幂指对函数
幂、指、对函数的增长比较(上课)

(4)若 0<lgm<1,即 1<m<10 时,y=(lgm)x 在 R 上是减函 数, 所以(lgm)1.7>(lgm)2.1; 若 lgm=1,即 m=10 时,(lgm)1.7=(lgm)2.1; 若 lgm>1,即 m>10 时,y=(lgm)x 在 R 上是增函数, 所以(lgm)1.7<(lgm)2.1.
0.848 1.138 1.379 1.585
o
1
2
x
3.结合函数的图像找出其交点坐标.
x 从图像看出 0 1 2 3 4 y=log 5 26 7 8 … x的图像 与另外两函数的图像没有交点, x 1 2 4 8 16 32 64 128 256 … y=2 且总在另外两函数图像的下方, 2 2 0 1 4 9 16 x 25 36 y= x 49 64 … y=x 的图像与 y=2 的图像有两个 交点(2,4)和(4,16). 4.根据图像,分别写出使不等式
[方法总结]
Hale Waihona Puke (1)我们常把指数的这种快速剧增形象地称
为“指数爆炸”. (2)在计算器或计算机中,1.10×1012 常表示成 1.10E+12. (3)在区间(0, +∞)上, 尽管函数 y=ax(a>1), y=logax(a>1) 和 y=xn(n>0)都是增函数,但它们的增长速度不同,而且不在 同一“档次”上,随着 x 增长,y=ax(a>1)的增长速度越来越 快, 会超过并远远大于 y=xn(n>0)的增长速度, 而 y=logax(a>1) 则增长会越来越慢,因此,总会存在一个 x0,当 x>x0 时,就 有 logax<xn<ax.
指数对数幂函数知识点总结9篇

指数对数幂函数知识点总结9篇第1篇示例:指数对数幂函数是高中数学中非常重要的内容之一,它在实际生活中有着广泛的应用。
指数对数幂函数是一种特殊的函数形式,通过指数、对数、以及幂运算的组合,可以描述各种复杂的变化关系。
在本文中,我们将对指数对数幂函数的相关知识点进行总结,帮助大家更好地理解和掌握这一重要内容。
一、指数函数指数函数是以自然常数e为底的幂函数,一般形式为f(x) = a^x,其中a为底数,x为指数。
指数函数的特点是底数a是一个固定的正数,指数x可以是任意实数。
指数函数的图像通常表现为一条逐渐增长或逐渐减小的曲线,其增长趋势取决于底数a的大小。
指数函数的性质有:1. 当底数a大于1时,函数呈现增长趋势;当底数a小于1且大于0时,函数呈现下降趋势。
2. 指数函数在x轴上的水平渐近线为y=0,在y轴上的垂直渐近线为x=0。
3. 在0<a<1时,指数函数是单调递减的;在a>1时,指数函数是单调递增的。
4. 指数函数的导数为f'(x)=a^x * ln(a),导数的值等于函数在该点的斜率。
1. 对数函数的图像是一条左开右闭的单调增函数。
2. ln(x)函数在x=1处的值为0,log(x)函数在x=1处的值也为0。
4. 对数函数的反函数是指数函数,即对数函数与指数函数是互为反函数的关系。
三、幂函数幂函数是指形如f(x) = x^n的函数,其中n为一个实数。
幂函数可以是单项式函数、分式函数以及多项式函数的基础函数形式。
幂函数的性质有:1. 当n为偶数时,幂函数呈现奇次函数的特点,曲线两侧对称于y 轴;当n为奇数时,幂函数呈现偶次函数的特点。
四、指数对数幂函数的综合应用指数对数幂函数在自然科学、工程技术、经济管理等领域有着广泛的应用。
在生态学中,人口增长规律可以用指数函数来描述;在物理学中,无阻射下的自由落体运动可以用幂函数来描述;在金融领域中,复利计算和收益增长也可以用指数函数和对数函数来分析。
幂指对函数及方程

幂、指、对函数及方程方法指导:一、幂函数1. 幂函数的定义函数(k y x k =为常数,)k ∈Q 称为幂函数,其中x 是自变量,前面的系数为1.2. 幂函数的图像 研究pq y x =的图像特点,其中p q是既约分数(最简分数).3. 幂函数的性质(1) 对于一切幂函数,当0x >时,总有0y >,所以幂函数在第一象限均有图像,且幂函数图像不可能出现在第四象限.(2) 幂函数一定过点(1,1).(3) 当0k >时,k y x =在(0,)+∞上递增,图像过点(0,0),(1,1);① 当01k <<时,k y x =向x 轴正方向递增;② 当1k >时,k y x =向y 轴正方向递增.当0k =时,k y x =是一条不过点(0,1)的直线;当0k <时,k y x =在(0,)+∞上递减,图像过点(1,1),图像向上与y 轴无限接近,向右与x 轴无限接近.(4) 在1x =的右侧由上至下k 递减.二、指数函数1. 指数运算法则(1) (0,)x y x y a a a a x y +⋅=>∈R 、 (2) ()(0,)x y xy a a a x y =>∈R 、(3) ()(0,0,)x x x a b a b a b x ⋅=⋅>>∈R2. 指数函数的定义函数(0,1,)x y a a a x =>≠∈R 称为指数函数.3. 指数函数的图像4. 指数函数的性质(1) 函数图像在x 轴上方,函数值恒大于零,故函数图像不可能在三、四象限.(2) 指数函数的图像经过点(0,1),01a =.(3) 函数定义域为R ,值域为(0,)+∞.(4) 非奇非偶函数(5) 无零点(6) 函数(1)x y a a =>在(,)-∞+∞内是增函数;函数(01)x y a a =<<在(,)-∞+∞内是减函数.(7) 在1a >时,第一象限内1y >,增长速度十分惊人;第二象限内01y <<,增长缓慢;在01a <<时,第一象限内01y <<;第二象限内1y >.(8) 无最值(9) 函数图像与x 轴无限接近,x 轴叫做函数的渐近线.(10) x y a =的图像与1()x y a=的图像关于y 轴对称. 三、指数方程(1) 同底型:()()()()(0,1)f x g x a a f x g x a a =⇔=>≠.(2) 基本型:① ()()log (0,1,0)f x a a b f x b a a b =⇔=>≠>;② ()()()lg ()lg (0,1,0,1)f x g x a b f x a g x b a a b b =⇔=>≠>≠.(3) 代换型:① 20x x Aa Ba C ++=,令x t a =(注意t 的范围),转化为20At Bt C ++=求解; ② 2220()()0x x x x x x a a Aa Ba b Cb A B C b b ++=⇒++=,令()x a t b= (注意t 的范围),转化为20At Bt C ++=求解.(4) 图解型:一般不可直接求解的可利用图象法求近似值.四、对数1. 对数的定义若(0,1)b a N a a =>≠,那么数b 叫做以a 为底N 的对数,记作log a N b =,其中a 叫做对数的底数,N 叫做真数.注意底数的范围是(0,1)(1,)+∞;真数的取值范围是(0,)+∞.2. 对数的性质若0,1,0,0,0,0,1a a M N n b b >≠>>>>≠,那么(1) 零和负数没有对数(2) log 1a a =,log 10a =,log a N a N =(3) log ()log log a a a MN M N =+,log ()log log a a a M M N N =- (4) log log n a a M n M =,log log m n a a n b b m =(5) log log log a b a N N b =(换底公式),特别地1log log a b b a=【拓展公式】 3. 常用的对数 以10为底的对数叫做常用对数,通常写做lg N ;以无理数 2.71828e =为底的对数叫做自然对数,通常写做ln x .五、对数函数1. 对数函数的定义函数log (0,1,0)a y x a a x =>≠>称为对数函数.2. 对数函数的图像3. 对数函数的性质(1) 对数函数log (0,1)a y x a a =>≠的图像都在y 轴右侧.(2) 对数函数log (0,1)a y x a a =>≠的图像都经过点(1,0).(3) 函数定义域(0,)+∞,值域R .(4) 非奇非偶函数.(5) 对数函数log (1)a y x a =>在(0,)+∞上是增函数,函数值开始增长较快,到了某一值后增长速度变慢;对数函数log (01)a y x a =<<在(0,)+∞上是减函数,函数值开始减小较快,到了某一值后减小速度变慢.(6) 对数函数log (1)a y x a =>,当1x >时,0y >;当01x <<时,0y <; 对数函数log (01)a y x a =<<,当1x >时,0y <;当01x <<时,0y >.(7) y 轴是对数函数的渐近线.(8) 当1a >时,底数越大,图像越靠近x 轴;当01a <<时,底数越小,图像越靠近x 轴.(9) 对数函数log (0,1)a y x a a =>≠与指数函数(0,1)x y a a a =>≠互为反函数.六、对数方程(1) 同底型:()0log ()log ()(0,1)()0()()0()()a a f x f x g x a a g x f x g x f x g x >⎧⎪=>≠⇔>⇔=>⎨⎪=⎩.(2) 基本型:log ()(0,1)()b a f x b a a f x a =>≠⇔=.(3) 代换型:2log ()log ()0a a A f x B f x C ++=,令log ()a t f x =(注意t 的范围),转化为20At Bt C ++=求解.(4) 图解型:一般不可直接求解的可利用图像法求近似值.典型题解:幂、指、对函数的图像及性质特殊方程1.比较下列各题中两个值的大小(1)323()4和233()4 (2)0.63()4-和0.64()3-(3)0.62()5-和1 (4)12π和1()2π 2.若4333423494434334log log log log (log log )()log log x ⋅=+-+,则x =( ). A .4 B .16 C .256 D .813.如图,幂函数223()Z m m y xm --=∈的图像关于y 轴对称,且与x 轴y 轴均无交点,求此函数解析式.4. 关于x 的方程lg 3x x +=,103xx +=的根分别为,αβ.则αβ+=__________.5. 使2log ()1x x -<+成立的x 的取值范围是______.6.方程2log (4)3x x +=实数解的个数是( )A 0B 1C 2D 37.已知关于x 的方程2212730x x a a ---+=有一个根是2,求a 的值和方程的其余的根.8. 已知1(1)()22,x x f x --+=-则1(2)f -=_________.9.若关于x 的方程2(3)24log log x x a +-=的根在区间(3,4)内,则a 的取值范围为______. 10.设集合1{420,},x x A a x R +=-+=∈若A 为单元素集,求实数a 的取值范围.。
指对幂函数知识点

指对幂函数知识点指对幂函数是高中数学中的重要知识点,理解和掌握它们对于解决数学问题具有关键作用。
首先,咱们来聊聊指数函数。
指数函数的一般形式是 y = a^x(a > 0 且a ≠ 1)。
其中,a 被称为底数,x 是指数。
当 0 < a < 1 时,函数单调递减;当 a > 1 时,函数单调递增。
比如说,y = 2^x 就是一个典型的指数函数,因为 2 > 1,所以它是单调递增的。
随着 x 的增大,y 的值增长得越来越快。
指数函数有一些重要的性质。
它的图像恒过点(0, 1),因为任何非零数的 0 次幂都等于 1。
而且,指数函数的值域是(0, +∞),定义域是 R,也就是全体实数。
接下来看看对数函数。
对数函数是指数函数的反函数,一般形式为y =logₐ x(a > 0 且a ≠ 1)。
如果有指数式 a^y = x,那么对应的对数式就是 y =logₐ x。
同样,当 0 < a < 1 时,对数函数单调递减;当a > 1 时,单调递增。
对数函数也有自己独特的性质。
它的定义域是(0, +∞),值域是R。
图像恒过点(1, 0),因为logₐ 1 = 0。
再说说幂函数。
幂函数的一般形式是 y =x^α,其中α是常数。
幂函数的图像和性质会因α的不同而有所差异。
当α > 0 时,幂函数在第一象限内的图像是上升的;当α < 0 时,图像是下降的。
比如,y = x²是一个α = 2 的幂函数,图像是一个开口向上的抛物线,对称轴是 y 轴。
对于指对幂函数,它们之间也存在着一些关系。
比如,指数函数和对数函数互为反函数,通过函数图像的对称关系可以直观地理解这一点。
在实际应用中,指对幂函数的用处可不少。
在物理学中,比如研究放射性物质的衰变、人口增长模型等;在经济学中,分析经济增长趋势;在计算机科学中,算法的时间复杂度分析也会用到。
要学好指对幂函数,得多做练习题,加深对概念和性质的理解。
比如,通过求解指数方程、对数方程,或者利用指对幂函数的性质来比较大小、求最值等。
幂函数、指函数与对函数PPT课件

D. b > a > 1 O
思路二:
1b a
x
数形结合
26
题型三:幂函数性质的应用
3.比较下列各组数的大小:
< 1
1
(1)1.32 ____ 1.4 2
解后反思 两个数比较
(2)0.261
_>____
0.271
大小,何时 用幂函数模
(3)(5.2)2 _<____(5.3)2
型,何时用 指数函数模
即 log2 a log2 b 0 log2 1
a b 1 所以答案选C. 25
能力提升
变②:若0 < loga 2 < logb 2,则
C
()
A. 0 < a < b < 1 y
B. 0 < b < a < 1
1
C. a > b > 1
x=2
y= logb x
y= loga x
解析式 y = a x ( a > 0, a≠1)
y
图 象 0<a<1
y a>1
1
(描点)
1
0
x
0
x
y = log a x ( a > 0, a≠1)
y 0<a<1
y a>1
01
x
01
x
定义域
R
(0 , +∞)
值域
(0 , +∞)
R
定点
都过点(0,1)
都过点(1,0)
范围
x<0时,y>1;x>0时,y>10;<x<1时 x>0时 x<0时 y>0
指、对、幂函数

专题:指、对、幂函数一、知识点总结(0,,)()(0,,)()(0,0,)(01)1lo m n a n a r s r s a a a a r s Q r s rs a a a r s Q r r s ab a b a b r Q x y a a a x =+=>∈=>∈=>>∈=>≠=⎧⎧⎪⎪⎪⎪⎪⎪⎧⎨⎪⎪⎪⎪⎨⎨⎪⎪⎪⎪⎪⎩⎩⎪⎧⎪⎨⎪⎩⎩为根指数,为被开方数分数指数幂指数的运算指数函数性质定义:一般地把函数且叫做指数函数。
指数函数性质:见表对数:基本初等函数对数的运算对数函数g ,log ()log log ;log log log ;.log log ;(0,1,0,0)log log (01)1log (,0,1,0)log c a c N a N a M N M N a a a M M N a a a N n M n M a a M N a a y x a a a b b a c a c b a ⋅=+=-=>≠>>=>≠⎧⎧⎪⎪⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎨⎪⎪⎨⎪⎪⎪⎪⎪=>≠>⎪⎪⎩⎩⎧⎨⎩⎩为底数,为真数性质换底公式:定义:一般地把函数且叫做对数函数对数函数性质:见表且y x x αα⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧=⎪⎨⎪⎩⎩幂函数定义:一般地,函数叫做幂函数,是自变量,是常数。
性质:见表2对数运算公式1、x N N a a x=⇔=log ; 2、a aNa =log . 3、01log =a ,1log =a a .4、当0,0,1,0>>≠>N M a a 时: ⑴()N M MN a a a log log log +=;⑵N M N M a a a log log log -=⎪⎭⎫⎝⎛; ⑶M n M a na log log =. 5、换底公式:abb c c a log log log =()0,1,0,1,0>≠>≠>b c c a a . 6、ab b a log 1log =()1,0,1,0≠>≠>b b a a .二、课前热身1. 计算:33(lg 2)3lg 2lg5(lg5)++=_______________2. 若函数f (x )=a |x -2|(a >0,a ≠1)满足f (1)=13,则f (x )的单调递减区间是________3. 设a =⎝⎛⎭⎫3525,b =⎝⎛⎭⎫2535,c =⎝⎛⎭⎫2525,则a ,b ,c 的大小关系是_______________4. 方程|3x-1|=k 有两解,则k 的范围为________5. 设1a >,函数log a y x =在区间[,2]a a 上的最大值与最小值之差为12,则a =________ 6. 若函数f (x )=xa -1(a >0,a ≠1)的定义域和值域都是[0,2],则实数a =________7. 已知12,x x-+=则1122x x-+=8. 设)0(2)log (2>=x x f x ,则=)log (232f三、典例分析 例1:计算:(1)11203217(0.027)()(2)1)79----+-;(2)132123321().40.1()a b --- (3)2lg 225lg 5.02161.1230++-+-;(4)2log 43774lg 25lg 327log +++【变式演练】(1)已知1>>b a 且310log log =+a b b a ,求a b lob b a log -的值。
指对幂函数知识点总结

〖2.1〗指数函数【2.1.1】指数与指数幂的运算(1)根式的概念①如果,,,1nxa a R x R n =∈∈>,且n N +∈,那么x 叫做a 的n 次方根.当n 是奇数时,a的n;当n 是偶数时,正数a 的正的nn 次方根用符号表示;0的n 次方根是0;负数a 没有n 次方根.这里n 叫做根指数,a 叫做被开方数.当n 为奇数时,a 为任意实数;当n 为偶数时,0a ≥.③根式的性质:n a=;当n为奇数时,a=;当n为偶数时,(0)|| (0)a a a a a ≥⎧==⎨-<⎩. (2)分数指数幂的概念①正数的正分数指数幂的意义是:0,,,m na a m n N +=>∈且1)n >.0的正分数指数幂等于0.②正数的负分数指数幂的意义是: 1()0,,,m m nn aa m n N a -+==>∈且1)n >.0的负分数指数幂没有意义. 注意口诀:底数取倒数,指数取相反数. (3)分数指数幂的运算性质①(0,,)rs r s aa a a r s R +⋅=>∈②()(0,,)r srs aa a r s R =>∈③()(0,0,)rr r ab a b a b r R =>>∈【2.1.2】指数函数及其性质(4)指数函数〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义 ①若(0,1)xaN a a =>≠且,则x 叫做以a 为底N 的对数,记作log a xN=,其中a 叫做底数,N 叫做真数.②负数和零没有对数. ③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>.(2)几个重要的对数恒等式log 10a =,log 1a a =,log b a a b =.(3)常用对数与自然对数常用对数:lg N ,即10log N ;自然对数:ln N ,即log e N (其中 2.71828e =…).(4)对数的运算性质 如果0,1,0,0aa M N >≠>>,那么①加法:log log log ()aa a M N MN += ②减法:log log log aa aM M N N-=③数乘:log log ()n a a n M M n R =∈④log a NaN =⑤loglog (0,)bn a a nM M b n R b =≠∈ ⑥换底公式:log log (0,1)log b a bN N b b a =>≠且【2.2.2】对数函数及其性质(5)对数函数(6)反函数的概念设函数()y f x =的定义域为A ,值域为C ,从式子()y f x =中解出x ,得式子()x y ϕ=.如果对于y 在C 中的任何一个值,通过式子()x y ϕ=,x 在A 中都有唯一确定的值和它对应,那么式子()x y ϕ=表示x 是y 的函数,函数()x y ϕ=叫做函数()y f x =的反函数,记作1()x f y -=,习惯上改写成1()y f x -=.(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式()y f x =中反解出1()x f y -=;③将1()xf y -=改写成1()y f x -=,并注明反函数的定义域.(8)反函数的性质 ①原函数()y f x =与反函数1()y f x -=的图象关于直线y x =对称.②函数()y f x =的定义域、值域分别是其反函数1()y f x -=的值域、定义域.③若(,)P a b 在原函数()y f x =的图象上,则'(,)P b a 在反函数1()y f x -=的图象上.④一般地,函数()y f x =要有反函数则它必须为单调函数.〖2.3〗幂函数(1)幂函数的定义 一般地,函数y x α=叫做幂函数,其中x 为自变量,α是常数.(3)幂函数的性质①图象分布:幂函数图象分布在第一、二、三象限,第四象限无图象.幂函数是偶函数时,图象分布在第一、y ,图象只分布在第一象限.②过定点:所有的幂函数在(0,)+∞都有定义,并且图象都通过点(1,1). ③单调性:如果0α>,则幂函数的图象过原点,并且在[0,)+∞上为增函数.如果0α<,则幂函数的图象在(0,)+∞上为减函数,在第一象限内,图象无限接近x 轴与y 轴.④奇偶性:当α为奇数时,幂函数为奇函数,当α为偶数时,幂函数为偶函数.当qpα=(其中,p q 互质,p 和q Z ∈),若p 为奇数q 为奇数时,则q py x=是奇函数,若p 为奇数q 为偶数时,则q py x=是偶函数,若p 为偶数q 为奇数时,则q py x=是非奇非偶函数.⑤图象特征:幂函数,(0,)y x x α=∈+∞,当1α>时,若01x <<,其图象在直线y x =下方,若1x >,其图象在直线y x =上方,当1α<时,若01x <<,其图象在直线y x =上方,若1x >,其图象在直线y x =下方.。
幂、指、对函数的知识要点及提醒

幂、指、对数函数的知识要点及提醒一、幂函数幂函数)(Q k x y k ∈=的定义域、值域、奇偶性、单调性因幂指数的不同而不同. 0>k 时,函数的图像都经过点)0,0(和)1,1(,在),0(+∞上是增函数.0<k 时,函数的图像都经过点)1,1(,在),0(+∞上是减函数.0=k 时,函数的图像是直线1=y ,去掉点)1,0(.能画出幂函数k x y =⎭⎬⎫⎩⎨⎧----∈31,21,31,21,3,2,3,2,1,0k 的图像.二、指数函数指数函数)1,0(≠>=a a a y x 的定义域为R .值域为),0(+∞.恒过定点)1,0(.当1>a 时,在R 上是增函数,当10<<a 时,在R 上是减函数(增减性),指数函数既不是奇函数也不是偶函数.指数函数)1,0()(≠>=a a a x f x 对任意实数y x ,满足)()()(y f x f y x f =+.三、对数的概念及运算1 如果)1,0(≠>=a a N a b ,那么b 叫做以a 为底N 的对数,记作N b a log =. 根据定义可知:对数的真数N 的范围是),0(+∞,底数a 的范围是),1()1,0(+∞ . 对数的性质:01log =a ,1log =a a ,b a b a =log ,N a N a =log .注意:任意一个实数都可以写成对数的形式,如233log 2-=-;任意一个正实数都可以写成指数的形式,如3log 223=.2 已知R n N M a a ∈>>≠>,0,0,1,0,则 N M N M a a a log log )(log +=⋅. N M N M a a alog log log -=. N n N a n a log log =. 3 换底公式:)1,0,1,0(log log log ≠>≠>=b b a a aN N b b a . 1log log =⋅a b b a ,)0(log log ≠=m b mn b a n a m .特别地, )0(log log ≠=n b b a n a n . 四、反函数 (1)若函数)(x f y =存在反函数,则)(1x f y -=的定义域为)(x f y =的值域.)(1x f y -=的值域为)(x f y =的定义域.(2) 求反函数的步骤:①由)(x f y =求得)(1y fx -=.②求)(x f y =的值域.③交换y x ,写出)(1x f y -=,并注明其定义域.(3) 互为反函数的两个函数)(x f y =与)(1x f y -=的图像关于直线x y =对称.点),(b a P 关于直线x y =对称的对称点为),(a b Q .若点),(b a P 在函数)(x f y =的图像上,则点),(a b Q 在)(1x fy -=的图像上. (4) 若函数)(x f y =的反函数是它本身,即)()(1x f x f=-,则函数)(x f y =的图像关于直线x y =对称.反之,也成立.五、对数函数(1) 对数函数)1,0(log ≠>=a a x y a 的定义域为),0(+∞,值域为R . 1>a 时在),0(+∞上是增函数;10<<a 时在),0(+∞上是减函数. 对数函数既不是奇函数也不是偶函数.(2) 对数函数)1,0(log ≠>=a a x y a 的图像在y 轴右侧,恒过点)0,1(.函数)1,0(log )(≠>=a a x x f a 对任意正实数y x ,都有)()()(y f x f xy f +=成立.六、简单的指数方程和对数方程)1,0(≠>=a a b a x ,若0≤b ,方程无解;若0>b ,b x a log =.换元(令)1,0(≠>=a a a t x )转化为关于t 的一元二次方程02=++r qt pt .注意t 的范围! )1,0(log ≠>=a a b x a 的解为b a x =.换元(令)1,0(log ≠>=a a x t a )转化为关于t 的一元二次方程02=++r qt pt . 解对数方程一定要检验!七、图像变换平移变换:将)(x f y =的图像沿x 轴方向平移h 个单位,得到)(h x f y +=的图像.0>h 是向左平移,0<h 是向右平移.将)(x f y =的图像沿y 轴方向平移k 个单位,得到k x f y +=)(的图像.0>k 是向上平移,0<k 是向下平移.翻折变换:)(x f y =的图像关于y 轴对称,它在y 轴右侧的图像与)(x f y =的图像一样. )(x f y =的图像都在x 轴及其上方,)(x f y =的图像在x 轴下方的图像沿x 轴翻折到x 轴上方.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
幂函数.指数函数和对数函数练习题
一、选择题:
1. 下列命题中,真命题是()
A、幂函数中不存在既不是奇函数,又不是偶函数的函数;
B、如果一个幂函数不是偶函数,那么它一定为奇函数;
C、图像不经过点
)1,1
(-
的幂函数,一定不是偶函数;
D、如果两个幂函数有三个公共点,那么这两个函数一定相同。
2.
已知函数
2
()lg(
f x x x
=++
,若
()
f a M
=
,则
()
f a
-=
()
A.
2
2a M
- B. 2
2
M a
- C.2
2M a
- D.22
a M
-
3. 要得到函数
x
y212-
=
的图像,只需将函数
x
y⎪
⎭
⎫
⎝
⎛
=
4
1
的图像()
A、向左平移1个单位
B、向右平移1个单位
C、向左平移2
1
个单位D、向右平移
2
1
个单位
4.若函数
)
(x
f
y-
=
的图像经过第三、四象限,那么
)
(1x
f
y-
-
=
的图像经过()
A、一、二象限
B、二、三象限
C、三、四象限
D、一、四象限
5.若函数
()(1)(0,1)
x
f x a b a a
=-+>≠
的图像在第一、三、四象限,则必有()
A、01,0
a b
<<>
B、
01,0
a b
<<<
C、
1,0
a b
><
D、
1,0
a b
>>
6.要使函数
1
2x
y m
+
=+
的图像不经过第二象限,则实数
m的取值范围是()
A、
1
m≤-B、1
m<-C、2
m≤-D、2
m≥-
7.设函数
2
1
2
log()
y x x a
=-+
的定义域为R,则实数
a的取值范围是()
A、a R
∈B、
1
4
a>
C、
1
4
a≤
D、
1
4
a≥
8.函数
()
f x
的图像与函数
1
()()
2
x
g x=
的图像关于直线
y x
=
对称,则函数
2
(2)
f x x
-
的单调递减区间是
()
A、
[1,)
+∞
B、
(,1]
-∞
C、
(0,1]
D、
[1,2)
9.函数
1
x
x
e
y
e
=
+的值域是()
A、
(0,1)
B、
[0,]e
C、
[,)
e+∞
D、
(,)(,)
e e
-∞+∞
10.如果
2
11
22
log(1)log2
a a
a a
++
+≤
,则实数
a的取值范围是()
A、
1
(,)
2
+∞
B、
1
(,)
2
-∞
C、
11
(,)
22
-
D、
1
(0,)
2
11.函数
lg(3)
(),0,1
ax
f x a a a
-
=>≠
在定义域
[1,1]
-
上是减函数,则实数
a的取值范围是()
A、
(1,3)
B、
(1,)
+∞
C、
(3,)
+∞
D、
(0,1)
二、填空题:
12.
函数(1)
x
y
+
=
的定义域是。
13.已知
p
=
3
log
8,
q
=
5
log
3,用
p
、
q
表示
=
5
lg。
14.关于
x的函数2
()(4)x
f x a
=-
是R上的减函数,则实数
a
的取值范围是。
15.函数
2
lg()
y x ax a
=--
在区间
(,1
-∞
上单调递减,则实数
a的取值范围是。
16.关于函数
21
()lg(0)
||
x
f x x
x
+
=≠
有下列命题:
(1)函数
()
f x
的图像关于
y
轴对称;
(2)当
x>时,函数()
f x
是增函数;当
x<时,函数()
f x
是减函数;
(3)函数
()
f x
的最小值为
lg2
;
(4)当
(1,0)(1,)
x∈-+∞
时,函数
()
f x
是增函数;
其中正确命题的序号为。
三、解答题:
17.已知函数
221(01)
x x
y a a a a
=+->≠
且
在
[1,1]
-
上的最大值为14,求实数
a的值;
18.已知方程
22
ln ln20
x x
--=的两个根为,αβ,试求log log
αβ
βα
+
的值
19
4210
x x
x m m m
+⋅++=
已知关于的方程有实根,求的范围。
20.已知
1
()3,(18)2
x
f x f a
-
==+
,设
()34
ax x
g x=-
的定义域为
[1,1]
-。
(1)求
()
g x
关于
x的解析式;
(2)判断函数
()
g x
的单调性;
(3)若方程
()
g x m
=
有实数解,试求实数
m的取值范围;。