2017年广东省中考数学试卷(含答案,word高清版)
2017年广东省中考数学试卷及答案

2017年广东省初中毕业生学业考试数 学说明:1。
全卷共6页,满分为120 分,考试用时为100分钟。
2。
答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号。
用2B 铅笔把对应该号码的标号涂黑。
3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。
4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再这写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效.5.考生务必保持答题卡的整洁。
考试结束时,将试卷和答题卡一并交回。
一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑. 1. 5的相反数是( )A.15B.5C.-15D 。
-52.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃.据商务部门发布的数据显示.2016年广东省对沿线国家的实际投资额超过4 000 000 000美元.将4 000 000 000用科学记数法表示为( )A 。
0.4×910 B.0。
4×1010 C 。
4×910 D 。
4×1010 3。
已知70A ∠=︒,则A ∠的补角为( )A.110︒B.70︒C.30︒ D 。
20︒ 4.如果2是方程230x x k -+=的一个根,则常数k 的值为( )A 。
1 B.2 C 。
—1 D 。
—2 5.在学校举行“阳光少年,励志青春"的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组的数据的众数是( ) A 。
95 B.90 C.85 D 。
80 6。
下列所述图形中, 既是轴对称图形又是中心对称图形的是( )A 。
2017年广东省广州市中考数学试卷及答案

2017年广东省广州市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)如图,数轴上两点A,B表示的数互为相反数,则点B表示的数为( )A.﹣6 B.6 C.0 D.无法确定2.(3分)如图,将正方形ABCD中的阴影三角形绕点A顺时针旋转90°后,得到的图形为( )A. B. C. D.3.(3分)某6人活动小组为了解本组成员的年龄情况,作了一次调查,统计的年龄如下(单位:岁):12,13,14,15,15,15,这组数据中的众数,平均数分别为( ) A.12,14 B.12,15 C.15,14 D.15,134.(3分)下列运算正确的是( )A.= B.2×= C.=a D.|a|=a(a≥0)5.(3分)关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是( ) A.q<16 B.q>16 C.q≤4 D.q≥46.(3分)如图,⊙O是△ABC的内切圆,则点O是△ABC的( )A.三条边的垂直平分线的交点 B.三条角平分线的交点C.三条中线的交点 D.三条高的交点7.(3分)计算(a2b)3•的结果是( )A.a5b5 B.a4b5 C.ab5 D.a5b68.(3分)如图,E,F分别是▱ABCD的边AD、BC上的点,EF=6,∠DEF=60°,将四边形EFCD 沿EF翻折,得到EFC′D′,ED′交BC于点G,则△GEF的周长为( )A.6 B.12 C.18 D.249.(3分)如图,在⊙O中,AB是直径,CD是弦,AB⊥CD,垂足为E,连接CO,AD,∠BAD=20°,则下列说法中正确的是( )A.AD=2OB B.CE=EO C.∠OCE=40° D.∠BOC=2∠BAD10.(3分)a≠0,函数y=与y=﹣ax2+a在同一直角坐标系中的大致图象可能是( )A. B. C. D.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)如图,四边形ABCD中,AD∥BC,∠A=110°,则∠B= .12.(3分)分解因式:xy2﹣9x= .13.(3分)当x= 时,二次函数y=x2﹣2x+6有最小值 .14.(3分)如图,Rt△ABC中,∠C=90°,BC=15,tanA=,则AB= .15.(3分)如图,圆锥的侧面展开图是一个圆心角为120°的扇形,若圆锥的底面圆半径是,则圆锥的母线l= .16.(3分)如上右图,平面直角坐标系中O是原点,▱ABCD的顶点A,C的坐标分别是(8,0),(3,4),点D,E把线段OB三等分,延长CD、CE分别交OA、AB于点F,G,连接FG.则下列结论:①F是OA的中点;②△OFD与△BEG相似;③四边形DEGF的面积是;④OD=其中正确的结论是 (填写所有正确结论的序号).三、解答题(本大题共9小题,共102分)17.(9分)解方程组.18.(9分)如图,点E,F在AB上,AD=BC,∠A=∠B,AE=BF.求证:△ADF≌△BCE.19.(10分)某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间t(单位:小时),将学生分成五类:A类(0≤t≤2),B类(2<t≤4),C类(4<t≤6),D类(6<t≤8),E类(t>8).绘制成尚不完整的条形统计图如图.根据以上信息,解答下列问题:(1)E类学生有 人,补全条形统计图;(2)D类学生人数占被调查总人数的 %;(3)从该班做义工时间在0≤t≤4的学生中任选2人,求这2人做义工时间都在2<t≤4中的概率.20.(10分)如图,在Rt△ABC中,∠B=90°,∠A=30°,AC=2.(1)利用尺规作线段AC的垂直平分线DE,垂足为E,交AB于点D,(保留作图痕迹,不写作法)(2)若△ADE的周长为a,先化简T=(a+1)2﹣a(a﹣1),再求T的值.21.(12分)甲、乙两个工程队均参与某筑路工程,先由甲队筑路60公里,再由乙队完成剩下的筑路工程,已知乙队筑路总公里数是甲队筑路总公里数的倍,甲队比乙队多筑路20天.(1)求乙队筑路的总公里数;(2)若甲、乙两队平均每天筑路公里数之比为5:8,求乙队平均每天筑路多少公里.22.(12分)将直线y=3x+1向下平移1个单位长度,得到直线y=3x+m,若反比例函数y=的图象与直线y=3x+m相交于点A,且点A的纵坐标是3.(1)求m和k的值;(2)结合图象求不等式3x+m>的解集.23.(12分)已知抛物线y1=﹣x2+mx+n,直线y2=kx+b,y1的对称轴与y2交于点A(﹣1,5),点A与y1的顶点B的距离是4.(1)求y1的解析式;(2)若y2随着x的增大而增大,且y1与y2都经过x轴上的同一点,求y2的解析式.24.(14分)如图,矩形ABCD的对角线AC,BD相交于点O,△COD关于CD的对称图形为△CED.(1)求证:四边形OCED是菱形;(2)连接AE,若AB=6cm,BC=cm.①求sin∠EAD的值;②若点P为线段AE上一动点(不与点A重合),连接OP,一动点Q从点O出发,以1cm/s 的速度沿线段OP匀速运动到点P,再以1.5cm/s的速度沿线段PA匀速运动到点A,到达点A后停止运动,当点Q沿上述路线运动到点A所需要的时间最短时,求AP的长和点Q走完全程所需的时间.25.(14分)如图,AB是⊙O的直径,=,AB=2,连接AC.(1)求证:∠CAB=45°;(2)若直线l为⊙O的切线,C是切点,在直线l上取一点D,使BD=AB,BD所在的直线与AC所在的直线相交于点E,连接AD.①试探究AE与AD之间的是数量关系,并证明你的结论;②是否为定值?若是,请求出这个定值;若不是,请说明理由.2017年广东省广州市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)如图,数轴上两点A,B表示的数互为相反数,则点B表示的数为( )A.﹣6 B.6 C.0 D.无法确定【分析】根据数轴上点的位置,利用相反数定义确定出B表示的数即可.【解答】解:∵数轴上两点A,B表示的数互为相反数,点A表示的数为﹣6,∴点B表示的数为6,故选B【点评】此题考查了数轴,以及相反数,熟练掌握相反数的性质是解本题的关键.2.(3分)如图,将正方形ABCD中的阴影三角形绕点A顺时针旋转90°后,得到的图形为( )A. B. C. D.【分析】根据旋转的性质即可得到结论.【解答】解:由旋转的性质得,将正方形ABCD中的阴影三角形绕点A顺时针旋转90°后,得到的图形为A,故选A.【点评】本题考查了旋转的性质,正方形的性质,正确的识别图形是解题的关键.3.(3分)某6人活动小组为了解本组成员的年龄情况,作了一次调查,统计的年龄如下(单位:岁):12,13,14,15,15,15,这组数据中的众数,平均数分别为( ) A.12,14 B.12,15 C.15,14 D.15,13【分析】观察这组数据发现15出现的次数最多,进而得到这组数据的众数为15,将六个数据相加求出之和,再除以6即可求出这组数据的平均数.【解答】解:∵这组数据中,12出现了1次,13出现了1次,14出现了1次,15出现了3次,∴这组数据的众数为15,∵这组数据分别为:12、13、14、15、15、15∴这组数据的平均数=14.故选C【点评】此题考查了众数及算术平均数,众数即为这组数据中出现次数最多的数,算术平均数即为所有数之和与数的个数的商.4.(3分)下列运算正确的是( )A.= B.2×= C.=a D.|a|=a(a≥0)【分析】直接利用分式的基本性质以及绝对值的性质、二次根式的性质分别化简求出答案.【解答】解:A、无法化简,故此选项错误;B、2×=,故此选项错误;C、=|a|,故此选项错误;D、|a|=a(a≥0),正确.故选:D.【点评】此题主要考查了分式的基本性质以及绝对值的性质、二次根式的性质,正确掌握相关性质是解题关键.5.(3分)关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,则q的取值范围是( ) A.q<16 B.q>16 C.q≤4 D.q≥4【分析】根据方程的系数结合根的判别式,即可得出△=64﹣4q>0,解之即可得出q的取值范围.【解答】解:∵关于x的一元二次方程x2+8x+q=0有两个不相等的实数根,∴△=82﹣4q=64﹣4q>0,解得:q<16.故选A.【点评】本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.6.(3分)如图,⊙O是△ABC的内切圆,则点O是△ABC的( )A.三条边的垂直平分线的交点 B.三条角平分线的交点C.三条中线的交点 D.三条高的交点【分析】根据三角形的内切圆得出点O到三边的距离相等,即可得出结论.【解答】解:∵⊙O是△ABC的内切圆,则点O到三边的距离相等,∴点O是△ABC的三条角平分线的交点;故选:B.【点评】本题考查了三角形的内切圆与内心;熟练掌握三角形的内切圆的圆心性质是关键.7.(3分)计算(a2b)3•的结果是( )A.a5b5 B.a4b5 C.ab5 D.a5b6【分析】根据积的乘方等于乘方的积,分式的乘法,可得答案.【解答】解:原式=a6b3•=a5b5,故选:A.【点评】本题考查了分式的乘除法,熟记法则并根据法则计算是解题关键.8.(3分)如图,E,F分别是▱ABCD的边AD、BC上的点,EF=6,∠DEF=60°,将四边形EFCD 沿EF翻折,得到EFC′D′,ED′交BC于点G,则△GEF的周长为( )A.6 B.12 C.18 D.24【分析】根据平行四边形的性质得到AD∥BC,由平行线的性质得到∠AEG=∠EGF,根据折叠的性质得到∠GEF=∠DEF=60°,推出△EGF是等边三角形,于是得到结论.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠AEG=∠EGF,∵将四边形EFCD沿EF翻折,得到EFC′D′,∴∠GEF=∠DEF=60°,∴∠AEG=60°,∴∠EGF=60°,∴△EGF是等边三角形,∵EF=6,∴△GEF的周长=18,故选C.【点评】本题考查了翻折变换的性质、平行四边形的性质、等边三角形的判定,熟练掌握翻折变换的性质是解决问题的关键.9.(3分)如图,在⊙O中,AB是直径,CD是弦,AB⊥CD,垂足为E,连接CO,AD,∠BAD=20°,则下列说法中正确的是( )A.AD=2OB B.CE=EO C.∠OCE=40° D.∠BOC=2∠BAD【分析】先根据垂径定理得到=,CE=DE,再利用圆周角定理得到∠BOC=40°,则根据互余可计算出∠OCE的度数,于是可对各选项进行判断.【解答】解:∵AB⊥CD,∴=,CE=DE,∴∠BOC=2∠BAD=40°,∴∠OCE=90°﹣40°=50°.故选D.【点评】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了圆周角定理.10.(3分)a≠0,函数y=与y=﹣ax2+a在同一直角坐标系中的大致图象可能是( )A. B. C. D.【分析】分a>0和a<0两种情况分类讨论即可确定正确的选项.【解答】解:当a>0时,函数y=的图象位于一、三象限,y=﹣ax2+a的开口向下,交y 轴的正半轴,没有符合的选项,当a<0时,函数y=的图象位于二、四象限,y=﹣ax2+a的开口向上,交y轴的负半轴,D 选项符合;故选D.【点评】本题考查了反比例函数的图象及二次函数的图象的知识,解题的关键是根据比例系数的符号确定其图象的位置,难度不大.二、填空题(本大题共6小题,每小题3分,共18分)11.(3分)如图,四边形ABCD中,AD∥BC,∠A=110°,则∠B=70°.【分析】根据平行线的性质即可得到结论.【解答】解:∵AD∥BC,∴∠A+∠B=180°,又∵∠A=110°,∴∠B=70°,故答案为:70°.【点评】本题考查了平行线的性质,熟练掌握平行线的性质即可得到结论.12.(3分)分解因式:xy2﹣9x=x(y+3)(y﹣3) .【分析】应先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:xy2﹣9x=x(y2﹣9)=x(y﹣3)(y+3).故答案为:x(y﹣3)(y+3).【点评】本题考查对多项式的分解能力,一般先考虑提公因式,再考虑利用公式分解因式,要注意分解因式要彻底,直到不能再分解为止.13.(3分)当x=1时,二次函数y=x2﹣2x+6有最小值 5.【分析】把x2﹣2x+6化成(x﹣1)2+5,即可求出二次函数y=x2﹣2x+6的最小值是多少. 【解答】解:∵y=x2﹣2x+6=(x﹣1)2+5,∴当x=1时,二次函数y=x2﹣2x+6有最小值5.故答案为:1、5.【点评】此题主要考查了二次函数的最值,要熟练掌握,确定一个二次函数的最值,首先看自变量的取值范围,当自变量取全体实数时,其最值为抛物线顶点坐标的纵坐标;当自变量取某个范围时,要分别求出顶点和函数端点处的函数值,比较这些函数值,从而获得最值.14.(3分)如图,Rt△ABC中,∠C=90°,BC=15,tanA=,则AB=17.【分析】根据∠A的正切求出AC,再利用勾股定理列式计算即可得解.【解答】解:∵Rt△ABC中,∠C=90°,tanA=,BC=15,∴=,解得AC=8,根据勾股定理得,AB===17.故答案为:17.【点评】本题考查了解直角三角形,勾股定理,主要利用了锐角的正切等于对边比邻边.15.(3分)如图,圆锥的侧面展开图是一个圆心角为120°的扇形,若圆锥的底面圆半径是,则圆锥的母线l=3.【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【解答】解:圆锥的底面周长=2π×=2πcm,则:=2π,解得l=3.故答案为:3.【点评】本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为:.16.(3分)如图,平面直角坐标系中O是原点,▱ABCD的顶点A,C的坐标分别是(8,0),(3,4),点D,E把线段OB三等分,延长CD、CE分别交OA、AB于点F,G,连接FG.则下列结论:①F是OA的中点;②△OFD与△BEG相似;③四边形DEGF的面积是;④OD=其中正确的结论是 ①③ (填写所有正确结论的序号).【分析】①证明△CDB∽△FDO,列比例式得:,再由D、E为OB的三等分点,则=,可得结论正确;②如图2,延长BC交y轴于H证明OA≠AB,则∠AOB≠∠EBG,所以△OFD∽△BEG不成立;③如图3,利用面积差求得:S△CFG=S▱OABC﹣S△OFC﹣S△OBG﹣S△AFG=12,根据相似三角形面积的比等于相似比的平方进行计算并作出判断;④根据勾股定理进行计算OB的长,根据三等分线段OB可得结论.【解答】解:①∵四边形OABC是平行四边形,∴BC∥OA,BC=OA,∴△CDB∽△FDO,∴,∵D、E为OB的三等分点,∴=,∴,∴BC=2OF,∴OA=2OF,∴F是OA的中点;所以①结论正确;②如图2,延长BC交y轴于H,由C(3,4)知:OH=4,CH=3,∴OC=5,∴AB=OC=5,∵A(8,0),∴OA=8,∴OA≠AB,∴∠AOB≠∠EBG,∴△OFD∽△BEG不成立,所以②结论不正确;③由①知:F为OA的中点,同理得;G是AB的中点,∴FG是△OAB的中位线,∴FG=,FG∥OB,∵OB=3DE,∴FG=DE,∴=,过C作CQ⊥AB于Q,S▱OABC=OA•OH=AB•CQ,∴4×8=5CQ,∴CQ=,S△OCF=OF•OH=×4×4=8,S△CGB=BG•CQ=××=8,S△AFG=×4×2=4,∴S△CFG=S▱OABC﹣S△OFC﹣S△OBG﹣S△AFG=8×4﹣8﹣8﹣4=12, ∵DE∥FG,∴△CDE∽△CFG,∴==,∴=,∴,∴S四边形DEGF=;所以③结论正确;④在Rt△OHB中,由勾股定理得:OB2=BH2+OH2,∴OB==,∴OD=,所以④结论不正确;故本题结论正确的有:①③;故答案为:①③.【点评】本题是四边形的综合题,考查了平行四边形的性质、图形与坐标特点、勾股定理、三角形的中位线定理、三角形相似的性质和判定、平行四边形和三角形面积的计算等知识,难度适中,熟练掌握平行四边形和相似三角形的性质是关键.三、解答题(本大题共9小题,共102分)17.(9分)解方程组.【分析】方程组利用加减消元法求出解即可.【解答】解:,①×3﹣②得:x=4,把x=4代入①得:y=1,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.18.(9分)如图,点E,F在AB上,AD=BC,∠A=∠B,AE=BF.求证:△ADF≌△BCE.【分析】根据全等三角形的判定即可求证:△ADF≌△BCE【解答】解:∵AE=BF,∴AE+EF=BF+EF,∴AF=BE,在△ADF与△BCE中,∴△ADF≌△BCE(SAS)【点评】本题考查全等三角形的判定,解题的关键是求证AF=BE,本题属于基础题型.19.(10分)某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间t(单位:小时),将学生分成五类:A类(0≤t≤2),B类(2<t≤4),C类(4<t≤6),D类(6<t≤8),E类(t>8).绘制成尚不完整的条形统计图如图.根据以上信息,解答下列问题:(1)E类学生有 5人,补全条形统计图;(2)D类学生人数占被调查总人数的 36%;(3)从该班做义工时间在0≤t≤4的学生中任选2人,求这2人做义工时间都在2<t≤4中的概率.【分析】(1)根据总人数等于各类别人数之和可得E类别学生数;(2)用D类别学生数除以总人数即可得;(3)列举所有等可能结果,根据概率公式求解可得.【解答】解:(1)E类学生有50﹣(2+3+22+18)=5(人),补全图形如下:故答案为:5;(2)D类学生人数占被调查总人数的×100%=36%,故答案为:36;(3)记0≤t≤2内的两人为甲、乙,2<t≤4内的3人记为A、B、C,从中任选两人有:甲乙、甲A、甲B、甲C、乙A、乙B、乙C、AB、AC、BC这10种可能结果,其中2人做义工时间都在2<t≤4中的有AB、AC、BC这3种结果,∴这2人做义工时间都在2<t≤4中的概率为.【点评】本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查条形统计图.20.(10分)如图,在Rt△ABC中,∠B=90°,∠A=30°,AC=2.(1)利用尺规作线段AC的垂直平分线DE,垂足为E,交AB于点D,(保留作图痕迹,不写作法)(2)若△ADE的周长为a,先化简T=(a+1)2﹣a(a﹣1),再求T的值.【分析】(1)根据作已知线段的垂直平分线的方法,即可得到线段AC的垂直平分线DE; (2)根据Rt△ADE中,∠A=30°,AE=,即可求得a的值,最后化简T=(a+1)2﹣a(a ﹣1),再求T的值.【解答】解:(1)如图所示,DE即为所求;(2)由题可得,AE=AC=,∠A=30°,∴Rt△ADE中,DE=AD,设DE=x,则AD=2x,∴Rt△ADE中,x2+()2=(2x)2,解得x=1,∴△ADE的周长a=1+2+=3+,∵T=(a+1)2﹣a(a﹣1)=3a+1,∴当a=3+时,T=3(3+)+1=10+3.【点评】本题主要考查了基本作图以及含30度角的直角三角形的性质,解题时注意:在直角三角形中,30°角所对的直角边等于斜边的一半.21.(12分)甲、乙两个工程队均参与某筑路工程,先由甲队筑路60公里,再由乙队完成剩下的筑路工程,已知乙队筑路总公里数是甲队筑路总公里数的倍,甲队比乙队多筑路20天.(1)求乙队筑路的总公里数;(2)若甲、乙两队平均每天筑路公里数之比为5:8,求乙队平均每天筑路多少公里. 【分析】(1)根据甲队筑路60公里以及乙队筑路总公里数是甲队筑路总公里数的倍,即可求出乙队筑路的总公里数;(2)设乙队平均每天筑路8x公里,则甲队平均每天筑路5x公里,根据甲队比乙队多筑路20天,即可得出关于x的分式方程,解之经检验后即可得出结论.【解答】解:(1)60×=80(公里).答:乙队筑路的总公里数为80公里.(2)设乙队平均每天筑路8x公里,则甲队平均每天筑路5x公里,根据题意得:﹣=20,解得:x=0.1,经检验,x=0.1是原方程的解,∴8x=0.8.答:乙队平均每天筑路0.8公里.【点评】本题考查了分式方程的应用,解题的关键是:(1)根据数量关系列式计算;(2)找准等量关系,列出分式方程.22.(12分)将直线y=3x+1向下平移1个单位长度,得到直线y=3x+m,若反比例函数y=的图象与直线y=3x+m相交于点A,且点A的纵坐标是3.(1)求m和k的值;(2)结合图象求不等式3x+m>的解集.【分析】(1)根据平移的原则得出m的值,并计算点A的坐标,因为A在反比例函数的图象上,代入可以求k的值;(2)画出两函数图象,根据交点坐标写出解集.【解答】解:(1)由平移得:y=3x+1﹣1=3x,∴m=0,当y=3时,3x=3,x=1,∴A(1,3),∴k=1×3=3;(2)画出直线y=3x和反比例函数y=的图象:如图所示,由图象得:不等式3x+m>的解集为:﹣1<x<0或x>1.【点评】本题考查的是一次函数与反比例函数的交点问题和一次函数的图象的平移问题,涉及到用待定系数法求反比例函数的解析式,并熟知函数图象平移时“上加下减,左加右减”的法则.23.(12分)已知抛物线y1=﹣x2+mx+n,直线y2=kx+b,y1的对称轴与y2交于点A(﹣1,5),点A与y1的顶点B的距离是4.(1)求y1的解析式;(2)若y2随着x的增大而增大,且y1与y2都经过x轴上的同一点,求y2的解析式.【分析】(1)根据题意求得顶点B的坐标,然后根据顶点公式即可求得m、n,从而求得y1的解析式;(2)分两种情况讨论:当y1的解析式为y1=﹣x2﹣2x时,抛物线与x轴的交点是抛物线的顶点(﹣1,0),不合题意;当y1=﹣x2﹣2x+8时,解﹣x2﹣2x+8=0求得抛物线与x轴的交点坐标,然后根据A的坐标和y2随着x的增大而增大,求得y1与y2都经过x轴上的同一点(﹣4,0),然后根据待定系数法求得即可.【解答】解:(1)∵抛物线y1=﹣x2+mx+n,直线y2=kx+b,y1的对称轴与y2交于点A(﹣1,5),点A与y1的顶点B的距离是4.∴B(﹣1,1)或(﹣1,9),∴﹣=﹣1,=1或9,解得m=﹣2,n=0或8,∴y1的解析式为y1=﹣x2﹣2x或y1=﹣x2﹣2x+8;(2)①当y1的解析式为y1=﹣x2﹣2x时,抛物线与x轴交点是(0.0)和(﹣2.0),∵y1的对称轴与y2交于点A(﹣1,5),∴y1与y2都经过x轴上的同一点(﹣2,0),把(﹣1,5),(﹣2,0)代入得,解得,∴y2=5x+10.②当y1=﹣x2﹣2x+8时,解﹣x2﹣2x+8=0得x=﹣4或2,∵y2随着x的增大而增大,且过点A(﹣1,5),∴y1与y2都经过x轴上的同一点(﹣4,0),把(﹣1,5),(﹣4,0)代入得,解得;∴y2=x+.【点评】本题考查了一次函数的性质,二次函数的性质,待定系数法求一次函数和二次函数的解析式,根据题意求得顶点坐标是解题的关键.24.(14分)如图,矩形ABCD的对角线AC,BD相交于点O,△COD关于CD的对称图形为△CED.(1)求证:四边形OCED是菱形;(2)连接AE,若AB=6cm,BC=cm.①求sin∠EAD的值;②若点P为线段AE上一动点(不与点A重合),连接OP,一动点Q从点O出发,以1cm/s 的速度沿线段OP匀速运动到点P,再以1.5cm/s的速度沿线段PA匀速运动到点A,到达点A后停止运动,当点Q沿上述路线运动到点A所需要的时间最短时,求AP的长和点Q走完全程所需的时间.【分析】(1)只要证明四边相等即可证明;(2)①设AE交CD于K.由DE∥AC,DE=OC=OA,推出==,由AB=CD=6,可得DK=2,CK=4,在Rt△ADK中,AK===3,根据sin∠DAE=计算即可解决问题;②作PF⊥AD于F.易知PF=AP•sin∠DAE=AP,因为点Q的运动时间t=+=OP+AP=OP+PF,所以当O、P、F共线时,OP+PF的值最小,此时OF是△ACD的中位线,由此即可解决问题.【解答】(1)证明:∵四边形ABCD是矩形.∴OD=OB=OC=OA,∵△EDC和△ODC关于CD对称,∴DE=DO,CE=CO,∴DE=EC=CO=OD,∴四边形CODE是菱形.(2)①设AE交CD于K.∵四边形CODE是菱形,∴DE∥AC,DE=OC=OA,∴==∵AB=CD=6,∴DK=2,CK=4,在Rt△ADK中,AK===3,∴sin∠DAE==,②作PF⊥AD于F.易知PF=AP•sin∠DAE=AP,∵点Q的运动时间t=+=OP+AP=OP+PF,∴当O、P、F共线时,OP+PF的值最小,此时OF是△ACD的中位线,∴OF=CD=3.AF=AD=,PF=DK=1,∴AP==,∴当点Q沿上述路线运动到点A所需要的时间最短时,AP的长为,点Q走完全程所需的时间为3s.【点评】本题考查四边形综合题、矩形的性质、菱形的判定和性质、锐角三角函数、平行线分线段成比例定理、勾股定理、三角形的中位线定理等知识,解题的关键是灵活运用所学知识解决问题,学会利用垂线段最短解决最值问题,所以中考压轴题.25.(14分)如图,AB是⊙O的直径,=,AB=2,连接AC.(1)求证:∠CAB=45°;(2)若直线l为⊙O的切线,C是切点,在直线l上取一点D,使BD=AB,BD所在的直线与AC所在的直线相交于点E,连接AD.①试探究AE与AD之间的是数量关系,并证明你的结论;②是否为定值?若是,请求出这个定值;若不是,请说明理由.【分析】(1)由AB是⊙O的直径知∠ACB=90°,由=即AC=BC可得答案;(2)分∠ABD为锐角和钝角两种情况,①作BF⊥l于点F,证四边形OBFC是矩形可得AB=2OC=2BF,结合BD=AB知∠BDF=30°,再求出∠BDA和∠DEA度数可得;②同理BF=BD,即可知∠BDC=30°,分别求出∠BEC、∠ADB即可得;(3)分D在C左侧和点D在点C右侧两种情况,作EI⊥AB,证△CAD∽△BAE得==,即AE=CD,结合EI=BE、EI=AE,可得BE=2EI=2×AE=AE=×CD=2CD,从而得出结论.【解答】解:(1)如图1,连接BC,∵AB是⊙O的直径,∴∠ACB=90°,∵AC=BC,∴∠CAB=∠CBA==45°;(2)①当∠ABD为锐角时,如图2所示,作BF⊥l于点F,由(1)知△ACB是等腰直角三角形,∵OA=OB=OC,∴△BOC为等腰直角三角形,∵l是⊙O的切线,∴OC⊥l,又BF⊥l,∴四边形OBFC是矩形,∴AB=2OC=2BF,∵BD=AB,∴BD=2BF,∴∠BDF=30°,∴∠DBA=30°,∠BDA=∠BAD=75°,∴∠CBE=∠CBA﹣∠DBA=45°﹣30°=15°,∴∠DEA=∠CEB=90°﹣∠CBE=75°,∴∠ADE=∠AED,∴AD=AE;②当∠ABD为钝角时,如图3所示,同理可得BF=BD,即可知∠BDC=30°,∵OC⊥AB、OC⊥直线l,∴AB∥直线l,∴∠ABD=150°,∠ABE=30°,∴∠BEC=90°﹣(∠ABE+∠ABC)=90°﹣(30°+45°)=15°, ∵AB=DB,∴∠ADB=∠ABE=15°,∴∠BEC=∠ADE,∴AE=AD;(3)①如图2,当D在C左侧时,由(2)知CD∥AB,∠ACD=∠BAE,∠DAC=∠EBA=30°, ∴△CAD∽△BAE,∴==,∴AE=CD,作EI⊥AB于点I,∵∠CAB=45°、∠ABD=30°,∴BE=2EI=2×AE=AE=×CD=2CD,∴=2;②如图3,当点D在点C右侧时,过点E作EI⊥AB于I, 由(2)知∠ADC=∠BEA=15°,∵AB∥CD,∴∠EAB=∠ACD,∴△ACD∽△BAE,∴==,∴CD,∵BA=BD,∠BAD=∠BDA=15°,∴∠IBE=30°,∴BE=2EI=2×AE=AE=×CD=2CD,∴=2.【点评】本题主要考查圆的综合问题,熟练掌握切线的性质、等腰直角三角形的判定与性质、圆心角定理及相似三角形的判定与性质是解题的关键.。
完整word版,2017年广东省中考数学试题与参考答案

2017年广东省初中毕业生学业考试数 学说明:1.全卷共6页,满分为120 分,考试用时为100分钟。
2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号。
用2B 铅笔把对应该号码的标号涂黑。
3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。
4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再这写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
5.考生务必保持答题卡的整洁。
考试结束时,将试卷和答题卡一并交回。
一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1. 5的相反数是( ) A. B.5 C.- D.-52.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃.据商务部门发布的数据显示。
2016年广东省对沿线国家的实际投资额超过4 000 000 000美元.将4 000 000 000用科学记数法表示为( )A.0.4×B.0.4×C.4×D.4× 3.已知,则的补角为( )A. B. C. D. 4.如果2是方程的一个根,则常数k 的值为( )A.1B.2C.-1D.-25.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组的数据的众数是( )A.95B.90C.85D.80 6.下列所述图形中, 既是轴对称图形又是中心对称图形的是( )A.等边三角形B.平行四边形C.正五边形D.圆 7.如题7图,在同一平面直角坐标系中,直线与双曲线 相交于A 、B 两点,已知点A 的坐标为(1,2), 则点B 的坐标为( ) A.(-1,-2) B.(-2,-1) C.(-1,-1) D.(-2,-2)15159101010910101070A ∠=︒A ∠110︒70︒30︒20︒230x x k -+=11(0)y k x k =≠22(0)k y k x=≠题7图8.下列运算正确的是( )A. B. C. D.9.如题9图,四边形ABCD 内接于⊙O ,DA=DC ,∠CBE=50°, 则∠DAC 的大小为( )A.130°B.100°C.65°D.50°10.如题10图,已知正方形ABCD ,点E 是BC 边的中点,DE 与AC 相交于点F ,连接BF ,下列结论:①;②;③; ④,其中正确的是( ) A.①③ B.②③ C.①④ D.②④二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:a a +2 .12.一个n 边形的内角和是,那么n= . 13.已知实数a,b 在数轴上的对应点的位置如题13图所示, 则 0(填“>”,“<”或“=”).14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5.随机摸出一个小球,摸出的小球标号为偶数的概率是 . 15.已知,则整式的值为 .16.如题16图(1),矩形纸片ABCD 中,AB=5,BC=3,先按题16图(2)操作,将矩形纸片ABCD沿过点A 的直线折叠,使点D 落在边AB 上的点E 处,折痕为AF ;再按题16图(3)操作:沿过点F 的直线折叠,使点C 落在EF 上的点H 处,折痕为FG,则A 、H 两点间的距离为 .223a a a +=325·a a a =426()a a =424a a a +=ABF ADF S S =△△4CDF CBF S S =△△2ADF CEF S S =△△2ADF CDF S S =△△720︒ab ÷431a b ÷=863a b ÷-三、解答题(一)(本大题共3题,每小题6分,共18分)17.计算:.18.先化简,再求值,其中x =√5 .19.学校团委组织志愿者到图书馆整理一批新进的图书。
2017年深圳市中考数学真题试卷及详细答案(word版))

2017年广东省深圳市中考数学试卷一、选择题1.(3分)﹣2的绝对值是()A.﹣2 B.2 C.﹣D.2.(3分)图中立体图形的主视图是()A.B.C.D.3.(3分)随着“一带一路”建设的不断发展,我国已与多个国家建立了经贸合作关系,去年中哈铁路(中国至哈萨克斯坦)运输量达8200000吨,将8200000用科学记数法表示为()A.8.2×105B.82×105C.8.2×106D.82×107 4.(3分)观察下列图形,其中既是轴对称又是中心对称图形的是()A.B.C.D.5.(3分)下列选项中,哪个不可以得到l1∥l2?()A.∠1=∠2 B.∠2=∠3 C.∠3=∠5 D.∠3+∠4=180°6.(3分)不等式组的解集为()A.x>﹣1 B.x<3 C.x<﹣1或x>3 D.﹣1<x<3 7.(3分)一球鞋厂,现打折促销卖出330双球鞋,比上个月多卖10%,设上个月卖出x双,列出方程()A.10%x=330 B.(1﹣10%)x=330C.(1﹣10%)2x=330 D.(1+10%)x=3308.(3分)如图,已知线段AB,分别以A、B为圆心,大于AB为半径作弧,连接弧的交点得到直线l,在直线l上取一点C,使得∠CAB=25°,延长AC至M,求∠BCM的度数为()A.40°B.50°C.60°D.70°9.(3分)下列哪一个是假命题()A.五边形外角和为360°B.切线垂直于经过切点的半径C.(3,﹣2)关于y轴的对称点为(﹣3,2)D.抛物线y=x2﹣4x+2017对称轴为直线x=210.(3分)某共享单车前a公里1元,超过a公里的,每公里2元,若要使使用该共享单车50%的人只花1元钱,a应该要取什么数()A.平均数B.中位数C.众数D.方差11.(3分)如图,学校环保社成员想测量斜坡CD旁一棵树AB的高度,他们先在点C处测得树顶B的仰角为60°,然后在坡顶D测得树顶B的仰角为30°,已知斜坡CD的长度为20m,DE的长为10cm,则树AB的高度是()m.A.20B.30 C.30D.4012.(3分)如图,正方形ABCD 的边长是3,BP=CQ ,连接AQ ,DP 交于点O ,并分别与边CD ,BC 交于点F ,E ,连接AE ,下列结论:①AQ ⊥DP ;②OA 2=OE•OP ;③S △AOD =S 四边形OECF ;④当BP=1时,tan ∠OAE=,其中正确结论的个数是( )A .1B .2C .3D .4二、填空题13.(3分)因式分解:a 3﹣4a= .14.(3分)在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是 .15.(3分)阅读理解:引入新数i ,新数i 满足分配律,结合律,交换律,已知i 2=﹣1,那么(1+i )•(1﹣i )= .16.(3分)如图,在Rt △ABC 中,∠ABC=90°,AB=3,BC=4,Rt △MPN ,∠MPN=90°,点P 在AC 上,PM 交AB 于点E ,PN 交BC 于点F ,当PE=2PF 时,AP= .三、解答题17.(5分)计算:|﹣2|﹣2cos45°+(﹣1)﹣2+.18.(6分)先化简,再求值:(+)÷,其中x=﹣1.19.(7分)深圳市某学校抽样调查,A类学生骑共享单车,B类学生坐公交车、私家车等,C类学生步行,D类学生(其它),根据调查结果绘制了不完整的统计图.类型频数频率A30xB180.15C m0.40D n y(1)学生共人,x=,y=;(2)补全条形统计图;(3)若该校共有2000人,骑共享单车的有人.20.(8分)一个矩形周长为56厘米.(1)当矩形面积为180平方厘米时,长宽分别为多少?(2)能围成面积为200平方米的矩形吗?请说明理由.21.(8分)如图,一次函数y=kx+b与反比例函数y=(x>0)交于A(2,4),B(a,1),与x轴,y轴分别交于点C,D.(1)直接写出一次函数y=kx+b的表达式和反比例函数y=(x>0)的表达式;(2)求证:AD=BC.22.(9分)如图,线段AB是⊙O的直径,弦CD⊥AB于点H,点M是上任意一点,AH=2,CH=4.(1)求⊙O的半径r的长度;(2)求sin∠CMD;(3)直线BM交直线CD于点E,直线MH交⊙O于点N,连接BN交CE于点F,求HE•HF的值.23.(9分)如图,抛物线y=ax2+bx+2经过点A(﹣1,0),B(4,0),交y轴于点C;(1)求抛物线的解析式(用一般式表示);(2)点D为y轴右侧抛物线上一点,是否存在点D使S△ABC =S△ABD?若存在请直接给出点D坐标;若不存在请说明理由;(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.。
(完整版)2017年广东省中考数学试题与参考答案

2017年广东省初中毕业生学业考试数 学说明:1.全卷共6页,满分为120 分,考试用时为100分钟。
2.答卷前,考生务必用黑色字迹的签字笔或钢笔在答题卡填写自己的准考证号、姓名、考场号、座位号。
用2B 铅笔把对应该号码的标号涂黑。
3.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑,如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试题上。
4.非选择题必须用黑色字迹钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再这写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
5.考生务必保持答题卡的整洁。
考试结束时,将试卷和答题卡一并交回。
一、选择题(本大题10小题,每小题3分,共30分)在每小题列出的四个选项中,只有一个是正确的,请把答题卡上对应题目所选的选项涂黑.1. 5的相反数是( ) A. B.5 C.- D.-52.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃.据商务部门发布的数据显示。
2016年广东省对沿线国家的实际投资额超过4 000 000 000美元.将4 000 000 000用科学记数法表示为( )A.0.4×B.0.4×C.4×D.4× 3.已知,则的补角为( )A. B. C. D. 4.如果2是方程的一个根,则常数k 的值为( )A.1B.2C.-1D.-25.在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:90,85,90,80,95,则这组的数据的众数是( )A.95B.90C.85D.80 6.下列所述图形中, 既是轴对称图形又是中心对称图形的是( )A.等边三角形B.平行四边形C.正五边形D.圆 7.如题7图,在同一平面直角坐标系中,直线与双曲线 相交于A 、B 两点,已知点A 的坐标为(1,2), 则点B 的坐标为( ) A.(-1,-2) B.(-2,-1) C.(-1,-1) D.(-2,-2)15159101010910101070A ∠=︒A ∠110︒70︒30︒20︒230x x k -+=11(0)y k x k =≠22(0)k y k x=≠题7图8.下列运算正确的是( )A. B. C. D.9.如题9图,四边形ABCD 内接于⊙O ,DA=DC ,∠CBE=50°, 则∠DAC 的大小为( )A.130°B.100°C.65°D.50°10.如题10图,已知正方形ABCD ,点E 是BC 边的中点,DE 与AC 相交于点F ,连接BF ,下列结论:①;②;③; ④,其中正确的是( ) A.①③ B.②③ C.①④ D.②④二、填空题(本大题6小题,每小题4分,共24分)请将下列各题的正确答案填写在答题卡相应的位置上.11.分解因式:a a +2 .12.一个n 边形的内角和是,那么n= . 13.已知实数a,b 在数轴上的对应点的位置如题13图所示, 则 0(填“>”,“<”或“=”).14.在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为1,2,3,4,5.随机摸出一个小球,摸出的小球标号为偶数的概率是 . 15.已知,则整式的值为 .16.如题16图(1),矩形纸片ABCD 中,AB=5,BC=3,先按题16图(2)操作,将矩形纸片ABCD沿过点A 的直线折叠,使点D 落在边AB 上的点E 处,折痕为AF ;再按题16图(3)操作:沿过点F 的直线折叠,使点C 落在EF 上的点H 处,折痕为FG,则A 、H 两点间的距离为 .223a a a +=325·a a a =426()a a =424a a a +=ABF ADF S S =△△4CDF CBF S S =△△2ADF CEF S S =△△2ADF CDF S S =△△720︒ab ÷431a b ÷=863a b ÷-三、解答题(一)(本大题共3题,每小题6分,共18分)17.计算:.18.先化简,再求值,其中x =√5 .19.学校团委组织志愿者到图书馆整理一批新进的图书。
(word完整版)2017年广州市中考数学试卷(含答案),推荐文档

2017年广州市中考数学试卷一、选择题(共10小题;共50分)1.如图,数轴上两点,表示的数互为相反数,则点表示的数是B. C. D. 无法确定2.如图,将正方形中的阴影三角形绕点顺时针旋转后,得到图形为A. B.C. D.3. 某人活动小组为了解本组成员的年龄情况,作了一次调查,统计的年龄如下(单位:岁),,,,,.这组数据的众数,平均数分别为A. ,B. ,C. ,D. ,4. 下列运算正确的是A. B.C. ()5.关于的一元二次方程有两个不相等的实数根,则的取值范围是A. B. C. D.6.如图,是的内切圆,则点是的A. 三条边的垂直平分线的交点B. 三条角平分线的交点C. 三条中线的交点D. 三条高的交点7.计算,结果是A. B. C. D.8. 如图,,分别是平行四边形的边,上的点,,,将四边形沿翻折,得到,交于点,则的周长为A. B. C. D.9. 如图,在中,是直径,是弦,,垂足为,连接,,,则下列说法中正确的是A. B.C. D.10.,函数与在同一直角坐标系中的大致图象可能是A. B.C. D.二、填空题(共6小题;共30分)11. 如图,四边形中,,,则.12. 分解因式:.13. 当时,二次函数有最小值.14. 如图,中,,,.15. 如图,圆锥的侧面展开图是一个圆心角为的扇形,若圆锥的底面圆半径是,则圆锥的母线.16. 如图,平面直角坐标系中是原点,平行四边形的顶点,的坐标分别是,,点,把线段三等分,延长,分别交,于点,,连接,则下列结论:①是的中点;②与相似;③四边形的面积是④;其中正确的结论是.(填写所有正确结论的序号)三、解答题(共9小题;共117分)17. 解方程组:18. 如图,点,在上,,,.求证:.19. 某班为了解学生一学期做义工的时间情况,对全班名学生进行调查,按做义工的时间(单位:小时),将学生分成五类:A类,B类,C类,D类,E类.绘制成尚不完整的条形统计图如图.根据以上信息,解答下列问题:(1)E 类学生有人,补全条形统计图;(2)D(3)从该班做义工时间在的学生中任选人,求这人做义工时间都在中的概率.20. 如图,在中,,,.(1)利用尺规作线段的垂直平分线,垂足为,交于点:(保留作图痕迹,不写作法);(2)若的周长为,先化简,再求的值.21. 甲、乙两个工程队均参与某筑路工程,先由甲队筑路公里,再由乙队完成剩下的筑路工程,已知乙队筑路总公里数是甲队筑路总公里数的倍,甲队比乙队多筑路天.(1)求乙队筑路的总公里数;(2)若甲、乙两队平均每天筑路公里数之比为,求乙队平均每天筑路多少公里.22. 将直线向下平移个单位长度,得到直线,若反比例函数的图象与直线相交于点,且点的纵坐标是.(1)求和的值;(2)结合图象求不等式的解集.23. 已知抛物线,直线,的对称轴与交于点,点与的顶点的距离是.(1)求的解析式;(2)若随着的增大而增大,且与都经过轴上的同一点,求的解析式.24. 如图,矩形的对角线,相交于点,关于的对称图形为.(1)求证:四边形是菱形;(2)连接,若.①求的值;②若点为线段上一动点(不与点重合),连接,一动点从点出发,以的速度沿线段匀速运动到点,再以的速度沿线段匀速运动到点,到达点后停止运动,当点沿上述路线运动到点所需要的时间最短时,求的长和点走完全程所需的时间.25. 如图,是的直径,,,连接.(1)求证:;(2)若直线为的切线,是切点,在直线上取一点,使,所在的直线与所在的直线相交于点,连接.①试探究与之间的数量关系,并证明你的结论;②是否为定值?若是,请求出这个定值;若不是,请说明理由.答案第一部分1. B2. A3. C4. D5. A6. B7. A8. C9. D 10. D第二部分11.12.13. ;14.15.16. ①③第三部分17.得:将代入得方程组的解是18. 因为,所以,,即,在和中,所以,.19. (1) E 类:(人),统计如图所示(2)(3)设人分别为,,,,,画树状图:所以这人做义工时间都在中的概率为.20. (1)如下图所示:(2),,,,,所以.21. (1)乙队筑路的总公里数:(公里).(2)设甲队每天筑路公里,乙队每天筑路公里.根据题意得:解得:经检验是原方程的解且符合题意.乙队每天筑路:(公里),答:乙队平均每天筑路公里.22. (1)由向下平移一个单位长度而得,,点纵坐标为且在上,点坐标为,点在反比例函数上,.(2)与的图象如图所示,由图可知当或.23. (1)的对称轴与的交点为,的对称轴为直线顶点坐标为,,,,,或.(2)①当时,与轴交点为,,随的增大而增大,,(ⅰ)当经过点,时,则有得(舍去),(ⅱ)当经过点,时,则有得.②当时,令,则,得,与轴交于点,,(ⅰ)当经过点,时,则有得(舍去),(ⅱ)当经过点,时,则有得,综上,的解析式为:或.24. (1)因为四边形为矩形,所以,因为与交于点,且与关于对称,所以,,,所以,所以四边形是菱形.(2)①连接,使直线分别交于点,交于点,因为关于的对称图形为,所以,因为,,所以,,因为四边形是菱形,所以,.又矩形中,.所以为的中位线,所以,因为,,所以,所以,又,所以,,所以因为,所以,所以②过点作交于点,因为由①可知:,所以点以的速度从到所需时间等同于以的速度从运动到所需时间.即:所以由运动到所需的时间就是的值.因为如图,当运动到,即时,所用时间最短,所以,在中,设,则,,所以,解得:或所以所以当点点沿题述路线运动到点所需时间最短时,的长为,点走完全程所需要的时间为.25. (1)如图,连接,是的直径,.,,.(2)①.如图所示,作于,连接,由()可知为等腰直角三角形.又是的中点,,,为等腰直角三角形,,为的切线,,又,四边形为矩形,,.,,.,.,,,..当为钝角时,如图所示,同理,得,易得,.,,,.②如图,当在左侧时,过点作交于点,由()①知,,.又,,.中,,,.当在右侧时,如图,过作于,由()①知,,,.,.,,在中,,.。
2017年广东省中考数学试卷
精品文档,名师推荐! 来源网络,造福学生
———————欢迎下载,祝您学习进步,成绩提升——————— 在
绝密★启用前
广东省 2017 年初中毕业生学业考试
数学
此
本试卷满分 120 分,考试时间 100 分钟
第Ⅰ卷(选择题 共 30 分)
A.等边三角形
B.平行四边行
C.正五边形
D.圆
7.如图,在同一平面直角坐标系中,直线 y k1x k1 0 与双曲线
9. 如 图 , 四 边 形 ABCD 内 接 于 O , DA DC , CBE 50 , 则
DAC 的大小为 A.130 C. 65
()
B.100 D. 50
10.如图,已知正方形 ABCD ,点 E 是 BC 边的中点, DE 与 AC 相交
于点 F ,连接 BF .下列结论: ① S△ABF S△ADF ; ② S△CDF 4S△CEF ; ③ S△ADF 2S△CEF ; ④ S△ADF 2S△CDF ,其中正确的是
无
90,85,90,80,95,则这组数据的众数是
()
A.95
B.90
C.85
D.80
6.下列所述图形中,既是轴对称图形又是中心对称图形的是
() 效
数学试卷 第 1页(共 16页)
8.下列运算正确的是
() A. a 2a 3a2
B. a3 a2 a5
C. (a4 )2 a6
D. a8 a2 a4
A. 1
B.5
上
5
C. 1 5
D. 5
2.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃.据商
务部门发布的数据显示,2016 年广东省对沿线国家的实际投资额超过 4 000 000 000 美
2017年广东省中考数学试卷(含答案,word高清版)(2021年整理精品文档)
(完整版)2017年广东省中考数学试卷(含答案,word高清版)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整版)2017年广东省中考数学试卷(含答案,word高清版))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整版)2017年广东省中考数学试卷(含答案,word高清版)的全部内容。
2017年广东省中考数学试卷一、选择题(共10小题;共50分)1. 的相反数是A。
B。
C. D.2。
“一带一路”倡议提出三年以来,广东企业到“一带一路"国家投资越来越活跃。
据商务部门发布的数据显示,2016年广东省对沿线国家的实际投资额超过 4000000000美元,将 4000000000用科学记数法表示为A. B。
C. D。
3. 已知,则的补角为A. B。
C. D.4. 如果是方程的一个根,则常数的值为A。
B。
C. D.5. 在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:,,,,,则这组的数据的众数是A. B。
C。
D.6. 下列所述图形中,既是轴对称图形又是中心对称图形的是A. 等边三角形B。
平行四边形 C. 正五边形 D. 圆7. 如图,在同一平面直角坐标系中,直线与双曲线相交于,两点,已知点的坐标为,则点的坐标为A。
D。
8。
下列运算正确的是A。
B。
C. D.9. 如图,四边形内接于,,,则的大小为A. B. C. D。
10。
如图,已知正方形,点是边的中点,与相交于点,连接,下列结论:① ;② ;③ ;④,其中正确的是A。
①③ B. ②③C。
①④ D. ②④二、填空题(共6小题;共30分)11. 分解因式:.12. 一个边形的内角和是,那么.13。
2017年广州市中考数学试卷(含答案)word版
2017年广州市中考数学试卷一、选择题(共10小题;共50分)1. 如图,数轴上两点,表示的数互为相反数,则点表示的数是B. C. D. 无法确定2. 如图,将正方形中的阴影三角形绕点顺时针旋转后,得到图形为A. B.C. D.3. 某人活动小组为了解本组成员的年龄情况,作了一次调查,统计的年龄如下(单位:岁),,,,,.这组数据的众数,平均数分别为A. ,B. ,C. ,D. ,4. 下列运算正确的是B.C. ()5. 关于的一元二次方程有两个不相等的实数根,则的取值范围是A. B. C. D.6. 如图,是的内切圆,则点是的A. 三条边的垂直平分线的交点B. 三条角平分线的交点C. 三条中线的交点D. 三条高的交点7. 计算,结果是A. B. C. D.8. 如图,,分别是平行四边形的边,上的点,,,将四边形沿翻折,得到,交于点,则的周长为A. B. C. D.9. 如图,在中,是直径,是弦,,垂足为,连接,,,则下列说法中正确的是A. B.C. D.10. ,函数与在同一直角坐标系中的大致图象可能是A. B.C. D.二、填空题(共6小题;共30分)11. 如图,四边形中,,,则.12. 分解因式:.13. 当时,二次函数有最小值.14. 如图,中,,,,则.15. 如图,圆锥的侧面展开图是一个圆心角为的扇形,若圆锥的底面圆半径是,则圆锥的母线.16. 如图,平面直角坐标系中是原点,平行四边形的顶点,的坐标分别是,,点,把线段三等分,延长,分别交,于点,,连接,则下列结论:① 是的中点;② 与相似;③四边形的面积是;④ ;其中正确的结论是.(填写所有正确结论的序号)三、解答题(共9小题;共117分)17. 解方程组:18. 如图,点,在上,,,.求证:.19. 某班为了解学生一学期做义工的时间情况,对全班名学生进行调查,按做义工的时间(单位:小时),将学生分成五类:A类,B类,C类,D类,E类.绘制成尚不完整的条形统计图如图.根据以上信息,解答下列问题:(1)E 类学生有人,补全条形统计图;(2)D 类学生人数占被调查总人数的;(3)从该班做义工时间在的学生中任选人,求这人做义工时间都在中的概率.20. 如图,在中,,,.(1)利用尺规作线段的垂直平分线,垂足为,交于点:(保留作图痕迹,不写作法);(2)若的周长为,先化简,再求的值.21. 甲、乙两个工程队均参与某筑路工程,先由甲队筑路公里,再由乙队完成剩下的筑路工程,已知乙队筑路总公里数是甲队筑路总公里数的倍,甲队比乙队多筑路天.(1)求乙队筑路的总公里数;(2)若甲、乙两队平均每天筑路公里数之比为,求乙队平均每天筑路多少公里.22. 将直线向下平移个单位长度,得到直线,若反比例函数的图象与直线相交于点,且点的纵坐标是.(1)求和的值;(2)结合图象求不等式的解集.23. 已知抛物线,直线,的对称轴与交于点,点与的顶点的距离是.(1)求的解析式;(2)若随着的增大而增大,且与都经过轴上的同一点,求的解析式.24. 如图,矩形的对角线,相交于点,关于的对称图形为.(1)求证:四边形是菱形;(2)连接,若.①求的值;②若点为线段上一动点(不与点重合),连接,一动点从点出发,以的速度沿线段匀速运动到点,再以的速度沿线段匀速运动到点,到达点后停止运动,当点沿上述路线运动到点所需要的时间最短时,求的长和点走完全程所需的时间.25. 如图,是的直径,,,连接.(1)求证:;(2)若直线为的切线,是切点,在直线上取一点,使,所在的直线与所在的直线相交于点,连接.①试探究与之间的数量关系,并证明你的结论;② 是否为定值?若是,请求出这个定值;若不是,请说明理由.答案第一部分1. B2. A3. C4. D5. A6. B7. A8. C9. D 10. D第二部分11.12.13. ;14.15.16. ①③第三部分17.得:将代入得方程组的解是18. 因为,所以,,即,在和中,所以,.19. (1) E 类:(人),统计如图所示(2)(3)设人分别为,,,,,画树状图:所以这人做义工时间都在中的概率为.20. (1)如下图所示:(2),,,,,所以.21. (1)乙队筑路的总公里数:(公里).(2)设甲队每天筑路公里,乙队每天筑路公里.根据题意得:解得:经检验是原方程的解且符合题意.乙队每天筑路:(公里),答:乙队平均每天筑路公里.22. (1)由向下平移一个单位长度而得,,点纵坐标为且在上,点坐标为,点在反比例函数上,.(2)与的图象如图所示,由图可知当或.23. (1)的对称轴与的交点为,的对称轴为直线顶点坐标为,,,,,或.(2)①当时,与轴交点为,,随的增大而增大,,(ⅰ)当经过点,时,则有得(舍去),(ⅱ)当经过点,时,则有得.②当时,令,则,得,与轴交于点,,(ⅰ)当经过点,时,则有得(ⅱ)当经过点,时,则有得,综上,的解析式为:或.24. (1)因为四边形为矩形,所以,因为与交于点,且与关于对称,所以,,,所以,所以四边形是菱形.(2)①连接,使直线分别交于点,交于点,因为关于的对称图形为,所以,因为,,所以,,因为四边形是菱形,所以,.又矩形中,.所以为的中位线,所以,因为,,所以,所以,又,所以,,所以,因为,所以,所以②过点作交于点,因为由①可知:,所以点以的速度从到所需时间等同于以的速度从运动到所需时间.即:所以由运动到所需的时间就是的值.因为如图,当运动到,即时,所用时间最短,所以,在中,设,则,,所以,解得:或所以,所以当点点沿题述路线运动到点所需时间最短时,的长为,点走完全程所需要的时间为25. (1)如图,连接,是的直径,.,,.(2)① .如图所示,作于,连接,由()可知为等腰直角三角形.又是的中点,,,为等腰直角三角形,,为的切线,,又,四边形为矩形,,.,,,.,.,,,..当为钝角时,如图所示,同理,得,易得,.,,,.②如图,当在左侧时,过点作交于点,由()①知,,.又,,.中,,,.当在右侧时,如图,过作于,由()①知,,,.,.,,在中,,.。
2017广东中考数学试卷及答案,推荐文档
2017年广东省广州市中考数学试卷学校: _________ 班级: _____________________ 姓名: _________ 学号: _______________________ 、单选题(共10小题)1•如图,数轴上两点A,B表示的数互为相反数,则点B表示的数为()A1 .B1 +A . - 6B . 6 C. 0 D.无法确定B.AD . B作了一次调查,统计的年龄如下(单位:岁):12, 13, 14, 15, 15, 15,这组数据中的众数,平均数分别为()4.下列运算正确的是()2XD . |a| = a ( a> 0)2•如图,将正方形ABCD中的阴影三角形绕点A顺时针旋转90°后,得到的图形为(B CA . 12, 14 B. 12, 15 C. 15, 14 D. 15, 135.关于x的一兀二次方程x2+8x+q= 0有两个不相等的实数根,则q的取值范围是(3•某6人活动小组为了解本组成员的年龄情况,B . q > 16 C. q w 4 D. q>46•如图,O O是厶ABC的内切圆,则点O是厶ABC的(A . 三条边的垂直平分线的交点B . 三条角平分线的交点C. 三条中线的交点D . 三条高的交点7•计算(a2b)3?::的结果是(A . a5b5B. a4b5)C. ab5D. a5b68•如图,E, F分别是?ABCD的边AD、BC上的点,EF = 6,Z DEF = 60°,将四边形EFCD沿EF翻折, 得到EFC' D', ED'交BC于点6,则厶GEF的周长为(C. 18D. 249•如图,在O O中,AB是直径, CD是弦, AB丄CD,垂足为E,连接CO , AD,/ BAD = 20°,则下列说法中正确的是(A . AD = 2OB B . CE = EO C.Z OCE= 40 D.Z BOC= 2/ BAD1O.a半0,函数y= 一与y=- ax2+a在同一直角坐标系中的大致图象可能是(、填空题(共6小题)12.分解因式:xy2- 9x= -13. ________ 当x= ______________________________ 时,二次函数y= x2- 2x+6有最小值.1514. 如图,Rt△ ABC 中,/ C= 90°, BC= 15, tanA = ,贝U AB =815. 如图,圆锥的侧面展开图是一个圆心角为120°的扇形,若圆锥的底面圆半径是!,,则圆锥的母线IAD // BC,/ A = 11016.如图,平面直角坐标系中0是原点,?OABC的顶点A, C的坐标分别是(8, 0), (3, 4),点D , E把线段0B三等分,延长CD、CE分别交OA、AB于点F,G,连接FG .则下列结论:①F是0A的中点;②厶OFD与厶BEG相似;③四边形DEGF的面积是二_;④0D =:3 31其中正确的结论是____________ (填写所有正确结论的序号).y*三、解答题(共9小题)17•解方程组[时芦.|.2i+3y=ll18•如图,点E, F 在AB 上, AD = BC,Z A=Z B, AE = BF .求证:△ ADF ◎△ BCE .D C19•某班为了解学生一学期做义工的时间情况,对全班50名学生进行调查,按做义工的时间t(单位:小时),将学生分成五类:A 类(O W t < 2) , B 类(2 V t < 4), C 类(4 V t < 6), D 类(6 V t < 8), E 类(t> 8). 绘制成尚不完整的条形统计图如图.根据以上信息,解答下列问题:(1) E类学生有 _人,补全条形统计图;(2) __________________________________ D类学生人数占被调查总人数的%;(3) 从该班做义工时间在0W t W 4的学生中任选2人,求这2人做义工时间都在2V t< 4中的概率.牛人数22IS20.如图,在 Rt △ ABC 中,/ B = 90°,/ A = 30°, AC = 2 :■:.(1 )利用尺规作线段 AC 的垂直平分线DE ,垂足为E ,交AB 于点D ,(保留作图痕迹,不写作法) (2)若厶ADE 的周长为a ,先化简T =( a+1) 2- a (a - 1),再求T 的值.21•甲、乙两个工程队均参与某筑路工程,先由甲队筑路60公里,再由乙队完成剩下的筑路工程,已知乙队筑路总公里数是甲队筑路总公里数的倍,甲队比乙队多筑路 20天.3(1) 求乙队筑路的总公里数;(2) 若甲、乙两队平均每天筑路公里数之比为 5: 8,求乙队平均每天筑路多少公里.22•将直线y = 3x+1向下平移1个单位长度,得到直线y = 3x+m,若反比例函数的图象与直线y = 3x+mx相交于点A ,且点A 的纵坐标是3. (1 )求m 和k 的值;(2)结合图象求不等式 3x+mU-的解集.23. 已知抛物线 y 1=- x 2+ mx+ n ,直线y 2= kx+b , y 1的对称轴与 y 2交于点 A (- 1, 5),点A 与y 1的顶点B 的距离是4.(1 )求y 1的解析式;(2)若y 2随着x 的增大而增大,且 y 1与y 2都经过x 轴上的同一点,求 y 的解析式.24. 如图,矩形 ABCD 的对角线AC , BD 相交于点O ,A COD 关于CD 的对称图形为△ CED .(1)求证:四边形 OCED是菱形; (2)连接 AE ,若 AB = 6cm , BC = qcm . ① 求sin / EAD 的值;② 若点P 为线段AE 上一动点(不与点 A 重合),连接0P , —动点Q 从点0出发,以1cm/s 的速度沿线段0P匀速运动到点P,再以1.5cm/s的速度沿线段PA匀速运动到点A,到达点A后停止运动,当点Q沿上述路线运动到点A所需要的时间最短时,求AP的长和点Q走完全程所需的时间.25. 如图,AB是O 0的直径,「’=l「,AB = 2,连接AC .(1 )求证:/ CAB = 45°;(2)若直线I为O 0的切线,C是切点,在直线I上取一点D,使BD = AB, BD所在的直线与AC所在的直线相交于点E,连接AD .①试探究AE与AD之间的数量关系,并证明你的结论;EB②二是否为定值?若是,请求出这个定值;若不是,请说明理由.2017年广东省广州市中考数学试卷参考答案、单选题(共10小题)1.【分析】根据数轴上点的位置,利用相反数定义确定出 B 表示的数即可.【解答】 解:•••数轴上两点 A , B 表示的数互为相反数,点 A 表示的数为-6,•••点B 表示的数为6, 故选:B .【知识点】数轴、相反数2. 【分析】 根据旋转的性质即可得到结论.【解答】 解:由旋转的性质得,将正方形ABCD 中的阴影三角形绕点 A 顺时针旋转90°后,得到的图形为A ,故选:A .【知识点】正方形的性质、旋转的性质3. 【分析】 观察这组数据发现15出现的次数最多,进而得到这组数据的众数为15,将六个数据相加求出之和,再除以6即可求出这组数据的平均数.【解答】 解::•这组数据中,12出现了 1次,13出现了 1次,14出现了 1次,15出现了 3次,•这组数据的众数为 15 ,•••这组数据分别为:12、13、14、15、15、15 •这组数据的平均数二I - - I" ' -「-! = 14.| 6 |故选:C .【知识点】众数、算术平均数直接利用分式的基本性质以及绝对值的性质、二次根式的性质分别化简求出答案. 解:A 、 无法化简,故此选项错误;bC 、. J = |a|,故此选项错误;D 、|a|= a ( a >0),正确. 故选:D .【知识点】二次根式的性质与化简、等式的性质、绝对值4.【分析】【解答】B 、2X a+b2a+2b33 ,故此选项错误;根据方程的系数结合根的判别式,即可得出△= 64 - 4q > 0,解之即可得出q 解:•••关于x 的一元二次方程x 2+8x+q = 0有两个不相等的实数根,82 - 4q = 64 - 4q > 0,解得:q v 16. 故选:A . 根的判别式根据三角形的内切圆得出点 0到三边的距离相等,即可得出结论.解:••• O 0是厶ABC 的内切圆, 则点0到三边的距离相等,•••点0是厶ABC 的三条角平分线的交点; 故选:B .三角形的内切圆与内心根据积的乘方等于乘方的积,分式的乘法,可得答案. 解:原式=a 6b 3?」=a 5b 5,a故选:A .幕的乘方与积的乘方、分式的乘除法根据平行四边形的性质得到 AD // BC ,由平行线的性质得到/ AEG =Z EGF , 质得到/ GEF = / DEF = 60°,推出△ EGF 是等边三角形,于是得到结论.解:•••四边形ABCD 是平行四边形, • AD // BC ,•••/ AEG =Z EGF ,•••将四边形EFCD 沿EF 翻折,得到EFC ' D ', •••/ GEF = / DEF = 60°,:丄 AEG = 60 ° ,•••/ EGF = 60 ° ,• △ EGF 是等边三角形, •/ EF = 6,• △ GEF 的周长=18, 故选:C .翻折变换(折叠问题)、平行四边形的性质先根据垂径定理得到f 』=L4 CE = DE ,再利用圆周角定理得到/ BOC = 40可计算出/ OCE 的度数,于是可对各选项进行判断. 解:••• AB 丄 CD ,• I '= ■ I, CE = DE ,•••/ BOC = 2/ BAD = 40°, •••/ OCE = 90° - 40°= 50° 故选:D . 垂径定理5. 【分析】 【解答】【知识点】6. 【分析】 【解答】【知识点】7. 【分析】 【解答】【知识点】【知识点】9.【分析】【解答】 【知识点】的取值范围.根据折叠的性,则根据互余10.【分析】分a>0和a v0两种情况分类讨论即可确定正确的选项.【解答】解:当a>0时,函数y= 的图象位于一、三象限,y=- ax2+a的开口向下,交y轴的正半轴,没有符合的选项,当a v0时,函数丫=旦的图象位于二、四象限,y=- ax2+a的开口向上,交y轴的负半轴,D选项符合;故选:D.【知识点】反比例函数的图象、二次函数的图象二、填空题(共6小题)11. 【分析】根据平行线的性质即可得到结论.【解答】解:I AD // BC,•••/ A+Z B= 180 °,又•••/ A = 110°,• Z B= 70°,故答案为:70 ° .【知识点】平行线的性质12. 【分析】应先提取公因式x,再对余下的多项式利用平方差公式继续分解.【解答】解:xy2- 9x= x (y2- 9)= x (y-3) (y+3).故答案为:x (y- 3) (y+3).【知识点】提公因式法与公式法的综合运用13. 【分析】把x2- 2x+6化成(x- 1) 2+5,即可求出二次函数y= x2- 2x+6的最小值是多少.【解答】解:••• y= x2- 2x+6 =( x- 1) 2+5,•••当x= 1时,二次函数y = x2- 2x+6有最小值5. 故答案为:1、5.【知识点】二次函数的最值14. 【分析】根据Z A的正切求出AC,再利用勾股定理列式计算即可得解.【解答】解:I Rt△ ABC中,Z C= 90°,1515AC8解得AC = 8,根据勾股定理得,AB = Jac'+Ef °= {护+1 5 ' = 17.故答案为:17.【知识点】解直角三角形15. 【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长. L _【解答】解:圆锥的底面周长= 2 nx k*|= 2. ■ ncm,则: 解得l = 3 J 故答案为:3.7【知识点】圆锥的计算①证明△ CDB s\ FDO ,列比例式得:〒弋可得结论正确② 如图2,延长BC 交y 轴于H 证明OAM AB ,则/ AOB 工/ EBG,所以△ OFD BEG不成立;③ 如图3,利用面积差求得: 0CFG = S?OABC - OFC - CBG - S^AFG = 12,根据相似三角 形面积的比等于相似比的平方进行计算并作出判断;④ 根据勾股定理进行计算 OB 的长,根据三等分线段 OB 可得结论.【解答】 解:①:•四边形OABC 是平行四边形,••• BC // OA , BC = OA , •••△ CDBFDO ,•现.EDOB• BC = 2OF , • OA = 2OF , • F 是OA 的中点; 所以①结论正确;② 如图2,延长BC 交y 轴于H , 由 C ( 3 , 4)知:OH = 4 , CH = 3 , • - OC = 5 , • - AB = OC = 5 ,••• A ( 8 , 0),• OA = 8 , • OA M AB , • / AOB ^Z EBG , • △ OFDBEG 不成立, 所以②结论不正确;③ 由①知:F 为OA 的中点, 同理得;G 是AB 的中点, • FG 是厶OAB 的中位线, • FG =〒十” FG // OB ,•/ OB = 3DE ,亍亠再由D 、E 为OB 的三等分点,则丄16.【分析】■BCQF■-DE,DE 2过C作CQ丄AB于Q,S? OABC = OA?OH = AB?CQ,4X 8= 5CQ ,32"5CQ =S^OCF=OF?OH丄4X 4= 8,32IE%?BG?C Q =_X_— &S^ AFG = X 4X2=4,& CFG = S?OABC - S^OFC - CBG - AFG = 8 X 4 - 8 - 8 - 4 = 12,•••DE // FG,3所以③结论正确;④在Rt△ OHB中,由勾股定理得:OB2= BH2+OH2,H C0 F A图予X.OD =」3所以④结论不正确;故本题结论正确的有:①③;故答案为:①③•Y AC________ B图1【知识点】四边形综合题三、解答题(共9小题)17. 【分析】方程组利用加减消元法求出解即可.【解答】解:“小'…,|2x+3y=ll②①X 3 -②得:x= 4, 把x = 4代入①得:y= 1, 则方程组的解为A~'1.I尸1【知识点】解二元一次方程组18. 【分析】根据全等三角形的判定即可求证:△ ADF BCE【解答】解:••• AE = BF ,••• AE+EF = BF + EF,••• AF = BE,在厶ADF与厶BCE中,C AD=BCZA=ZBI AP=BE•••△ ADF◎△ BCE (SAS)【知识点】全等三角形的判定19. 【分析】(1)根据总人数等于各类别人数之和可得E类别学生数;(2)用D类别学生数除以总人数即可得;(3)列举所有等可能结果,根据概率公式求解可得.【解答】解:(1) E类学生有50-( 2+3+22+18 )= 5 (人),补全图形如下:22IS21 n35- AA D E奏別故答案为:5;(3)记0< t w 2内的两人为甲、乙,2v t< 4内的3人记为A、B、C,从中任选两人有:甲乙、甲A、甲B、甲C、乙A、乙B、乙C、AB、AC、BC这10种可能结果,其中2人做义工时间都在2V t w 4中的有AB、AC、BC这3种结果,•••这2人做义工时间都在2V t w 4中的概率为亠.10【知识点】条形统计图、列表法与树状图法20. [分析】(1)根据作已知线段的垂直平分线的方法,即可得到线段AC的垂直平分线DE ;(2)根据Rt△ ADE中,/ A= 30°,,即可求得a的值,最后化简T=( a+1)2- a (a - 1),再求T的值.[解答】解:(1)如图所示,DE即为所求;设DE = x,贝U AD = 2x,•Rt△ ADE 中,x2+ (订3) 2=( 2x) 2, 解得x= 1 ,•△ ADE 的周长a= 1+2+ :■: = 3+.二T =( a+1) 2- a (a - 1)= 3a+1,•••当a= 3+ .「;时,T = 3 (3+. ';) +1 = 10+3 二【知识点】含30度角的直角三角形、作图一基本作图(2) D类学生人数占被调查总人数的故答案为:36;X 100% =36%(2)由题可得,AE2• Rt△ ADE中,DE亠AD,乙队筑路的总公里数;【解答】 解:(2)设乙队平均每天筑路 8x 公里,则甲队平均每天筑路5x 公里,根据甲队比乙队多筑路20天,即可得出关于 x 的分式方程,解之经检验后即可得出结论. (1) 60X-J — 80 (公里).3答:乙队筑路的总公里数为 80公里.(2)设乙队平均每天筑路 8x 公里,则甲队平均每天筑路 5x 公里,根据题意得:-= 20, 解得:x = 0.1,经检验,x = 0.1是原方程的解,8x = 0.8 .答:乙队平均每天筑路 0.8公里.【知识点】分式方程的应用22.【分析】 (1)根据平移的原则得出 m 的值,并计算点 A 的坐标,因为 A 在反比例函数的图象上,代入可以求k 的值;(2 )画出两函数图象,根据交点坐标写出解集.【解答】 解:(1)由平移得:y = 3x+1 - 1 = 3x ,m = 0,当 y = 3 时,3x = 3,x = 1,.A (1, 3),k = 1 x 3 = 3;【知识点】反比例函数与一次函数的交点问题、一次函数图象与几何变换21.【分析】(1)根据甲队筑路 60公里以及乙队筑路总公里数是甲队筑路总公里数的,即可求出2②作 PF 丄 AD 于 F .易知 PF = AP?sin / DAE = AP ,因为点Q 的运动时间t — +'"k=5• y 2= 5x+10.②当 y 1=- x 2 - 2x+8 时,解-x 2- 2x+8 = 0 得 x =- 4或 2,T y 2随着x 的增大而增大,且过点 A (- 1, 5),二y 1与y 2都经过x 轴上的同一点(-4, 0),-k+b=5【知识点】二次函数的性质、一次函数的性质、待定系数法求二次函数解析式、待定系数法求一次函数解 析式CD = 6,可得 DK = 2, CK = 4,在 Rt △ ADK 中,AK =,- |, 「|| 厂=-< !■>= 3,根据sin / DAE =计算即可解决问题;AK(1)根据题意求得顶点 B 的坐标,然后根据顶点公式即可求得 式;(2)分两种情况讨论:当y 1的解析式为y 1=- x 2 - 2x 时,抛物线与x 轴的交点(0, 0) 或(-2, 0), y 2经过(-2, 0)和A ,符合题意; 当y 1=- x 2 - 2x+8时,解-x 2 - 2x+8 = 0求得抛物线与 坐标和y 2随着x 的增大而增大,求得 据待定系数法求得即可.【解答】 解:(1)v 抛物线y 1 = - x 2+mx+ n ,直线A 与y 1的顶点B 的距离是4.••• B (- 1, 1)或(-1, 9),23.【分析】 m 、n ,从而求得y 1的解析x 轴的交点坐标,然后根据 A 的 y 1与y 2都经过x 轴上的同一点(-4, 0),然后根y 2= kx+b , y i 的对称轴与 y 交于点A (- 1, 5),点•— m2X(-1)解得 m = - 2, n = 0 或 8,• y 1的解析式为 y 1 = - x 2 - 2x 或y 1=- x 2 (2)①当y 1的解析式为=-1 ,2x+8;y 1=- x 2 - 2x 时,抛物线与x 轴交点是(0.0)和(-2.0),T y 1的对称轴与y 2交于点A (- 1, 5), •- y 1与y 2都经过x 轴上的同一点(-2, 0), 把(-1 , 5), (- 2, 0)代入得-k+b=5 -2k+b=C24.【分析】 (1)只要证明四边相等即可证明;(2)①设 AE 交 CD 于 K .由 DE // AC , DE = OC = OA ,推出 =亍=一,由 AB =解得(-4, 0)代入得=OP+.-AP = OP + PF ,所以当 0、P 、F 共线时,OP+PF 的值最小,此时 OF 是厶ACD3的中位线,由此即可解决问题.【解答】 (1)证明:•••四边形 ABCD 是矩形.OD = 0B = OC = OA ,•••△ EDC 和厶ODC 关于CD 对称,.DE = DO , CE = CO ,DE = EC = CO = OD ,•••四边形CODE 是菱形.(2)①设AE 交CD 于K . •••四边形CODE 是菱形, • DE // AC , DE = OC = OA ,DKDE =1 KCAC2AB = CD = 6,• DK = 2, CK = 4,在 Rt △ ADK 中,AK ={肿+DK±=J 師)~2?= 3, • sin / DAE =丄=二,AK 3□②作 PF 丄 AD 于 F .易知 PF = AP?sin / DAE =--3•••当O 、P 、F 共线时,OP+PF 的值最小,此时 OF 是厶ACD 的中位线,•当点Q 沿上述路线运动到点A 所需要的时间最短时,AP 的长为一,点Q 走完全程所需的时nEcF山S【知识点】四边形综合题25.【分析】(1)由AB 是O O 的直径知/ ACB = 90°,由 沐=「即AC = BC 可得答案;(2)分/ ABD 为锐角和钝角两种情况, ①作BF 丄l 于点F ,证四边形OBFC 是矩形可 得AB = 2OC= 2BF ,结合 BD = AB 知/ BDF = 30°,再求出/ BDA 和/ DEA 度数可得;AP ,•••点Q 的运动时间t = --k --=OP+S = OP+PF I 3PF =——DK =1,2由(1)知厶AC B 是等腰直角三角形,••• OA = OB = OC ,•••△ BOC 为等腰直角三角形,•/ I 是O O 的切线,• OC 丄 I , 又BF 丄I ,•四边形OBFC 是矩形, • A B = 2OC = 2BF ,•/ BD = A B ,• BD = 2BF , • / BDF = 30 ° ,②同理BF ~BD ,即可知/ BDC = 30 °分别求出/ BEC 、/ ADB 即可得;(3)分D 在C 左侧和点D 在点C 右侧两种情况, 作EI 丄AB ,证厶CAD B AE 得」—BAAE ,可得 BE = 2EI = 2 X ' 2CD1 AEV2,即 AE =:?CD ,结合 EI = 」-BE 、El ==J TAE =I F ::F X *:]」CD = 2CD ,从而得出结论.BC ,AE【解答】 •/ A B 是O O 的直径,•••/ AC B = 90 ° ,•/ AC = BC , •••/ CA B =Z CBA = ^^_ = 45°;(2)①当/A BD 为锐角时,如图2所示,作BF 丄I 于点F ,•/ DBA = 30 °,/ B DA = Z BAD = 75°, •/ C B E=Z C B A -Z D B A = 45°- 30°= 15•/ DEA =Z CE B = 90°-Z C B E = 75°, •Z ADE = Z AED ,•AD = AE;同理可得BF =丄BD,即可知/ BDC = 30°,2•/ OC丄AB、OC丄直线I,••• AB//直线I,•••/ ABD = 150。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017年广东省中考数学试卷
一、选择题(共10小题;共50分)
1. 的相反数是
B.
2.“一带一路”倡议提出三年以来,广东企业到“一带一路”国家投资越来越活跃。
据商务部门发
布的数据显示,2016年广东省对沿线国家的实际投资额超过 4000000000美元,将 4000000000用
科学记数法表示为
A. B. C. D.
3. 已知,则的补角为
A. B. C. D.
4. 如果是方程的一个根,则常数的值为
A. B.
5. 在学校举行“阳光少年,励志青春”的演讲比赛中,五位评委给选手小明的评分分别为:,,
,,,则这组的数据的众数是
A. B. C. D.
6. 下列所述图形中,既是轴对称图形又是中心对称图形的是
A. 等边三角形
B. 平行四边形
C. 正五边形
D. 圆
7. 如图,在同一平面直角坐标系中,直线与双曲线相交于
,两点,已知点的坐标为,则点的坐标为
8. 下列运算正确的是
A. B. C. D.
9. 如图,四边形内接于,,,则的大小为
A. B. C. D.
10. 如图,已知正方形,点是边的中点,与相交于点,连接,下列
结论:①;②;③;④
,其中正确的是
A. ①③
B. ②③
C. ①④
D. ②④
二、填空题(共6小题;共30分)
11. 分解因式:.
12. 一个边形的内角和是,那么.
13. 已知实数,在数轴上的对应点的位置如图所示,则(填“”,“”或“”).
14. 在一个不透明的盒子中,有五个完全相同的小球,把它们分别标号为,,,,.随机摸
出一个小球,摸出的小球标号为偶数的概率是.
15. 已知,则的值为.
16. 如图,矩形纸片中,,,先按图操作,将矩形纸片沿过
点的直线折叠,使点落在边上的点处,折痕为;再按图操作:沿过点的直线折叠,使点落在上的点处,折痕为,则,两点间的距离为.
三、解答题(共9小题;共117分)
17. .
18. 先化简,再求值:,其中.
19. 学校团委组织志愿者到图书馆整理一批新进的图书.若男生每人整理本,女生每人整理
本,共能整理本;若男生每人整理本,女生每人整理本,共能整理本,求男生、女生志愿者各有多少人?
20. 如图,在中,.
(1)作边的垂直平分线,与,分别相交于点,(用尺规作图,保留作图痕迹,不要求写作法);
(2)在()的条件下,连接,若,求的度数.
21. 如图所示,已知四边形,都是菱形,,为锐角.
(1)求证:;
(2)若,求的度数.
22. 某校为了解九年级学生的体重情况,随机抽取了九年级部分学生进行调查,将抽取学生的体重
情况绘制如下不完整的统计图表,如图表所示,请根据图表信息回答下列问题:
体重频数分布表
(1)填空:①(直接写出结果);
②在扇形统计图中,C组所在扇形的圆心角的度数等于度;
(2)如果该校九年级有名学生,请估算九年级体重低于千克的学生大约有多少人?
23. 如图,在平面直角坐标系中,抛物线交轴于,两点,
点是抛物线上在第一象限内的一点,直线与轴相交于点.
(1)求抛物线的解析式;
(2)当点是线段的中点时,求点的坐标;
(3)在()的条件下,求的值.
24. 如图,是的直径,,点为线段上一点(不与,重合),作
,交于点,垂足为点,作直径,过点的切线交的延长线于点,作于点,连接.
(1)求证:是的平分线;
(2)求证:;
(3)当时,求的长度(结果保留).
25. 如图,,在平面直角坐标系中,为原点,四边形是矩形,点,的坐标分别是
和,点是对角线上一动点(不与,重合),连接,作交轴于点,以线段,为邻边作矩形.
(1)填空:点的坐标为;
(2)是否存在这样的点,使得是等腰三角形?若存在,请求出的长度;若不存在,请说明理由;
(3)①求证:;
②设,矩形的面积为,求关于的函数关系式(可利用①的结论),
并求出的最小值.
答案
第一部分
1. D
2. C
3. A
4. B
5. B
6. D
7. A
8. B
9. C
10. C
第二部分
11.
12.
13.
16.
第三部分
17.
18.
当时,.
19. 设男生人,女生人,则有
解得
答:男生有人,女生有人.
20. (1)如图,
(2)如图,
是的垂直平分线,
,
,
是的外角,
.
21. (1)如图,
四边形,是菱形,
.
,
由等腰三角形的三线合一性质可得.(2),
,
是等边三角形,
.
,
,
四边形是菱形,
,
.
22. (1);
(2)(人),
答:估计九年级体重低于千克的学生大约有人.23. (1)把,代入得
解得
所以
(2)过作轴于点,则轴.
为的中点,轴,
为的中点,
的横坐标为
把代入得,
点的坐标为.
(3),
,
,,
,
,
.
24. (1)连接,如图,
为直径,
,
,
,
,
,
为的切线,
,
,
为的直径,
,
,
,
,
,
,即:是的平分线.(2),
,,由()得,
,
在和中,
,
.
(3)延长交于点,如图,
,
设:,,
由()得,
是的角平分线,,
,
.
,,
,,,,
,
,
,即,
,
在中,,
,
,
,
,
,
,
的长度为:.
25. (1)
(2)存在
理由:①如图,若,
,,
.
,
.
,
是等边三角形,.
,
.
②如图,若,
依题意知:,.
,,
.
四边形是矩形,
.
,
.
是等腰三角形,.
③若,
则或(舍去),则,不合题意,故舍去.
综上所述:的值为或者时,为等腰三角形.(3)①如图,过点作于点,于点.
,
.
在和中,
,
.
,,
.
②如图,作于点.
,
,,
,
当时,取得最小值.。