CZ法蓝宝石晶体生长工艺研究
蓝宝石项目晶体生长技术研究报告

蓝宝石项目晶体生长技术研究报告
引用准确,并附有相关图片与数据,由蓝宝石晶体生长研究实验室专
业工作人员为你编写。
一、研究背景
蓝宝石,又称宝石石英,是一种矿物,也是最宝贵的天然宝石之一,
具有抗热、抗紫外线和压磨强度高等优良性能,是展示财富和品位的精品,一直是各类礼物礼品中的新宠。
然而,由于蓝宝石自然产量少,价格昂贵,因此难以满足市场对它的需求。
为此,蓝宝石晶体生长技术应运而生,目前已经逐渐受到业者的重视,为保证生产质量,蓝宝石晶体生长技术也迎来了发展新机遇。
二、实验原理
蓝宝石晶体生长技术是一种由晶面构成的可以按照预先设计的模型来
生长蓝宝石晶体的技术,主要是通过在搅拌溶液中添加二氧化碳等有机物质,使溶液中的成分形成极微量的枝毛状结构,然后利用电磁波原理,在
晶体生长过程中,按照模型的设计顺序形成蓝宝石晶体。
三、实验步骤
(1)首先,我们需要准备一个完整的蓝宝石晶体生长系统,包括可
以通过晶格变化而改变晶面的晶体生长装置、用于调整液体温度的加热装置、用以控制晶面的搅拌装置、用以控制晶体形成的电磁场装置。
一种大尺寸c取向蓝宝石单晶的生长方法[发明专利]
![一种大尺寸c取向蓝宝石单晶的生长方法[发明专利]](https://img.taocdn.com/s3/m/5a5bd3e67cd184254a353531.png)
专利名称:一种大尺寸c取向蓝宝石单晶的生长方法专利类型:发明专利
发明人:许海波,刘海滨,娄中士,姚亮
申请号:CN201310113549.7
申请日:20130402
公开号:CN103215632A
公开日:
20130724
专利内容由知识产权出版社提供
摘要:本发明公开了一种大尺寸c取向蓝宝石单晶的生长方法,包括放置籽晶、装料、抽真空、启动氦气、加热化料、晶体生长、降温退火、检测及处理等步骤;本发明将目前使用的直径260mm坩埚增大至直径285mm坩埚,无需变动原热场,对长晶参数进行优化,投料量从37kg增加至60kg,从而提高了生产效率,降低了成本。
申请人:苏州海铂晶体有限公司
地址:215437 江苏省苏州市太仓市沙溪镇岳王台南路5号
国籍:CN
代理机构:南京苏高专利商标事务所(普通合伙)
代理人:李凤娇
更多信息请下载全文后查看。
蓝宝石项目晶体生长技术研究报告

蓝宝石项目晶体生长技术研究报告蓝宝石是一种非常珍贵且重要的宝石,具有很高的价值和美观度。
为了满足市场需求,并提高蓝宝石的生产效率和质量,不断进行研究和开发新的晶体生长技术。
本报告将介绍蓝宝石项目晶体生长技术的研究进展。
首先,晶体生长技术是指通过控制晶体生长条件,使蓝宝石在合适的环境中快速生长。
目前,常见的蓝宝石晶体生长技术有几种,分别是六角晶体生长法、上升法和束流法。
这些技术在实践中都取得了很好的效果。
第一种技术是六角晶体生长法。
这种方法是在合适的高温和高压条件下,通过溶液中的蓝宝石种子使晶体从上部逐渐生长。
这种方法的优点是可以获得较大尺寸的蓝宝石晶体,同时还能控制其形状和质量。
然而,这种方法的缺点是生长周期较长,且由于生长过程中溶液中杂质的存在,会对晶体的纯度造成一定的影响。
第二种技术是上升法。
这种方法是通过在熔融的混合溶液中加入蓝宝石种子,然后逐渐降低温度使晶体从下部生长。
相对于六角晶体生长法,这种方法的优点是生长周期短,且晶体纯度较高。
然而,这种方法也有其缺点,即在晶体生长过程中易产生内部应力,导致晶体不稳定。
第三种技术是束流法。
这种方法是通过将精细制备的蓝宝石晶体放在真空室中,然后利用电子束照射或离子束轰击的方式促进晶体生长。
这种方法的优点是生长周期较短,同时可以控制晶体的形状和分布。
然而,这种方法的缺点是依赖于高成本的设备和技术,且需要更多的研究和改进。
总结来说,蓝宝石项目晶体生长技术的研究取得了一定的进展。
不同的生长技术各有优缺点,需要根据具体需求选择适合的方法。
未来还需要继续深入研究,提高蓝宝石晶体生长的效率和质量,以满足市场的需求。
采用多参数优化策略的蓝宝石晶体生长研究

采用多参数优化策略的蓝宝石晶体生长研究深入研究采用多参数优化策略的蓝宝石晶体生长方法,对未来的材料研究具有重要意义。
蓝宝石晶体是一种高品质的材料,在光电子学、电子学以及光学领域等方面均有广泛应用,因此,其生长方法的研究是极具价值的。
传统的方法中,只考虑单一参数优化,如二氧化硅浓度、温度等,来控制晶体的生长。
但是这种方式只能获得一定程度的优化效果,难以达到理想的生长效果。
因此,研究采用多参数优化策略的生长方法,可以达到更为优越的结果。
针对蓝宝石晶体生长的研究,需要考虑如下多参数优化策略:结晶温度、结晶速度、溶液浓度、搅拌速度等,这些参数的变化都会对晶体的生长产生影响。
在多参数优化策略中,难题在于确定优化参数的范围。
一个无法确定最优解空间的问题会使得优化更加复杂,需要使用最优解搜索技术,比如重复的检测。
接着,我们需要介绍一种用于蓝宝石晶体生长的多参数优化方法。
这种方法依赖于人工神经网络(ANN)和遗传算法(GA)。
人工神经网络是一种模仿人类神经系统的计算模型,对于控制复杂系统和预测值方面非常有效。
遗传算法则是一种已被广泛运用在寻找最优方案的算法。
运用这种方法,首先确定优化参数的初始值,然后将初始值输入到人工神经网络中进行预测,同时将结果与实验数据进行比较,然后使用遗传算法对预测结果进行调整,不断细化参数范围,直到最终找到最优解。
此方法的优点在于能够在相对短的时间内获得较为准确的结果,同时可以得到多个参数值的优化结果,充分考虑各参数之间的影响,从而得出理想的生长效果。
此外,采用多参数优化策略的蓝宝石晶体生长方法还有其他优点,例如:1. 优化参数调整可在实验室内部条件下实现,不需要昂贵的设备。
2. 可以运用于不同种类的蓝宝石晶体生长,包括Czochralski生长法、液相外延法、气相传输反应法等。
3. 可以得到一个更广泛应用的参数空间,利用参数空间搜索最优解,得到更为理想的晶体质量。
总结来说,多参数优化策略的蓝宝石晶体生长研究是材料科学的一个重要分支,该研究可以为未来光电子学、电子学领域提供高品质的材料,引领材料科学的发展。
蓝宝石晶体生长工艺研究

蓝宝石晶体生长工艺研究【摘要】蓝宝石晶体具有硬度大、熔点高、物理化学性质稳定的特点,是优质光功能材料和氧化物衬底材料,广泛用于电子技术,军事、通信、医学等国防民用, 科学技术等领域。
自19 世纪末, 法国化学家维尔纳叶采用焰熔法获得了蓝宝石晶体后,人工生长蓝宝石工艺不断发展, 除了焰熔法外还有冷坩埚法、泡生法、温度梯度法、提拉法、热交换法、水平结晶法、弧熔法、升华法、导模法、坩埚下降法等。
本文主要对应用较为广泛的焰熔法、提拉法、泡生法、热交换法、导模法、下降法、等生长工艺进行论述。
【关键词】蓝宝石晶体晶体生长工艺研究蓝宝石晶体的化学成分是氧化铝(a -AI2O3 ),熔点高达2050C,沸点3500C,硬度仅次于金刚石为莫氏硬度9,是一种重要的技术晶体。
蓝宝石晶体在光学性能、机械性能和物理化学性质方面表现出了优异性能,因此被各行业广泛应用,同时随着现代科学技术的发展,对蓝宝石晶体的质量要求也不断提升,这就对蓝宝石晶体生长工艺提出了新的挑战。
焰熔法。
确切来讲焰熔法是由弗雷米、弗尔、乌泽在1885 年发明的,后来法国化学家维尔纳叶改进、发展并投入生产使用。
焰熔法是以Al2O3 粉末为原料,置于设备上部,原料在撒落过程中通过氢及氧气在燃烧过程中产生的高温火焰,熔化,继续下落,落在设备下方的籽晶顶端,逐渐生长成晶体。
焰熔法生产设备主要有料筒、锤打机构、筛网、混合室、氢气管、氧气管、炉体、结晶杆、下降机构、旋转平台等组成。
锤打机构使料筒振动,与筛网合作使粉料少量、等量或周期性的下落;氧气与粉末一同下降、氢气与氧气混合燃烧;在炉体设有观察窗口可通过望远镜查看结晶状况,下降机构控制结晶杆的移动,旋转平台为晶体生长平台,下方置以保温炉。
焰熔法具有生长速度快、设备简单、产量大的优点,但是生产出的晶体缺陷较多,适用于对蓝宝石质量要求不高的晶体生产。
提拉法。
提拉法能够顺利地生长某些易挥发的化合物,应用较为广泛。
提拉法工艺:将原料装入坩埚中熔化为熔体,籽晶放入坩埚上方的提拉杆籽晶夹具中,降低提拉杆使籽晶插入熔体中,在合适的温度下籽晶不会熔掉也不会长大,然后转动和提升晶体,当加热功率降低时籽晶就会生长,通过对加热功率的调节和提升杠杆的转动即可使籽晶生长成所需的晶体。
三种长晶方法探讨

CZ,KY,HEM法比較1:柴氏拉晶法(Czochralski method),簡稱CZ法.先將原料加熱至熔點後熔化形成熔湯,再利用一單晶晶種接觸到熔湯表面,在晶種與熔湯的固液介面上因溫度差而形成過冷。
於是熔湯開始在晶種表面凝固並生長和晶種相同晶體結構的單晶。
晶種同時以極緩慢的速度往上拉升,並伴隨以一定的轉速旋轉,隨著晶種的向上拉升,熔湯逐漸凝固於晶種的液固介面上,進而形成一軸對稱的單晶晶錠.2:凱氏長晶法(Kyropoulos method),簡稱KY法,大陸稱之為泡生法.其原理與柴氏拉晶法(Czochralskimethod)類似,先將原料加熱至熔點後熔化形成熔湯,再以單晶之晶種(SeedCrystal,又稱籽晶棒)接觸到熔湯表面,在晶種與熔湯的固液介面上開始生長和晶種相同晶體結構的單晶,晶種以極緩慢的速度往上拉升,但在晶種往上拉晶一段時間以形成晶頸,待熔湯與晶種介面的凝固速率穩定後,晶種便不再拉升,也沒有作旋轉,僅以控制冷卻速率方式來使單晶從上方逐漸往下凝固,最後凝固成一整個單晶晶碇.3.美國Crystal Systems用於生長單晶藍寶石(Sapphire)的熱交換法(Heat exchange method,HEM熱交換法),它的長晶特點是通過氦氣冷卻坩堝的中心底部,保持籽晶不被熔化,並在長晶過程中帶走熱量,控制單晶不斷地生長,HEM法制得的晶體缺陷少且可生產大尺寸晶體以上三種方法是現在各國最常用的,各有各的好處,但已成本來算,基本上能長得大,缺點少就是最佳的,以現在來說HEM法與泡生法在生長尺寸上來說,沒有太大差異,但成本上泡生法較低,而現在CrystalTech HEM法爐體,生長晶體,最大只能到60kg,故二者必須做一抉擇,依本人建議使用泡生法的爐子較佳,至少他目前已經可以長到85kg,且餘料還可做其他應用之銷售,更可降低成本三種方法之成本藍寶石晶體之成本,是需要將各項所發生的項目,累積計算的,但基本上只要生產出所需要的產品量越多,加工及耗材越少,成本就越低,這是不爭的事實,如同MOCVD生長片數少是一樣的,但現在無法計算其成本,只有等操作時,才可詳細計算,至於兆晶與華夏的成本相差很大,是因為 1.華夏晶體長的小而少,切,磨,拋,都必須委外,而兆晶是自己加工且晶棒由鑫晶鑽提供,自然成本低,在加上在加工制程中,不斷的改進成本更可掌握1、蓝宝石详细介绍蓝宝石的组成为氧化铝(Al2O3),是由三个氧原子和两个铝原子以共价键型式结合而成,其晶体结构为六方晶格结构.它常被应用的切面有A-Plane,C-Plane及R-Plane.由于蓝宝石的光学穿透带很宽,从近紫外光(190nm)到中红外线都具有很好的透光性.因此被大量用在光学元件、红外装置、高强度镭射镜片材料及光罩材料上,它具有高声速、耐高温、抗腐蚀、高硬度、高透光性、熔点高(2045℃)等特点,它是一种相当难加工的材料,因此常被用来作为光电元件的材料。
cz生长原理及工艺.doc

CZ生长原理及工艺流程New Roman "> CZ法的基本原理,多晶体硅料经加热熔化,待温度合适后,经过将籽晶浸入、熔接、引晶、放肩、转肩、等径、收尾等步骤,完成一根单晶锭的拉制。
炉内的传热、传质、流体力学、化学反应等过程都直接影响到单晶的生长与生长成的单晶的质量,拉晶过程中可直接控制的参数有温度场、籽晶的晶向、坩埚和生长成的单晶的旋转与升降速率,炉内保护气体的种类、流向、流速、压力等。
CZ法生长的具体工艺过程包括装料与熔料、熔接、细颈、放肩、转肩、等径生长和收尾这样几个阶段。
1.装料、熔料装料、熔料阶段是CZ生长过程的第一个阶段,这一阶段看起来似乎很简单,但是这一阶段操作正确与否往往关系到生长过程的成败。
大多数造成重大损失的事故(如坩埚破裂)都发生在或起源于这一·阶段。
2.籽晶与熔硅的熔接当硅料全部熔化后,调整加热功率以控制熔体的温度。
一般情况下,有两个传感器分别监测熔体表面和加热器保温罩石墨圆筒的温度,在热场和拉晶工艺改变不大的情况下,上一炉的温度读数可作为参考来设定引晶温度。
按工艺要求调整气体的流量、压力、坩埚位置、晶转、埚转。
硅料全部熔化后熔体必须有一定的稳定时间达到熔体温度和熔体的流动的稳定。
装料量越大,则所需时间越长。
待熔体稳定后,降下籽晶至离液面3~5mm距离,使粒晶预热,以减少籽经与熔硅的温度差,从而减少籽晶与熔硅接触时在籽晶中产生的热应力。
预热后,下降籽晶至熔体的表面,让它们充分接触,这一过程称为熔接。
在熔接过程中要注意观察所发生的现象来判断熔硅表面的温度是否合适,在合适的温度下,熔接后在界面处会逐渐产生由固液气三相交接处的弯月面所导致的光环(通常称为“光圈”),并逐渐由光环的一部分变成完整的圆形光环,温度过高会使籽晶熔断,温度过低,将不会出现弯月面光环,甚至长出多晶。
熟练的操作人员,能根据弯月面光环的宽度及明亮程度来判断熔体的温度是否合适。
3.引细颈虽然籽晶都是采用无位错硅单晶制备的[16~19],但是当籽晶插入熔体时,由于受到籽晶与熔硅的温度差所造成的热应力和表面张力的作用会产生位错。
最全的材料晶体生长工艺汇总

最全的材料晶体生长工艺汇总提拉法提拉法又称直拉法,丘克拉斯基(Czochralski)法,简称CZ法。
它是一种直接从熔体中拉制出晶体的生长技术。
用提拉法能够生长无色蓝宝石、红宝石、钇铝榴石、钆镓榴石、变石和尖晶石等多种重要的人工宝石晶体。
提拉法的原理:首先将待生长的晶体的原料放在耐高温的坩埚中加热熔化,调整炉内温度场,使熔体上部处于过冷状态;然后在籽晶杆上安放一粒籽晶,让籽晶下降至接触熔体表面,待籽晶表面稍熔后,提拉并转动籽晶杆,使熔体处于过冷状态而结晶于籽晶上,并在不断提拉和旋转过程中,最终生长出圆柱状的大块单晶体。
提拉法的工艺步骤可以分为原料熔化、引晶、颈缩、放肩、等径生长、收尾等几个阶段。
具体过程如示意图。
提拉法晶体生长工艺有两大应用难点:一是温度场的设置和优化;二是熔体的流动和缺陷分析。
下图为提拉法基本的温度场设置以及五种基本的熔体对流模式。
在复杂的工艺条件下,实际生产需要调整的参数很多,例如坩埚和晶体的旋转速率,提拉速率等。
因此实际中熔体的温度场和流动模式也更复杂。
下图是不同的坩埚和晶体旋转速率下产生的复杂流动示意图。
这两大应用难点对晶体生长的质量和效率都有很大影响,是应用和科研领域中最关心的两个问题。
通常情况下为了减弱熔体对流,人为地引入外部磁场是一种有效办法,利用导电流体在磁场中感生的洛伦兹力可以抑制熔体的对流。
常用的磁场有横向磁场、尖端磁场等。
下图是几种不同的引入磁场类型示意图。
引入磁场可以在一定程度上减弱对流,但同时磁场的引入也加大了仿真模拟的难度,使得生长质量预测变的更难,因此需要专业的晶体生长软件才能提供可靠的仿真数据。
晶体提拉法有以下优点:(1)在晶体生长过程中可以直接进行测试与观察,有利于控制生长条件;(2)使用优质定向籽晶和“缩颈”技术,可减少晶体缺陷,获得优质取向的单晶;(3)晶体生长速度较快;(4)晶体光学均一性高。
晶体提拉法的不足之处在于:(1)坩埚材料对晶体可能产生污染;(2)熔体的液流作用、传动装置的振动和温度的波动都会对晶体的质量产生影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
200mm 蓝宝石晶体生长工艺研究-CZ 法
晶体生长工艺主要分为引晶、缩颈、放肩、晶体生长、退火、冷却四个过程。
晶体生长过程中均匀缓慢的提拉晶体 ,晶体不与坩埚壁接触 ,避免了晶体生长过程中的寄生成核。
实验分析与讨论
实验发现晶体有开裂及线形的散射颗粒。
晶体开裂取决于温度梯度、生长速率等生长工艺参数 ;线形散射颗粒则取决于温场、功率控制及炉膛的洁净度等工艺条件。
3. 1 生长速率对晶体开裂的影响
根据界面稳定条件
分别为界面附近熔体和晶体中的温度梯度
, Kl,ks 分别为熔体和晶体的热导率 , L 为结晶潜热 ,ρ为晶体密度。
从 (3)中可以看出晶体的最大生长速率取决于晶体中温度梯度的大小 ,要提高晶体的生长速率 ,必须加大晶体中的温度梯度 ,但是 ,晶体中温度梯度太大 ,将会增加热应力 ,引起位错密度增加 ,甚至导致晶体开裂。
考虑热效应对晶体开裂的影响 ,这时允许的最大热应力为 (1)
(2)
从 (3)、(4)式中可以看出 :晶体中允许的最大热应力 (或热应变 )与生长极限速率成正比。
故 ,为得到高质量完整的晶体 ,通常生长速率低于极限生长速率。
否则 ,由于晶体生长速率过快 ,将会引起高的热应力 ,引起位错密度增加 ,晶体结构完整性变差 ,导致晶体开裂。
另一方面我们可以看出 ,实际上在保证晶体中温度梯度稳定的条件下 ,适当减少熔体中的轴向温度梯度也可以增大晶体生长速率。
蓝宝石晶体具有较大的导热系数 ,在适当的较小的轴向温度梯度温场以及在保证径向温度合理的条件下 ,更有利于凸生长界面的形成 ,也就相对提高了晶体生长速率。
本实验 ,在生长 A l2O3晶体的过程中 ,采取分段生长晶体 ,以保持恒定的结晶速率与
晶体等径。
生长速率为 2. 5~3. 0mm /h,此速率对 A l2O3晶体开裂基本上没有影响。
3. 2 热效应对晶体开裂的影响
在晶体生长过程中 ,由于温场不合理 ,温度梯度过大 ,冷却速率过快等都会使晶体产生热应力 ,产生相对形变 ,造成晶体开裂。
3. 2. 1 生长无开裂晶体所允许的最大轴向温度梯度当εmax <εb (εb 晶体破裂应变 ), 由 (4)式可求出生长无开裂晶体所允许的最大轴向温度梯度 :
J. C. Brice 曾提出 [5] :晶体中可接受的最大轴向温度梯度 :
α为热膨胀系数 , R 为晶体半径 ,热交换系数 h =ε/Ks,ε是晶体温度高于环境温度 1℃时晶体单位面积的热损耗率。
(5)、(6)两式尽管有差别 ,但不妨碍我们得出如下结论 :即为了防止晶体开裂 ,必须减少轴向温度梯度 ,而且晶体半径愈大 ,允许的梯度就愈小。
由此可见晶体热应力、热应变及表面上最大张应变基本上与液面附近晶体径向与轴向温度梯度近似的成正比关系。
因此为防止晶体开裂必须减少晶体中的温度梯度。
本实验中 ,采用隔热式后热器有效的减少了晶体中轴向与径向温度梯度 ,避免了晶体中因温度梯度过大而造成的晶体开裂。
(5)
(6)
(4)
3. 2. 2冷却速率对晶体开裂的影响晶体冷却过程中,如果冷却速率过快,晶体将产生热应力,最后导致晶体开裂, J. C. B rice指出[3] ,半径为R的圆柱晶体在冷却过程中,最大冷却速率为:
K为热扩散系数,ε为对流热交换系数。
实验中发现:平均降温速率在15℃/h范围内不会对晶体开裂产生影响。
3. 3其他物质条件的影响
3. 3. 1生长设备的精密性生长界面的移动(或转动)需要有特定的机械传动装置,如不能提供均匀的机械运动或使界面产生振动,那么将引起晶体生长率的不稳定。
晶体生长时需保持界面温度的稳定,如果控制系统的精度较差,那么由于加热功率和散热功率的波动,将使界面温度产生波动,从而引起晶体生长率的波动。
3. 3. 2籽晶好的籽晶是生长优质晶体的关键。
籽晶质量不好,那么籽晶中的继承性缺陷(如位错、晶界等),将极可能被引入晶体中。
采用优质定向籽晶,缩颈工艺,很大程度上能够减少晶体中的缺陷。
本实验中,我们采用精密的机械传动、功率控制系统,严格控制工艺过程中的每一个细小的环节,以尽量减少生长环境对熔体的污染,使用适当取向高度完整的籽晶以及合适的引晶工艺,以较快的生长率长出了高质量的A l2O3晶体。
4结论
本实验中,我们讨论了晶体中的热应力、热应变与温度梯度、拉速,冷却速率间的关系。
根据这些关系,我们分析了A l2O3晶体开裂主要与温度梯度、冷却速率及生长速率有关;另一方面,线形的散射颗粒则与功率控制、温度梯度、生长气氛等条件有关。
根据以上关系,我们设计出生长大直径A l2O3单晶体的最佳工艺条件:弱氧化性晶体生长气氛以及合理的温度梯度分布。
通过多次实验,我们解决了晶体开裂的问题,缩短了生长周期,成功的生长出了
<200mm ×180mm的优质A l2O3单晶体。
经中国计量科学研究院光学处测试,透过率(σ= 2mm )在250~5000nm之间可以达到80%以上, 300nm起超过83%。