理论力学公式 (1) 2
理论力学复习

一.静力学公理
公理1 二力平衡公理
作用于刚体上的两个力,使刚体平衡的必要与充分条件是:
这两个力大小相等、方向相反、作用线共线,作用于同一
个物体上。 (简称等值、反向、共线) 注意: F1 F2
F 1 F 2
注意:①对刚体来说,上面的条件是充要的
②对变形体来说,上面的条件只是必要条件(或多体中)
③二力构件:只在两个力作用下平衡的刚体叫二力构件 (二力体)
二.力的投影和力的分力的区别
力的投影和力的分力是两个不同的概念,不得混淆: (1)力在轴上的投影是代数量,由力的投影X、Y、Z只能 求出力的大小和方向,不能确定其作用点的位置;而力的分
力是矢量,由力的分力完全可以确定力的大小和方向及作用
点的位置。 (2)力的投影是向轴作垂线而得,力的分力则是利用平行 四边形法则而得。在笛卡尔坐标系中关系式
约束物体绕固定端在该平面内转动,如
图悬臂梁所示。
阻碍被约束物体移动的约束力为两
个正交的分力,阻碍被约束物体转动的 为反力偶。 故平面固定端的约束反力又三个 。
§1-5 物体的受力分析和受力图
1.分离体(或脱离体):从周围物体中单独分离出来的研究 对象。 2.受力图:表示研究对象(既脱离体)所受全部力的图形。 主动力一般是先给定的,约束力则需要根据约束的性质来判 断。 3.画物体受力图主要步骤为: (1) 根据题意选取研究对象,并用尽可能简明的轮廓把它 单独画出,即解除约束、取分离体。 (2)在脱离体上画主动力。要画上其所受的全部的主动力,不 能漏掉,也不能把不是作用在该分离体上的力画在该分离体 上。主动力的作用点(线)和方向不能任意改变。
F
O
d
Fz
理论力学公式知识点总结

理论力学公式知识点总结牛顿第一定律:一个物体如果受力为零,那么它要么静止,要么匀速直线运动。
即物体的运动状态不变,或者说物体维持原来的状态不变。
数学表示为\[ \mathbf{F} = 0 \Longrightarrow \frac{d\mathbf{v}}{dt} = 0 \]牛顿第二定律:一个物体受到的力等于它的质量乘以它的加速度。
即\[ \mathbf{F} = m\mathbf{a} \]其中,\(\mathbf{F}\)表示物体受到的合力,\(m\)表示物体的质量,\(\mathbf{a}\)表示物体的加速度。
牛顿第三定律:作用力与反作用力大小相等,方向相反,且作用于不同的物体上。
即\[ \mathbf{F}_{12} = -\mathbf{F}_{21} \]其中,\(\mathbf{F}_{12}\)表示物体1对物体2的作用力,\(\mathbf{F}_{21}\)表示物体2对物体1的反作用力。
力的合成与分解:当一个物体受到多个力的作用时,这些力可合成为一个合力,合力的方向和大小可以通过几何法或者三角法计算得出。
反之,一个力可以分解为多个分力,分力的方向和大小也可以通过几何法或者三角法计算得出。
动量定理:当一个物体受到外力时,它的动量会发生变化。
动量定理可以表示为\[ \mathbf{F} = \frac{d\mathbf{p}}{dt} \]其中,\(\mathbf{F}\)表示外力,\(\mathbf{p}\)表示物体的动量。
冲量:当外力作用时间很短,物体的动量变化可以用冲量来表示。
冲量的大小等于外力在时间上的积分,即\[ \mathbf{I} = \int \mathbf{F} dt \]其中,\(\mathbf{I}\)表示冲量。
角动量:一个物体绕着轴线运动时,它具有角动量。
角动量的大小等于物体的质量乘以它的速度和距离轴线的距离的乘积,即\[ L = r \times p \]其中,\(L\)表示角动量,\(r\)表示物体距离轴线的距离,\(p\)表示物体的动量。
理论力学——运动学

v2
n
加速度a的大小:
a
aτ + a n
2
2
dv 2 v 2 2 ( ) ( ) dt
加速度和主法线所夹的锐角的正切:
tan
aτ an
4、直角坐标于自然坐标之间的关系:
ds 2 dx 2 dy 2 dz 2 v ( ) ( ) ( ) ( ) dt dt dt dt
2
2
九、刚体的基本运动
1、刚体的平动
(1)刚体平动的定义 刚体运动时,若其上任一直线始终保持与它的初始
位置平行,则称刚体作平行移动,简称为平动或移动 。 (2) 平动刚体的运动特点
刚体平动时,其上各点的轨迹形状相同;同一瞬时,
各点的速度相同,加速度也相同。
刚体平动判别:P169题三图,P176题五图,题七图
点加的速度
i + y j + z k vx
a vx i + v y j + vz k xi + yj + zk
ax v x x ay v y y az v z z
3、自然法
用自然法描述的运动方程:
s பைடு நூலகம் f (t )
a 2 a x a y a z a an
1
2
2
2
2
2
a 2 a v2
2
5、匀速、匀变速公式
(1)
aτ=常数,
v v0 aτ t
( 2)v=常数,
1 2 s s0 v0t aτ t 2 2 v 2 v0 2a ( s s0 )
平面运动。
理论力学复习资料

力学复习选择:力系简化最后结果(平面,空间)牵连运动概念(运动参考系运动,牵连点运动) 平面运动刚体上的点的运动平面运动的动能计算(对瞬心,及柯里西算法) 质心运动定理(投影法x ,y ,z ,轨迹)惯性力系想一点简化计算:刚体系统平衡计算(多次取分能力体,一般为2次) 平面运动 速度的综合计算 动能定理应用动静法(其他方法不得分),已知运动求力(先用动能(动量)定理求运动,在用动静法求力)注意:1.功的单位是m WN ------∙2.注意检验fs N F f F ≤∙,判断是否是静摩擦,当为临界状态时max f s s N F F f F ==∙,纯滚动为静摩擦S F ,且只能根据平衡方程解出,与正压力无关。
动摩擦f NF f F =∙。
3. 动静法中惯性力简化()=-IC i i CIC c IC c F m a c F ma c M J α⎧⎫=-⎨⎬⎩⎭⎧⎫⎪⎪⇒⎨⎬=------⎪⎪⎩⎭∑质心过点到底惯性力绕点的惯性力偶二维刚体4.e c i i F ma m a ==∑∑, 22d ,d i i cc c m r r r a m t==∑eF ∑=0,则x v =常数=0(初始静止)则c x =常数=坐标系中所在位置,且c S 为直线。
(一直运动求力)5.平面运动刚体动能*222121122c c c J T mv J ωω⎧⎫⎪⎪⎪⎪=⎨⎬⎪⎪+⎪⎪⎩⎭瞬心法:柯里希法: 6.平面运动速度分析方法:a,基点法:,BA BA BA v v v v AB ω=+=,以Bv为对角线的平行四边形b,速度投影法:cos cos B B A A v v θθ=,,B A θθ是以AB 为基准。
c,速度瞬心法:***,*,0,0AB c c v v BC v a ACωω==∙=≠ 7.平面运动加速度分析:A.基点法:nB A BA BA a a a a τ=++,其中,多数情况下n A A A a a a τ=+,n B B B a a a τ=+注:当牵连运动为转动时,有科氏加速度k a ,2kr av ω=⨯大小:2kr a v ω=,方向:r v 向ω方向转90即可。
理论力学公式范文

理论力学公式范文理论力学是物理学的一个重要分支,研究物体运动的规律。
其核心是用数学方法描述物体受力和运动的关系,从而推导出力学公式。
下面将介绍几个重要的理论力学公式。
1. 牛顿第二定律:F = ma牛顿第二定律是理论力学的基础公式之一,描述了物体受力和加速度之间的关系。
它说明了一个物体所受合力与其质量乘以加速度之间的关系。
在这个公式中,F代表合力,m代表物体质量,a代表物体的加速度。
2.动能定理:W=ΔK动能定理描述了物体动能的变化与力做功之间的关系。
根据这个定理,物体动能的增量等于力对物体所做的功。
其中,W为力所做的功,ΔK为物体动能的变化量。
3.动量定理:FΔt=Δp动量定理描述了力的作用使物体动量发生变化的关系。
它表明力与物体作用时间的乘积等于物体动量的变化量。
其中,F为力的大小,Δt为力的作用时间,Δp为物体动量的变化量。
4. 弹性势能:U = 1/2kx^2弹性势能描述了弹性体由于变形而具有的储存能量。
对于弹性体来说,当其形状发生变化时,会具有恢复力,并且会储存一定的能量,这部分能量就是弹性势能。
其中,U为弹性势能,k为弹簧劲度系数,x为弹性体的变形量。
5.万有引力定律:F=G*(m1*m2)/r^2万有引力定律是描述两个物体之间引力作用的公式。
根据这个定律,两个物体之间的引力与它们的质量成正比,与它们之间的距离的平方成反比。
其中,F为引力的大小,G为万有引力常数,m1和m2为两个物体的质量,r为它们之间的距离。
以上是几个重要的理论力学公式,它们是理论力学研究的基础,被广泛应用于科学研究和工程实践中。
通过这些公式,我们可以准确地描述和解释物体运动的规律,进而预测和控制各种物理现象。
理论力学公式

理论力学公式理论力学是物理学中重要的分支之一,它研究的是物质运动的规律以及力对物体运动的影响。
在理论力学中有很多重要的公式,下面将介绍一些较为常用的公式。
1.速度与位移的关系:速度(v)是一个物体在单位时间内所经过的位移(s)的变化率。
速度的公式可以表示为:v = ds/dt其中,v代表速度,s代表位移,t代表时间。
这个公式表明,速度等于位移的导数。
2.加速度和速度的关系:加速度(a)是一个物体在单位时间内速度(v)的变化率。
加速度的公式可以表示为:a = dv/dt其中,a代表加速度,v代表速度,t代表时间。
这个公式表明,加速度等于速度的导数。
3.牛顿第二定律:牛顿第二定律描述了力对物体运动的影响。
牛顿第二定律可以表示为:F = ma其中,F代表力,m代表物体的质量,a代表物体的加速度。
这个公式表明,物体受到的力等于其质量乘以加速度。
4.动能和功的关系:动能(K)是物体运动时所具有的能量。
根据定义,动能等于物体的质量乘以速度的平方的一半,即:K = (1/2)mv^2其中,K代表动能,m代表物体的质量,v代表物体的速度。
功(W)则描述了力对物体运动所做的功。
功的公式可以表示为:W = F·s·cosθ其中,W代表功,F代表力,s代表位移,θ代表力在位移方向上与位移的夹角。
这个公式表明,功等于力乘以位移乘以力在位移方向上的投影。
5.势能和力的关系:势能(U)是力学系统中保持的一种能量形式。
势能的公式可以表示为:U = -∫F·ds其中,U代表势能,F代表力,s代表位移。
这个公式表明,势能等于力对位移的负积分。
6.角动量和力矩的关系:角动量(L)是一个物体围绕一些点旋转时所具有的动量。
L=r×p其中,L代表角动量,r代表与旋转点的矢量距离,p代表物体的动量。
这个公式表明,角动量等于与旋转点的矢量距离与动量的叉乘。
力矩(τ)则描述了力对物体旋转的影响。
力矩的公式可以表示为:τ=r×F其中,τ代表力矩,r代表与旋转点的矢量距离,F代表力。
大学物理基本公式(二)2024

大学物理基本公式(二)引言概述:大学物理中,物理基本公式是学习和应用物理学概念和原理的基础。
本文将重点介绍大学物理中的一些基本公式(二),包括力学、电磁学和波动光学等领域的公式。
通过学习这些公式,能够更好地理解和应用物理学知识。
正文:1. 力学公式:1.1 牛顿第二定律: F = ma,描述物体在外力作用下的加速度。
1.2 动能公式: E_k = (1/2)mv^2,计算物体的动能。
1.3 势能公式: Ep = mgh,计算物体在重力场中的势能。
1.4 动量公式: p = mv,描述物体的动量。
1.5 万有引力定律: F = G(m1m2/r^2),计算两个物体之间的引力。
2. 电磁学公式:2.1 库仑定律: F = k(q1q2/r^2),描述两个电荷之间的作用力。
2.2 电场强度公式: E = F/q,描述电荷在电场中所受的力。
2.3 电压公式: V = IR,描述电流通过导体时的电势差。
2.4 磁场强度公式: B = µ0(I/2πr),计算在电流通过导线时的磁场强度。
2.5 磁感应强度公式: B = µ0N/lI,计算螺线管中的磁感应强度。
3. 波动光学公式:3.1 光速公式: c = λν,描述光的传播速度。
3.2 折射定律: n1sinθ1 = n2sinθ2,描述光在两种介质中的折射现象。
3.3 成像公式: 1/f = 1/v + 1/u,计算透镜成像的距离。
3.4 焦距公式: f = R/2,计算球面镜的焦距。
3.5 干涉公式: Δd = mλ,描述两束光相干干涉时的光程差。
4. 其他公式:4.1 热力学公式: Q = mcΔT,计算物体的热量变化。
4.2 波函数公式: Ψ(x,t) = A sin(kx - ωt + φ),描述波动的波函数。
4.3 相对论能量公式: E = mc^2,描述物体的能量与质量之间的关系。
4.4 等离子体频率公式: ω^2 = (e^2n)/(ε0m),计算等离子体中的电磁波频率。
理论力学课后答案

理论力学课后答案理论力学是力学的基础学科,它主要研究物体的运动与力的关系。
通过学习理论力学,我们可以深入了解物体在不同力的作用下的运动规律,掌握解题方法和技巧。
下面就是一些常见的理论力学问题的答案,希望能对大家的学习有所帮助。
1. 一个质点在匀速直线运动中,如果在t=0时刻位置为x0,速度为v0,则它的位置公式为x = x0 + v0t。
2. 一个质点在匀加速直线运动中,如果在t=0时刻位置为x0,速度为v0,则它的位置公式为x = x0 + v0t + (1/2)at^2。
3. 一个质点在竖直上抛运动中,如果在t=0时刻位置为x0,速度为v0,则它的位置公式为x = x0 + v0t - (1/2)gt^2,其中g为重力加速度。
4. 一个质点做匀速圆周运动,它的速度大小保持不变,但方向不断变化。
当向圆心的向心力为F时,质点的加速度大小为a = v^2 / R,其中v为质点的速度大小,R为圆的半径。
5. 动能定理:物体的动能变化等于物体所受的净功,即ΔK = W,其中ΔK为动能变化量,W为物体所受的净功。
6. 动量定理:物体的动量变化等于物体所受的净冲量,即Δp = FΔt,其中Δp为动量变化量,F为物体受到的净力,Δt为作用时间。
7. 万有引力定律:两个质点之间的引力大小与它们的质量成正比,与它们之间的距离平方成反比。
引力的大小由F = G(m1m2 /r^2)给出,其中F为引力的大小,G为引力常数,m1和m2分别为两个质点的质量,r为两个质点之间的距离。
以上是一些常见的理论力学问题的答案,它们涉及了匀速直线运动、匀加速直线运动、竖直上抛运动、匀速圆周运动、动能定理、动量定理和万有引力定律等内容。
通过学习和掌握这些知识,我们可以更好地理解和解决理论力学的问题。
理论力学是物理学的基础,它不仅在学术研究中有广泛应用,也在工程技术领域中发挥着重要作用。
通过深入研究理论力学,我们可以更好地理解物体的运动规律,为工程设计和科学研究提供有力的理论支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
理论力学公式
运动学公式
定轴转动刚体上一点的速度和加速度:(角量与线量的关系)
1.点的运动
矢量法 2
2 , , )(dt
r
d dt v d a dt r d v t r r ==== 直角坐标法
)
()()(321t f z t f y t f x ==
=z
v y v x v z y x ===z
a y a x
a z y x === 点的合成运动
r
e a v v v +=r e a a a a +=(牵连运动为平动时)
k r e a a a a a ++=(牵连运动为转动时)
其中, )
,sin(2 , 2r e r e k r e k v v a v a ωωω=⨯=2
2 , , )(dt
d dt d dt d t f ϕ
ωεϕωϕ====
三.运动学解题步骤.技巧及注意的问题
1.分析题中运动系统的特点及系统中点或刚体的运动形式。
2.弄清已知量和待求量。
3.选择合适的方法建立运动学关系求解。
各种方法的步骤,技巧和使用中注意的问题详见每次习题课中的总结。
动力学公式
1. 动量定理
质点系动量定理的微分形式,即质点系动量的增量等于作用于质点系的外力元冲量
的矢量和;或质点系动量对时间的导数等于作用于质点系的外力的矢量和.
质心运动定理
ω
R v =ε
τR a =2
ωR a n =全加速度:
),(ε=
n a
tg 轮系的传动比:
n n n n i Z Z R R n n i ωωωω
ωωωωωω13221111221212112 ,-⋅⋅⋅⋅======
ω
ω , ⋅=+=AB v v v v BA BA A B 为图形角速度
ετ
⋅=AB a BA 2
ω
⋅=AB a
n BA
ω,ε分别为图形的角速度,角加速度
n
BA
BA A B a a a a ++=τ()
d d
e i
p
F t
=∑
M a c = ∑F ≡ R
2. 动量矩定理:
平行移轴定理
刚体平面运动微分方程
三.动能定理
平面运动刚体的动能:
四. 达朗伯原理
对整个质点系,主动力系、约束反力系、惯性力系形式上构成平衡力系。
这就是质点系的达朗伯原理。
可用方程表示为:
用动静法求解动力学问题时,对平面任意力系,刚体平面运动可分解为
随基点(质点C )的平动:
绕通过质心轴的转动:
质点系相对质心的动量矩定理
∑==)
()( )(e C e i C r C M F m dt
L d ∑=-W
T T 12质点系动能定理的积分形式
)()()(0
=++=++∑∑∑∑∑∑i O
i
O
i
O
i
i
i
Q m
N m F m Q N F ∑==)
()()(e O e i O O M F m dt L d 一质点系对固定点的动量矩定理
)
(2
2)
( e z
z e z
z M dt d I M I ==∴ϕε或—刚体定轴转动微分方程
222222
1 21)(2121ωωωC C C I v M d M I +=+=T C
Q a M R -=ε
C QC I M -=2
'md I I zC z +=∑∑==
∴)
( , )
(e C
C
C F
m I F a m ε
根据动静法,有
虚位移原理
在某瞬时,质点系在约束允许的条件下,可能实现的任何无限小的位移称为虚位移 .
力在虚位移中作的功称虚功.
对于具有理想约束的质点系,其平衡的充分必要条件是:作用于质点系的所有主动力在任何虚位移中所作的虚功的和等于零.
材料力学常用公式
1.
外力偶矩计算公式 (P 功率,n 转速)
2. 弯矩、剪力和荷载集度之间的关系式
3. 轴向拉压杆横截面上正应力的计算公式
(杆件横截面轴力F N ,横截面面积A ,拉应力为正)
4. 轴向拉压杆斜截面上的正应力与切应力计算公式(夹角a 从x
轴正方向逆时针转至外法线的方位角为正)
即
∑=⋅0
i i r F δ虚位移 ϕ
δδδ,,x r
等 实位移
d ,d ,d r x ϕ
等
(3)
02/cos , 0)((2) 0sin , 0(1) 0cos , 0000
=-⋅==+-==-+=∑∑∑QA
A n
Q n
A n Q
A
M l m g F m R m g R F R m g R F ϕϕϕτ
τ
τr
F W δδ⋅=
5.纵向变形和横向变形(拉伸前试样标距l,拉伸后试样标距l1;拉伸前试样直径d,拉伸后试样直径d1)
6.纵向线应变和横向线应变
7.泊松比
8.胡克定律
9.受多个力作用的杆件纵向变形计算公式?
10.承受轴向分布力或变截面的杆件,纵向变形计算公式
11.轴向拉压杆的强度计算公式
12.许用应力,脆性材料,塑性材料
13.延伸率
14.截面收缩率
15.剪切胡克定律(切变模量G,切应变g )
16.拉压弹性模量E、泊松比和切变模量G之间关系式
17.圆截面对圆心的极惯性矩(a)实心圆
(b)空心圆
18.圆轴扭转时横截面上任一点切应力计算公式(扭矩T,所求点到圆心距离r)
19.圆截面周边各点处最大切应力计算公式
20.扭转截面系数,(a)实心圆
(b)空心圆
21.薄壁圆管(壁厚δ≤ R0 /10 ,R0为圆管的平均半径)扭转切应力计算公式
22.圆轴扭转角与扭矩T、杆长l、扭转刚度GH p的关系式
23.同一材料制成的圆轴各段内的扭矩不同或各段的直径不同(如阶梯轴)时或
24.等直圆轴强度条件
25.塑性材料;脆性材料
26.扭转圆轴的刚度条件? 或
27.受内压圆筒形薄壁容器横截面和纵截面上的应力计算公式,
28.平面应力状态下斜截面应力的一般公式
,
29.平面应力状态的三个主应力,
,
30.主平面方位的计算公式
31.面内最大切应力
32.受扭圆轴表面某点的三个主应力,,
33.三向应力状态最大与最小正应力 ,
34.三向应力状态最大切应力
35.广义胡克定律
36.四种强度理论的相当应力
37.一种常见的应力状态的强度条件,
38.组合图形的形心坐标计算公式,
39.任意截面图形对一点的极惯性矩与以该点为原点的任意两正交坐标轴的惯性矩之和的关系式
40.截面图形对轴z和轴y的惯性半径? ,
41.平行移轴公式(形心轴z c与平行轴z1的距离为a,图形面积为A)
42.纯弯曲梁的正应力计算公式
43.横力弯曲最大正应力计算公式
44.矩形、圆形、空心圆形的弯曲截面系数? ,,
45.几种常见截面的最大弯曲切应力计算公式(为中性轴一侧的横截面对中性轴z的静矩,b为横截面在中性轴处的宽
度)
46.矩形截面梁最大弯曲切应力发生在中性轴处
47.工字形截面梁腹板上的弯曲切应力近似公式
48.轧制工字钢梁最大弯曲切应力计算公式
49.圆形截面梁最大弯曲切应力发生在中性轴处
50.圆环形薄壁截面梁最大弯曲切应力发生在中性轴处
51.弯曲正应力强度条件
52.几种常见截面梁的弯曲切应力强度条件
53.弯曲梁危险点上既有正应力σ又有切应力τ作用时的强度条件或
,
54.梁的挠曲线近似微分方程
55.梁的转角方程
56.梁的挠曲线方程?
57.轴向荷载与横向均布荷载联合作用时杆件截面底部边缘和顶部边缘处的正应力计算公式
58.偏心拉伸(压缩)
59.弯扭组合变形时圆截面杆按第三和第四强度理论建立的强度条件表达式,
60.圆截面杆横截面上有两个弯矩和同时作用时,合成弯矩为
61.圆截面杆横截面上有两个弯矩和同时作用时强度计算公式
62.
63.弯拉扭或弯压扭组合作用时强度计算公式
64.剪切实用计算的强度条件
65.挤压实用计算的强度条件
66.等截面细长压杆在四种杆端约束情况下的临界力计算公式
67.压杆的约束条件:(a)两端铰支μ=l
(b)一端固定、一端自由μ=2
(c)一端固定、一端铰支μ=0.7
(d)两端固定μ=0.5
68.压杆的长细比或柔度计算公式,
69.细长压杆临界应力的欧拉公式
70.欧拉公式的适用范围
71.压杆稳定性计算的安全系数法
72.压杆稳定性计算的折减系数法。