医学统计学 总结 重点 笔记 复习资料

合集下载

(完整版),医学统计学第三版复习总结,推荐文档

(完整版),医学统计学第三版复习总结,推荐文档

方差由Y 及 b (x - x)的方差两部分构成个体Yi 值的范围预测
直线回归方程的应用
描述两变量的依存数量关系
利用回归方程进行预测
利用回归方程进行控制
第二直线相关 ( linear correlation )
;
()0.5,
()0.5, 对比组,
(RR)无单位,比值范围在0至∞之间。

表明暴露与疾病无联系;
表明存在负联系(提示暴露是保护因子);
消除更多因素(如大于3个)的影响:
分层分析受到限制,因为很多层可能没有病例,这时通常可使用COX回归模型
期望人数?即根据两种疗法疗效相同的假设,由总死亡人数计算出的两种疗法在该日的期望死亡人数。

1.生存率分析的概念,特点(与其它统计分析比较),适用范围。

生存分析:是将事件的结果和出现这一结果所经历的时间,结合起来分析的一种统计分析方法,它不仅可以从事件结局的好坏,如疾病的治愈(成功)和死亡(失败),而且可以从事件的持续时间,如某病经治疗后存活的时间长短进行分析比较,因而能够更全面、更精确地反映该治疗的效果。

《医学统计学》复习重点总结

《医学统计学》复习重点总结

计量数据比较的统计公式
X 0 t Sx
样本均数与标准值的比较 *配对数据的比较(不做方 差齐性检验 *两样本均数的比较,例数 较小时(做方差齐性检验)
d d t Sd
X1 X 2 t S x1 x2
t检验与可信区间公式小结
X1 X 2 t , SX1X 2
两独立样本均数的t n1 n2 2 检验公式
病变性质
肿瘤
恶性
1.层次不清,结构混乱,难于理解 2.线条过多,不符要求
修改后:
表 10 病变性质 良性肿瘤 恶性肿瘤﹡ 囊肿 瘤样病变 合 计
口腔颌面部不同病变构成情况 例 数 674 558 192 168 1592 构成比(%) 42.34 35.05 12.06 10.55 100.00
﹡包括癌437例,肉瘤101例,果用统计表表达。
统计表类型:
简单表和组合表
统计图: 要求掌握图形选择. 如线图、直条图、直方图、构成图
例: 简单表格式
某地1980年男女HBsAg阳性率的比较 性别 调查例数 男 4234 女 4530 合计 8764 阳性数 303 181 484 阳性率% 7.16 4.00 5.52
第14章基于秩次的统计方法
掌握概念: 1)何为非参数统计? 2) 什么样数据适合采用秩和检验,以及秩和 检验的优缺点。 3)秩和检验有那几种检验方法?
注意:结果(y)数据为等级时,两组比较采 用秩和检验效率高于χ2检验,应首选秩和检验.
表 某病两组疗效的比较 比较组 无效 有效 显效 痊愈 合计 试验组 18( 31.6) 18 (31.6) 15(26.3) 6 (10.5) 57 对照组 21 (46.7) 15( 33.3) 8(17.8) 1( 2.2) 45 Total 39 33 23 7 102

医学统计学重点总结

医学统计学重点总结
小结:
(1) 单个样本均数 H0:μ=μ0t= ν=n-1 (小样本)
(已知样本——均数) H1:μ≠μ0
α=u= 或u= (大样本)(2)配对:H0:μ=μ0
H1:μ≠μ0t= ν=对子数-1
α=
(3) 两独立样本均数H0:μ=μ0t= ν=n1+n2-2
(4)(已知样本——样本) H1:μ≠μ0
9.对任何参数μ和σ的正态分布,都可以通过一个简单的变量变换成标准正态分布,即μ=X-μ
σ
9
标准正态分布
正态分布
面积或概率
-1~1
μ σ
%
~
μ σ
%
·
μ σ
%
10.医学参考值范围(reference value range)传统上称作正常值范围,指正常人的解剖、生理、生化、免疫及组织代谢产物的含量等各种数据的波动范围。习惯上是包含95%的参照总体的范围。
实际工作中标准差 σ往往未知,因而通常用样本标准差S代替σ,求得样本均数 准误估计值S ,计算公式为 S = (当n→无穷,S→σ,S →0)
3 95%的可信区间的计算:x (μ,σ ) 1) σ已知,可信区间= σ
2)σ未知,n为小样本: t 3)σ未知,n为大样本:
T变换
μ变换
N (0,1)
3、t分布曲线的形态变化与自由度v=n-1有关。
2.四格表专用公式(
3对于四格表资料,通常规定为:(1)当n≥40且所有的T ≥ 5时,用检验的基本公式或四格表的专用公式;(2)当n ≥ 40 但有1≤T<5时,用四格表资料的校正公式;(3)当n<40,或T<1时,用四格表资料的Fisher确切 概率法。
4 行×列表资料的χ 检验: 自由度:ν=(行数-1)(列数-1)

医学统计学复习资料

医学统计学复习资料

医学统计学复习资料导言医学统计学是医学领域中非常重要的一门学科,它的作用是帮助医生和研究人员通过收集、分析和解释数据来评估医学检验和治疗的效果。

本文将提供一份医学统计学的复习资料,帮助读者回顾和巩固相关的知识。

一、基本概念1.1 总体和样本在医学统计学中,总体是指我们研究的整体对象,而样本则是总体的一个子集。

例如,我们对某种疾病的患者进行研究时,患者总体就是所有患该病的人群,而样本则是我们实际观察到的一部分患者。

1.2 参数和统计量在医学统计学中,参数是用来描述总体特征的统计量,例如总体均值、总体方差等。

而统计量是通过样本数据来估计总体参数的量,例如样本均值、样本方差等。

假设检验是医学统计学中常用的一种方法,它用于判断总体参数的假设是否成立。

在假设检验中,我们先假设总体参数的某个值是正确的(称为零假设),然后通过收集样本数据来判断该假设是否成立。

二、数据的分布2.1 正态分布正态分布在医学统计学中非常重要,因为许多统计方法都假设数据服从正态分布。

正态分布具有钟形曲线的特点,均值、中位数和众数都重合在一起。

常见的正态分布检验有Shapiro-Wilk检验和Kolmogorov-Smirnov检验。

2.2 t分布t分布是一种在样本量较小的情况下使用的概率分布,它比正态分布的尾部更加厚重。

t分布的形状取决于样本量,当样本量增加时,t分布逐渐趋近于正态分布。

在医学研究中,常用t分布来进行样本均值的假设检验。

非参数检验是一种不依赖于数据分布的统计方法,它对数据的要求相对较低。

与参数检验不同,非参数检验适用于无法确定数据分布或偏离正态分布的情况。

常见的非参数检验方法有Wilcoxon秩和检验和Mann-Whitney U检验。

三、统计推断3.1 置信区间置信区间是一种用来估计总体参数的范围,它是一个区间,表示我们对总体参数的估计在一定置信水平下的可信程度。

通常,置信区间的宽度与置信水平相关,越高的置信水平意味着更宽的置信区间。

医科大学医学统计学重点知识总结

医科大学医学统计学重点知识总结

第一章绪论1、统计学的定义:统计学研究数据的收集、整理、分析的一门学科。

医学统计学:医学统计学是以医学理论为指导,应用概率论与数理统计的有关原理、方法,研究医学资料的搜集、整理、分析和推断的一门科学。

2、医学统计研究三个步骤:研究设计、资料分析、结论3、(必考的)几个概念:(1)同质:性质相同异质:性质不同观察单位间的同质性是进行研究的前提同质是相对的(不同研究中或同一研究中不同观察指标对观察对象的同质性的要求不同)(2)个体变异:同质个体间的差异。

变异的两个方面:不同观察单位(个体)间的差别;同一个体在不同阶段的差别(重复测量)个体变异是普遍存在的;个体变异是有规律的。

注意:由于个体变异的存在,同质个体指标的取值会存在差异!(例:体温波动)(3)总体:按研究目的所确定的同质研究对象的全体。

有限总体:有时间、空间的概念,观察单位有限无限总体:无时间、空间的概念(例:某种治疗措施的效果,就包括接受这种治疗措施的所有病人过去、现在、未来,因而观察单位无限)(4)个体:组成总体的基本单位。

样本:从研究总体中随机抽取具有代表性的部分观察单位随机性的三个体现:抽样随机、分组随机、试验顺序随机(5)随机变量:观察对象个体的特征或测量的结果观察结果在一定范围内以一定的概率分布随机取值的变量,表示随机现象。

在一定条件下,并不总是出现相同结果变量值:个体观察指标具体取值(6)总体参数:总体的统计指标或特征值固有的、不变的,但往往是未知的(7)样本统计量:由样本所算出的统计指标或特征值已知的,且随着试验的不同而不同,但分布是有规律的(8)样本含量:样本中包含个体的数量(9)频率f=m/n,f的值随n的增大接近常数p,概率P(A)=p即:频率为一变量,是样本统计量;概率为常数,是一总体参数小概率事件:概率小于等于0.05小概率原理:小概率事件在一次试验中是不会发生的(10)抽样误差:两个表现:样本统计量与总体参数间的差别;不同样本统计量间的差别两个原因:个体变异;抽样过程抽样误差不可避免,但是有规律。

新版医学统计学知识点归纳总结

新版医学统计学知识点归纳总结

新版医学统计学知识点归纳总结医学统计学是医学研究中不可或缺的一部分,它涉及到数据的收集、分析和解释,帮助医学工作者从大量数据中提取有价值的信息。

以下是新版医学统计学的知识点归纳总结:1. 研究设计:研究设计是统计分析的前提,包括观察性研究和实验性研究。

观察性研究如队列研究、病例对照研究,而实验性研究如随机对照试验(RCT)。

2. 数据类型:医学统计学中的数据可分为定性数据和定量数据。

定性数据如性别、血型,定量数据如血压、体重。

3. 描述性统计:描述性统计用于描述数据集的特征,包括集中趋势(均值、中位数、众数)和离散程度(方差、标准差、极差)。

4. 概率分布:在统计学中,概率分布描述了随机变量取值的概率。

常见的分布有正态分布、二项分布和泊松分布。

5. 假设检验:假设检验是统计推断的核心,用于判断样本数据是否支持某个假设。

常见的检验方法有t检验、卡方检验和F检验。

6. 置信区间:置信区间提供了一个范围,用以估计总体参数的可能值。

95%的置信区间意味着有95%的把握认为总体参数落在这个区间内。

7. 回归分析:回归分析用于研究一个或多个自变量对因变量的影响。

简单线性回归和多元线性回归是常见的回归分析方法。

8. 生存分析:生存分析关注个体生存时间的分布和相关因素,常用于肿瘤学和流行病学研究。

Kaplan-Meier估计和Cox比例风险模型是生存分析中的重要工具。

9. 诊断试验评价:诊断试验评价涉及敏感性、特异性、阳性预测值和阴性预测值等指标,用于评估诊断方法的准确性。

10. 样本量计算:样本量计算是研究设计的重要环节,它决定了研究的可行性和结果的可靠性。

样本量计算需要考虑效应大小、显著性水平和检验力。

11. 多变量分析:多变量分析用于同时考虑多个变量对结果的影响,如多元回归分析和判别分析。

12. 统计软件的应用:统计软件如SPSS、SAS和R在医学统计分析中扮演着重要角色,它们提供了数据处理和统计分析的功能。

《医学统计学》复习资料

《医学统计学》复习资料

统计学概述一、统计学的意义统计学是研究数据的收集、整理、分析的一门科学,是认识社会和自然现象客观规律数量特征的重要工具。

统计学方法就是帮助人们透过偶然现象认识其内在的规律性,揭示疾病或现象发生、发展规律,为预防疾病、促进健康提供客观依据。

二、统计学的基本概念(一)同质与变异同质是指被研究指标的影响因素相同。

变异是同质基础上的观察单位(亦称为个体)之间的差异。

(二)总体与样本总体是指根据研究目的确定的同质观察单位的全体。

样本从总体中随机抽取的部分观察单位,其测量值(或变量值)的集合。

(三)变量与变量值变量:确定总体后,研究者应对每个观察单位的某些特征进行测量或观察,这种特征称为变量,如:身高、体重等。

变量值:变量的测得值。

如身高150cm,体重50Kg等。

(四)参数与统计量参数是指总体特征的统计指标。

如某地健康成年男性的平均血红蛋白值。

统计量是指样本特征的统计指标。

如从某地健康成年男性中抽取一部分人的平均血红蛋白值。

(五)误差误差泛指测量值与真实值之差。

根据误差的性质和来源,统计工作中产生的误差主要有三种类型,即系统误差、随机测量误差、抽样误差。

1.系统误差:测量结果有倾向性。

查明原因,可以避免。

特点:①测量结果有倾向性。

如仪器、试剂、判定标准等。

②查明原因,可以避免。

2.随机测量误差:收集资料的过程中,即使避免了系统误差,但由于各种偶然因素造成的测量值与真实值不完全一致,这种误差称为随机测量误差。

特点:①随机误差没有大小和方向。

②不可避免。

3.抽样误差:由于随机抽样所引起的样本统计量与总体参数之间的差异以及各样本统计量之间的差异称为抽样误差。

特点:变异是绝对的,抽样误差不可避免。

原因:个体之间的差异;抽样时只能抽取总体中的一部分作为样本。

(六)概率(P)概率是描述某随机事件发生可能性大小的量值,常用符号P表示。

随机事件的概率在0~1之间,即0≤P≤1。

小概率事件:P≤0.05或P≤0.01的事件。

医学统计学重点重点知识总结

医学统计学重点重点知识总结

医学统计学重点选择1.几何均数:平均血清抗体滴度(如P9例2.4)2.正态分布:横轴为μ(界值、面积)2.5% I1.962.5%单侧双侧90%: 1.6495%: 1.64 1.9699%: 2.583.P值与α的关系,α是人为规定的,它们之间没有关系;P值f,Qt(X)4.方差分析自由度V的计算,V总=nT;V组间=组数(k)-1;V组间=V总-V组间5.理论秩和(n(n+1)∕2),实际秩和(通过平均秩次算)6.可信区间的正确应用:总体参数有95%的可能落在该区间内(X);有95%的总体参数在该区间内(X);该区间包含95%的总体参数(X);该区间有95%的可能包含总体参数。

(X);这个区间的可信度为95%(√);总体参数只有一个,要么在区间内,要么不在7.相关系数与回归系数:相关系数为0,两个变量之间没有相关关系(X);回归系数t,相关系数t(X);(要做假设检验)二、名解1.参考值范围:根据正常人的数据估计绝大多数的正常人所在的范围2.区间估计(可信区间):按一定的概率或可信度(bα)用一个区间估计总体参数所在范围。

这个范围称作可信度为1-a的可信区间,又称置信区间。

3.P值:拒绝HO时所冒的风险(或“作出拒绝HO而接受H1”结论时冒了P风险)4.a(第一类错误):HO真实时被拒绝(或HO真实时,拒绝H0,接受H1)5.β(第二类错误):HO不真实时不拒绝(或HO不真实时,不拒绝HO)1-β检验效能:对真实的H1做肯定结论之概率6.秩次:是指全部观察值按某种顺序排列的位序;7.秩和:同组秩次之和8.剩余标准差:扣除了X的影响后,Y方面的变异;引进回归方程后,Y方面的变异。

三、简答1.假设检验与可信区间的联系与区别分辨多个样本是否分别属于不同的总体,并对总体作出适当的结论。

分辨一个样本是否属于某特定总体等。

区间估计(可信区间):按一定的概率或可信度(1-a)用一个区间估计总体参数所在范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章2选1总体:总体(population)是根据研究目的确定的同质观察单位(研究对象)的全体,实际上是某一变量值的集合。

可分为有限总体和无限总体。

总体中的所有单位都能够标识者为有限总体,反之为无限总体。

样本:从总体中随机抽取部分观察单位,其测量结果的集合称为样本(sample)。

样本应具有代表性。

所谓有代表性的样本,是指用随机抽样方法获得的样本。

3选1小概率事件:我们把概率很接近于0(即在大量重复试验中出现的频率非常低)的事件称为小概率事件。

P值:P 值即概率,反映某一事件发生的可能性大小。

统计学根据显著性检验方法所得到的P 值反应结果真实程度,一般以P ≤ 0.05 认为有统计学意义, P ≤0.01 认为有高度统计学意义,其含义是样本间的差异由抽样误差所致的概率等于或小于0.05 或0.01。

P值是:1) 一种概率,一种在原假设为真的前提下出现观察样本以及更极端情况的概率。

2) 拒绝原假设的最小显著性水平。

3) 观察到的(实例的) 显著性水平。

4) 表示对原假设的支持程度,是用于确定是否应该拒绝原假设的另一种方法。

小概率原理:一个事件如果发生的概率很小的话,那么可认为它在一次实际实验中是不会发生的,数学上称之小概率原理,也称为小概率的实际不可能性原理。

统计学中,一般认为等于或小于0.05或0.01的概率为小概率。

资料的类型(3选1)(1)计量资料:对每个观察单位用定量的方法测定某项指标量的大小,所得的资料称为计量资料(measurement data)。

计量资料亦称定量资料、测量资料。

.其变量值是定量的,表现为数值大小,一般有度量衡单位。

如某一患者的身高(cm)、体重(kg)、红细胞计数(1012/L)、脉搏(次/分)、血压(KPa)等。

(2)计数资料:将观察单位按某种属性或类别分组,所得的观察单位数称为计数资料(count data)。

计数资料亦称定性资料或分类资料。

其观察值是定性的,表现为互不相容的类别或属性。

如调查某地某时的男、女性人口数;治疗一批患者,其治疗效果为有效、无效的人数;调查一批少数民族居民的A、B、AB、O 四种血型的人数等。

(3)等级资料:将观察单位按测量结果的某种属性的不同程度分组,所得各组的观察单位数,称为等级资料(ordinal data)。

等级资料又称有序变量。

如患者的治疗结果可分为治愈、好转、有效、无效或死亡,各种结果既是分类结果,又有顺序和等级差别,但这种差别却不能准确测量;一批肾病患者尿蛋白含量的测定结果分为 +、++、+++等。

等级资料与计数资料不同:属性分组有程度差别,各组按大小顺序排列。

等级资料与计量资料不同:每个观察单位未确切定量,故亦称为半计量资料。

两种误差(2选1)抽样误差(sampling error )由于抽样而引起的总体指标(参数)与样本指标(统计数)之间的差异。

抽样误差是由个体变异或其它随机因素造成的,是不可避免的,但误差分布有规律可循,可进行估计和分析。

系统误差(systematic error):由于测量仪器结构本身的问题、刻度不准确或测量环境改变等原因,在多次测量时所产生的,总是偏大或总是偏小的误差,称为系统误差。

它带有规律性,经过校正和处理,通常可以减少或消除。

统计的步骤(考填空题,四个空)统计工作的步骤1.设计:设计内容包括资料收集、整理和分析全过程总的设想和安排。

设计是整个研究中最关键的一环,是今后工作应遵循的依据。

2.收集资料:应采取措施使能取得准确可靠的原始数据。

3.整理资料:简化数据,使其系统化、条理化,便于进一步分析计算。

4.分析资料:计算有关指标,反映事物的综合特征,阐明事物的内在联系和规律。

分析资料包括统计描述和统计推断。

实验设计的基本原则(考填空题,三个空)随机化原则、对照的原则、重复的原则。

2选1参数:参数(paramater)是指总体的统计指标,如总体均数、总体率等。

总体参数是固定的常数。

多数情况下,总体参数是不易知道的,但可通过随机抽样抽取有代表性的样本,用算得的样本统计量估计未知的总体参数。

统计量:统计量(statistic)是指样本的统计指标,如样本均数、样本率等。

样本统计量可用来估计总体参数。

总体参数是固定的常数,统计量是在总体参数附近波动的随机变量。

第二章频数表的制作步骤以及频数分布表的用途(问答题)频数分布表的编制步骤:例:某市1982年50名7岁男童的身高(cm)资料如下,试编制频数表。

114.4 117.2 122.7 124.0 114.0 110.8 118.2 116.7 118.9 118.1 123.5 118.3 120.3 116.2 114.7 119.7 114.8 119.6 113.2 120.0 119.8 116.8 119.8 122.5 119.7 120.7 114.3 122.0 117.0 122.5119.7 124.9 126.1 120.0 124.6 120.0 121.5 114.3 124.1 117.2 120.2 120.8 126.6 121.5 126.1 117.7 124.1 128.3 121.8 118.71、找出观察值中的最大值(largest value)、最小值(smallest value),求极差(range)。

极差等于最大值减最小值。

本例最大值=128.3,最小值=110.8,则极差=128.3-110.8=17.5(cm )2、确定分组数和组距(class interval)。

组数的多少是根据例数的多少来确定的,以能够反映出频数分布的特征为原则,一般分10—15组。

组距为相邻两组的间隔,组距=极差/组数。

本例拟分10组,则组距=17.5/10=1.75≈2,为划记方便,可取稍大或稍小的数(当然本例组距也可取1.5)。

3、确定组段。

第一组段包括要最小值,取较最小值稍小且划分方便的数,本例取“110~”。

最后组段包括最大值并写出其上限值。

4、划记。

将各观察值以划“正”字的方法,一笔代表一例,划在相应组段中。

例如第一个数l14.4应在组段“114~”处划,第二个数117.2应在“116~”处划,以此类推。

5、统计各组段的频数。

全部数据划记完后,清点各组段的人数。

根据编制出的频数表即可了解该数值变量资料的频数分布特征。

频数分布表的用途1、描述资料的分布特征和分布类型。

频数分布有两个重要特征:集中趋势和离散趋势。

大部分观察值向某一数值集中的趋势称为集中趋势,常用平均数指标来表示,各观察值之间大小参差不齐。

频数由中央位置向两侧逐渐减少,称离散趋势,是个体差异所致,可用一系列的变异指标来反映。

2、便于进一步计算有关指标或进行统计分析。

当数据较多且需手工计算时,常先编制频数表,再进行统计计算。

3、发现特大、特小的可疑值。

如果频数表的一端或两端出现连续几个组段的频数为零后,又出现少数几个特大值或特小值,使人怀疑其是否准确,需进一步检查和核对并做相应处理。

4、据此绘制频数分布图。

描述数据分布集中趋势的指标和描述数据分布离散程度的指标(考选择或者填空)2.描述数据分布集中趋势的指标算术均数、几何均数、中位数。

3.描述数据分布离散程度的指标极差、四分位数间距、方差、标准差、变异系数。

正态分布的特征(考选择题υ、σ对图形的影响)服从正态分布的变量的频数分布由υ、σ完全决定。

(1) υ是正态分布的位置参数,描述正态分布的集中趋势位置。

正态分布以 x =υ为对称轴,左右完全对称。

正态分布的均数、中位数、众数相同,均等于υ。

(2) σ描述正态分布资料数据分布的离散程度,σ越大,数据分布越分散,σ越小,数据分布越集中。

σ也称为是正态分布的形状参数,σ越大,曲线越扁平,反之,σ越小,曲线越瘦高。

标准正态分布(填空)1.标准正态分布是一种特殊的正态分布,标准正态分布的υ0,σ2 1 ,通常用u(或Z)表示服从标准正态分布的变量,记为υ~N(0,12)。

正态分布的应用(简答)某些医学现象,如同质群体的身高、红细胞数、血红蛋白量,以及实验中的随机误差,呈现为正态或近似正态分布;有些指标(变量)虽服从偏态分布,但经数据转换后的新变量可服从正态或近似正态分布,可按正态分布规律处理。

其中经对数转换后服从正态分布的指标,被称为服从对数正态分布。

1. 估计频数分布一个服从正态分布的变量只要知道其均数与标准差就可根据公式即可估计任意取值范围内频数比例。

2. 制定参考值范围(1)正态分布法适用于服从正态(或近似正态)分布指标以及可以通过转换后服从正态分布的指标。

(2)百分位数法常用于偏态分布的指标。

表3-1中两种方法的单双侧界值都应熟练掌握。

3. 质量控制:为了控制实验中的测量(或实验)误差,常以作为上、下警戒值,以作为上、下控制值。

这样做的依据是:正常情况下测量(或实验)误差服从正态分布。

4. 正态分布是许多统计方法的理论基础。

检验、方差分析、相关和回归分析等多种统计方法均要求分析的指标服从正态分布。

许多统计方法虽然不要求分析指标服从正态分布,但相应的统计量在大样本时近似正态分布,因而大样本时这些统计推断方法也是以正态分布为理论基础的。

医学参考值范围的制定(计算题)确定参考值范围的单双侧:一般生理物质指标多为双侧、毒物指标则多为单侧。

确定百分位点:一般取95%或99%。

例题某市 20 岁男学生 160 人的脉搏数(次/分钟),经正态性检验服从正态分布。

求得= 76.10,S =9.32。

试估计脉搏数的95%、99%参考值范围。

解:脉搏数的95%正常值范围为:±1.96 S=76.10 ± 1.96(9.32)=57.83~94.37脉搏数的99%正常值范围为:±2.58 S =76.10 ± 2.58(9.32)=52.05~100.37第三章标准误的概念,计算公式。

标准误:抽样研究中,样本统计量与总体参数间的差别称为抽样误差(sampling error)。

统计上用标准误(standard error,SE)来衡量抽样误差的大小,即样本均数的标准差,是描述均数抽样分布的离散程度及衡量均数抽样误差大小的尺度。

t分布的图形特征及其与正态分布的区别(简答)t分布的图形特征1.以0为中心,左右对称的单峰分布;2.t分布是一簇曲线,其形态变化与n(确切地说与自由度ν)大小有关。

自由度ν越小,t分布曲线越低平;自由度ν越大,t分布曲线越接近标准正态分布(u分布)曲线。

t分布对应于每一个自由度ν,就有一条t分布曲线,每条曲线都有其曲线下统计量t的分布规律,计算较复杂。

t 分布与正态分布比较的区别t 分布与标准正态分布相比有以下特点:①都是单峰、对称分布;②t 分布峰值较低,而尾部较高;③随自由度增大,t 分布趋近与标准正态分布;当ν趋向∞,t 分布的极限分布是标准正态分布。

相关文档
最新文档