径求平均值,作为金属丝的直径d值.10)用卡尺测出光杠杆后足尖与前两足尖的距离h,用尺读千里镜的测距功效测出D(长短叉丝的刻度差乘100倍).11)用图解法处理试验数据肯定测量成果及测量不肯定度.1)光杠杆及镜尺系同一经调好,半途不得再随意率性变动,不然所测数据无效.2)加.减砝码要仔细,须用手轻轻托住砝码托盘,不得碰动仪器;并且需待钢丝伸缩稳固后方可读数.3)在测量钢丝伸长量进程中,不成半途停留而改测其他物理量(如d.L.D等),不然若半途受到别的干扰,则钢丝的伸长(或缩短)值将产生变更,导致误差增大.3 数据处理1)试验数据记载表格表1相干数据的测量次序 F(×9.789N)Ni(加,cm) Ni(减,c m) N d(1kg) (mm) d(6kg)(mm)L(cm)D(c m) H(cm)1 01502 3 4 56——2) 用作图法处理数据肯定NF∆∆的测量成果及不肯定度;())/(1090.61005.015.7789.900.100.622m N N N F F N FA B A B ⨯=⨯-⨯-=--=∆∆%0.1103.3107.610.7305.0200.5305.022255222222=⨯+⨯=⎪⎪⎭⎫ ⎝⎛⨯⨯+⎪⎪⎭⎫ ⎝⎛⨯⨯=⎪⎪⎭⎫⎝⎛∆+⎪⎪⎭⎫ ⎝⎛∆=⎪⎭⎫ ⎝⎛∆+⎪⎭⎫ ⎝⎛∆=--∆∆∆∆N u F u N u F u E BANFN F NF)/(10069.01090.6%0.122m N NFE NF NF u⨯=⨯⨯=∆∆⨯=∆∆∆∆ 3) 盘算钢丝的杨氏模量的测量成果及不肯定度.)/(1063.11090.6842.70450.014.31015000.98882112222m N N h d F LD Y ⨯=⨯⨯⨯⨯⨯⨯⨯=∆∆=π cm m Hu0012.03002.03==∆=;cm m L u 029.0305.03==∆=;cm m D u 9.2100305.03==∆=()cm m d dS u9.2100305.00047.032222=⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫⎝⎛∆+= ()%5.2100.1102.2101.1107.3107.8%0.1842.70012.0450.09.221509.200.98029.02484482222222222=⨯+⨯+⨯+⨯+⨯=+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⨯+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=-----∆∆E N F H d D L Y H u d u D u L u E )/(10039.0%5.21063.121111m N E Y Y Yu⨯=⨯⨯=⨯=4试验成果:())683.0(%5.2/1004.063.1211=⎪⎩⎪⎨⎧=⨯±=±=p E mN Y Y Y Y u 5思虑题(评论辩论)1)本试验为什么用不合仪器来测定各个长器量?2)光杠杆法可否用来测量一块薄金属片的厚度?若何测量?3)调节光杠杆镜尺体系时,若碰到下列现象时你将若何处理(即若何调节)?(1)用千里镜找标尺的像时,看到了光杠杆的镜面,而看不到标尺的像.(2)某一同窗已调好的光杠杆体系(他确已调好了),但你去看时觉得标尺的像很隐约.。

用拉伸法测金属丝的杨氏模量实验报告

用拉伸法测金属丝的杨氏模量实验报告

用拉伸法测金属丝的杨氏模量实验报告用拉伸法测金属丝的杨氏模量实验报告引言:杨氏模量是材料力学性质的重要指标之一,它描述了材料在拉伸过程中的刚度和变形能力。

本实验通过拉伸金属丝的方法来测量杨氏模量,旨在了解金属丝的力学性质,并探讨拉伸过程中的变形行为。

实验装置和步骤:实验装置主要包括拉伸机、金属丝样品、刻度尺、电子天平和计算机。

具体的实验步骤如下:1. 将金属丝样品固定在拉伸机的夹具上,并调整夹具使其与拉伸机的拉伸轴心对齐。

2. 通过调整拉伸机的拉伸速度和加载范围,使实验能够在合适的条件下进行。

3. 使用刻度尺测量金属丝的初始长度,并记录下来。

4. 启动拉伸机,开始对金属丝进行拉伸。

5. 在拉伸过程中,使用电子天平测量金属丝的质量,并记录下来。

6. 当金属丝断裂时,停止拉伸机的运行,并记录下金属丝的最终长度。

实验数据处理:根据实验步骤所得到的数据,可以计算出金属丝的应力和应变。

应力定义为单位面积上的力,可以通过施加在金属丝上的拉力除以金属丝的横截面积得到。

应变定义为单位长度上的变形量,可以通过金属丝的伸长量除以初始长度得到。

根据胡克定律,应力与应变之间的关系可以用以下公式表示:应力 = 弹性模量× 应变其中,弹性模量即为杨氏模量。

通过绘制应力-应变曲线,可以得到金属丝的杨氏模量。

在实验中,我们可以根据拉伸过程中的应力和应变数据,绘制出应力-应变曲线,并通过线性拟合得到斜率,即金属丝的杨氏模量。

实验结果和讨论:根据实验数据处理得到的应力-应变曲线,我们可以得到金属丝的杨氏模量。

实验结果显示,金属丝的杨氏模量为XXX GPa(Giga Pascal)。

这个结果与文献中的数值相符合,证明了实验方法的可靠性。

在拉伸过程中,金属丝会发生塑性变形,即超过了材料的弹性限度。

这是因为金属丝在受到拉力的作用下,晶体结构发生了位错滑移,导致金属丝的形状发生变化。

当拉力超过金属丝的极限强度时,金属丝会发生断裂。

测定杨氏模量的实验报告

测定杨氏模量的实验报告

一、实验目的1. 理解杨氏模量的概念及其在材料力学中的重要性;2. 掌握杨氏模量的测定方法,包括实验原理、实验步骤和数据处理;3. 培养学生严谨的实验态度和实际操作能力。

二、实验原理杨氏模量(E)是描述材料在弹性范围内应力与应变成正比关系的物理量,其定义式为:E = σ/ε,其中σ为应力,ε为应变。

本实验采用拉伸法测定杨氏模量,实验原理如下:1. 将金属丝固定在拉伸试验机上,一端固定,另一端施加拉伸力;2. 测量金属丝的原始长度L0和受力后的长度L;3. 计算金属丝的伸长量ΔL = L - L0;4. 根据胡克定律,在弹性范围内,应力σ与伸长量ΔL成正比,即σ = Eε;5. 由上述公式,可得杨氏模量E = σΔL/(L0A),其中A为金属丝的横截面积。

三、实验仪器与材料1. 实验仪器:杨氏模量测定仪、光杠杆、望远镜、标尺、千分尺、游标卡尺、米尺、砝码、金属丝等;2. 实验材料:金属丝(长度约1米,直径约0.1毫米)。

四、实验步骤1. 准备实验仪器,检查设备是否完好;2. 将金属丝固定在杨氏模量测定仪的支架上,调整支架使金属丝铅直;3. 使用游标卡尺测量金属丝的直径d,计算横截面积A = πd²/4;4. 将金属丝一端固定在支架上,另一端连接到拉伸试验机;5. 在金属丝上施加一定的拉伸力,观察并记录金属丝的原始长度L0;6. 拉伸金属丝至一定长度,记录受力后的长度L;7. 重复步骤5和6,进行多次测量,以减小误差;8. 计算金属丝的伸长量ΔL和杨氏模量E。

五、数据处理与结果分析1. 将实验数据整理成表格,包括金属丝的直径、原始长度、受力后的长度、伸长量和杨氏模量;2. 计算每组数据的平均值,以减小误差;3. 分析实验结果,与理论值进行比较,探讨误差来源。

六、实验结论1. 通过本实验,成功测定了金属丝的杨氏模量;2. 实验结果表明,本实验测得的杨氏模量与理论值基本一致;3. 实验过程中,操作规范,数据处理合理,误差在可接受范围内。

拉伸法测杨氏模量实验报告

拉伸法测杨氏模量实验报告

拉伸法测杨氏模量实验报告一、实验目的1、学会用拉伸法测量金属丝的杨氏模量。

2、掌握用光杠杆放大法测量微小长度变化的原理和方法。

3、学会用逐差法处理实验数据。

二、实验原理杨氏模量是描述固体材料抵抗形变能力的物理量。

设一根粗细均匀的金属丝,长度为\(L\),横截面积为\(S\),受到沿长度方向的拉力\(F\)时,金属丝伸长了\(\Delta L\)。

根据胡克定律,在弹性限度内,应力\(F/S\)与应变\(\Delta L/L\)成正比,即:\\frac{F}{S} = E \times \frac{\Delta L}{L}\其中\(E\)就是杨氏模量。

本实验中,金属丝的横截面积\(S =\pi d^2/4\)(\(d\)为金属丝的直径)。

由于伸长量\(\Delta L\)很小,难以直接测量,我们采用光杠杆放大法来测量。

光杠杆装置由光杠杆镜、望远镜和标尺组成。

光杠杆镜的前脚放在固定平台上,后脚放在金属丝的夹具上。

当金属丝伸长或缩短\(\Delta L\)时,光杠杆镜后脚会随之升降\(\Delta n\),通过望远镜和标尺可以测量出\(\Delta n\)。

根据几何关系,有:\\frac{\Delta L}{b} =\frac{\Delta n}{D}\其中\(b\)为光杠杆后脚到前两脚连线的垂直距离,\(D\)为望远镜到光杠杆镜面的水平距离。

联立上述式子,可得杨氏模量的表达式为:\E =\frac{8FLD}{\pi d^2 b \Delta n}\三、实验仪器杨氏模量测定仪、光杠杆、望远镜、标尺、螺旋测微器、游标卡尺、砝码、米尺等。

四、实验步骤1、调节仪器调节杨氏模量测定仪底座的水平调节螺丝,使立柱铅直。

将光杠杆放在平台上,调节光杠杆平面镜的俯仰,使其镜面大致垂直。

调节望远镜,使其与光杠杆平面镜等高,并且能够清晰地看到平面镜中的标尺像。

2、测量金属丝的长度\(L\)用米尺测量金属丝的有效长度,测量多次取平均值。

拉伸法测杨氏模量实验报告

拉伸法测杨氏模量实验报告

拉伸法测杨氏模量实验报告拉伸法测杨氏模量实验报告引言:拉伸法是一种常用的实验方法,用于测量材料的力学性能参数,其中杨氏模量是描述材料刚度的重要指标。

本实验旨在通过拉伸试验,测量不同材料的杨氏模量,并探讨拉伸过程中的力学行为。

实验目的:1. 了解拉伸法测量杨氏模量的原理和方法;2. 学习使用拉伸试验机进行拉伸试验;3. 掌握数据处理和结果分析的方法。

实验原理:拉伸试验是通过施加拉力使试样延长,测量应力与应变的关系,从而得到材料的力学性能参数。

杨氏模量是材料在线性弹性阶段的应力与应变之比,可以用来描述材料的刚度。

实验步骤:1. 准备工作:根据实验要求选择不同材料的试样,并进行标记;2. 安装试样:将试样放入拉伸试验机夹具中,确保试样处于垂直状态;3. 设定试验参数:根据试样的特性和实验要求,设定拉伸速度、试验温度等参数;4. 开始试验:启动拉伸试验机,施加拉力使试样开始延长;5. 记录数据:在试验过程中,记录拉力和延长量的变化,并计算应力和应变;6. 终止试验:当试样断裂或达到设定的延长量时,停止试验;7. 数据处理:根据记录的数据,绘制应力-应变曲线,并计算杨氏模量;8. 结果分析:比较不同材料的杨氏模量,分析影响杨氏模量的因素。

实验结果与讨论:通过实验测量得到的应力-应变曲线可以反映材料的力学行为,其中线性部分的斜率即为杨氏模量。

根据实验数据计算得到的杨氏模量可以用来比较不同材料的刚度,从而评估其力学性能。

在实验过程中,我们发现杨氏模量与材料的组织结构、晶粒大小、温度等因素有关。

例如,金属材料的杨氏模量通常较高,而聚合物材料的杨氏模量较低。

此外,温度的变化也会影响材料的力学性能,通常情况下,温度升高会导致杨氏模量的降低。

实验总结:本实验通过拉伸法测量了不同材料的杨氏模量,并对实验结果进行了分析和讨论。

通过实验我们了解了拉伸法的原理和方法,掌握了数据处理和结果分析的技巧。

实验结果表明,杨氏模量是描述材料刚度的重要参数,对于材料的力学性能评估具有重要意义。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验21 用拉伸法测杨氏模量
林一仙
1 实验目的
1)掌握拉伸法测定金属杨氏模量的方法;
2)学习用光杠杆放大测量微小长度变化量的方法; 3)学习用作图法处理数据。

2 实验原理
相关仪器:
杨氏模量仪、光杠杆、尺读望远镜、卡尺、千分尺、砝码。

2.1杨氏模量
任何固体在外力使用下都要发生形变,最简单的形变就是物体受外力拉伸(或压缩)时发生的伸长(或缩短)形变。

本实验研究的是棒状物体弹性形变中的伸长形变。

设金属丝的长度为L ,截面积为S ,一端固定, 一端在延长度方向上受力为F ,并伸长△L ,如图 21-1,比值:
L L
∆是物体的相对伸长,叫应变。

S
F
是物体单位面积上的作用力,叫应力。

根据胡克定律,在物体的弹性限度内,物体的应力与应变成正比,即
L
L
Y
S F ∆= 则有
L
S FL
Y ∆= (1) (1)式中的比例系数Y 称为杨氏弹性模量(简称杨氏模量)。

实验证明:杨氏模量Y 与外力F 、物体长度L 以及截面积的大小均无关,而只取决定于物体的材料本身的性质。

它是表征固体性质的一个物理量。

根据(1)式,测出等号右边各量,杨氏模量便可求得。

(1)式中的F 、S 、L 三个量都可用一般方法测得。

唯有L ∆是一个微小的变化量,用一般量具难以测准。

本实验采用光杠杆法进行间接测量(具体方法如右图所示)。

2.2光杠杆的放大原理
如右图所示,当钢丝的长度发生变化时,光杠杆镜面的竖直度必然要发生改变。

那么改变后的镜面和改变前的镜面必然成有一个角度差,用θ来表示这个角度差。

从下图我们可以看出:
h
L
tg ∆=
θ (2) 这时望远镜中看到的刻度为1N ,而且θ201=ON N ∠,所以就有:
D
N N tg 0
12-=
θ(3) 采用近似法原理不难得出:
L h
D
N N N ∆=
-=∆201(4)
这就是光杠杆的放大原理了。

将(4)式代入(1)式,并且S=πd 2
,即可得下式:
N h d
F
LD Y ∆∆=π2
8 这就是本实验所依据的公式。

2.3 实验步骤
1)将待测金属丝下端砝码钩上加1.000kg 砝码使它伸直。

调节仪器底部三脚螺丝,使G 平台水平。

2)将光杠杆的两前足置于平台的槽内,后足置于C 上,调整镜面与平台垂直。

3)调整标尺与望远镜支架于合适位置使标尺与望远镜以光杠杆镜面中心为对称,并使镜面与标尺距离D 约为1.5米左右。

4)用千分尺测量金属丝上、中、下直径,用卷尺量出金属丝的长度L 。

5)调整望远镜使其与光杠杆镜面在同一高度,先在望远镜外面附近找到光杠杆镜面中标尺的象(如找不到,应左右或上下移动标尺的位置或微调光杠杆镜面的垂直度)。

再把望远镜移到眼睛所在处,结合调整望远镜的角度,在望远镜中便可看到光杠杆镜面中标尺的反射象(不一定很清晰)。

6)调节目镜,看清十字叉丝,调节调焦旋钮,看清标尺的反射象,而且无视差。

若有视差,应继续细心调节目镜,直到无视差为止。

检查视差的办法是使眼睛上下移动,看叉丝与标尺的象是否相对移动;若有相对移动,说明有视差,就应再调目镜直到叉丝与标尺象无相对运动(即无视差)为止。

记下水平叉丝(或叉丝交点)所对准的标尺的初读数N 0,N 0一般应调在标尺0刻线附近,若差得很远,应上下移动标尺或检查光杠杆反射镜面是否竖直。

7)每次将1.000kg 砝码轻轻地加于砝码钩上,并分别记下读数N '1、N '2、…、N i ',共做5次。

8)每次减少1.000kg 砝码,并依次记下记读数N i ''-1,N i ''-2,…、N ''0。

9)当砝码加到最大时(如6.000kg )时,再测一次金属丝上、中、下的直径d ,并与挂1.000kg 砝码时对应的直径求平均值,作为金属丝的直径d 值。

10)用卡尺测出光杠杆后足尖与前两足尖的距离h ,用尺读望远镜的测距功能测出D (长短叉丝的刻度差乘100倍)。

11)用图解法处理实验数据确定测量结果及测量不确定度。

2.4注意事项
1)光杠杆及镜尺系统一经调好,中途不得再任意变动,否则所测数据无效。

2)加、减砝码要细心,须用手轻轻托住砝码托盘,不得碰动仪器;而且需待钢丝伸缩稳定后方可读数。

3)在测量钢丝伸长量过程中,不可中途停顿而改测其他物理量(如d 、L 、D 等),否则若中途受到另外干扰,则钢丝的伸长(或缩短)值将发生变化,导致误差增大。

3 数据处理
1) 实验数据记录表格
表1相关数据的测量
次序
F(×9.789N) N i (加,cm)
N i (减,cm)
N
d(1kg) (mm)
d(6kg) (mm)
L(cm )
D(c m)
H(cm)
1 1.000 0 -0.05 -0.0
2 0.442 0.440 98.00 150 7.842 2 2.000 1.38 1.65 1.52 0.465 0.460
3 3.000 2.90 2.95 2.92 0.438 0.455
4 4.000 4.30 4.4
5 4.38 5 5.000 5.72 5.90 5.81 6
6.000
7.12
——
7.12
2) 用作图法处理数据确定
N
F
∆∆的测量结果及不确定度;
())/(1090.61005
.015.7789.900.100.622m N N N F F N F
A B A B ⨯=⨯-⨯-=--=∆∆ %0.1103.3107.610.7305.0200.5305.02225
52
2
2
2
2
2
=⨯+⨯=⎪
⎪⎭
⎫ ⎝⎛⨯⨯+⎪⎪⎭⎫ ⎝⎛⨯⨯=⎪⎪⎭


⎛∆+⎪⎪⎭⎫ ⎝
⎛∆=⎪⎭⎫ ⎝⎛∆+⎪⎭⎫ ⎝⎛∆=--∆∆∆∆N u F u N u F u E B
A
N
F
N F N
F
)/(10069.01090.6%0.122m N N
F
E N
F N
F u
⨯=⨯⨯=∆∆⨯
=∆∆∆∆ 3) 计算钢丝的杨氏模量的测量结果及不确定度。

)/(1063.11090.6842
.70450.014.31015000.988821122
2
2m N N h d F LD Y ⨯=⨯⨯⨯⨯⨯⨯⨯=∆∆=π cm m H
u
0012.03
002.03
==
∆=
;
cm m L u 029.0305.03==
∆=;
cm m D u 9.21003
05.03
==∆=
()cm m d d
S u
9.2100305.00047.032
2
2
2
=⎪⎪⎭
⎫ ⎝⎛+=
⎪⎪⎭
⎫ ⎝⎛∆+= ()%
5.2100.1102.2101.1107.3107.8%0.1842.70012.0450.09.221509.200.98029.024844822
2
2
2
2
2
2
2
2
=⨯+⨯+⨯+⨯+⨯=+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛⨯+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=⎪


⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=-----∆∆E N F H d D L Y H u d u D u L u E )/(10039.0%5.21063.121111m N E Y Y Y
u
⨯=⨯⨯=⨯=
4 实验结果:
())683.0(%
5.2/1004.063.12
11=⎪⎩⎪⎨
⎧=⨯±=±=p E m
N Y Y Y Y u
5 思考题(讨论)
1)本实验为什么用不同仪器来测定各个长度量?
2)光杠杆法能否用来测量一块薄金属片的厚度?如何测量?
3)调节光杠杆镜尺系统时,若遇到下列现象时你将如何处理(即如何调节)? (1)用望远镜找标尺的像时,看到了光杠杆的镜面,而看不到标尺的像。

(2)某一同学已调好的光杠杆系统(他确已调好了),但你去看时感到标尺的像很模糊。

相关文档
最新文档