激光技术简介及发展历程介绍

合集下载

我国激光的发展历程

我国激光的发展历程

我国激光的发展历程
激光技术在我国的发展可以追溯到上世纪60年代。

当时,我
国科学家开始研究激光技术,并在1961年实现了我国第一台
激光器的研制。

此后,我国的激光研究逐渐得到发展,取得了一系列重要成果。

上世纪70年代,我国开始大规模开展激光材料的研究和制备。

在激光材料方面,我国科学家成功合成了一系列激光材料,如纯晶体激光材料、掺杂激光材料等,为我国激光器的发展奠定了坚实的基础。

上世纪80年代,我国激光技术进入了一个全面发展的阶段。

不仅在激光器的制造方面取得了重要进展,还在激光在科学研究、医疗、通信等领域的应用上取得了重要突破。

1981年,
我国首次实现了高功率连续波CO2激光器的自主研制成功,
填补了我国在该领域的空白。

上世纪90年代,我国进一步加强了对激光技术的研究和应用。

尤其在激光制造和加工领域取得了显著成果。

我国开始建设激光制造装备,其中激光切割、激光焊接、激光打标等领域得到了迅速发展,并在国内外市场上取得了广泛的应用。

21世纪以来,我国激光技术得到了进一步推广和发展。

激光
通信、激光雷达、光子计算等领域取得了重要突破。

尤其在激光医疗领域,我国研制的各种激光医疗设备在眼科、皮肤科、牙科等领域得到了广泛应用。

可以说,我国的激光技术发展经历了从起步阶段到高速发展的过程,取得了一系列的重要成果。

随着科技的不断进步和创新,相信我国的激光技术将继续迎来更加广阔的发展前景。

激光技术简介及发展历程介绍

激光技术简介及发展历程介绍

激光技术简介及发展历程介绍激光技术简介及发展历程介绍世界上第一台激光器诞生于1960年,我国于1961年研制出第一台激光器,40多年来,激光技术与应用发展迅猛,已与多个学科相结合形成多个应用技术领域,比如光电技术,激光医疗与光子生物学,激光加工技术,激光检测与计量技术,激光全息技术,激光光谱分析技术,非线性光学,超快激光学,激光化学,量子光学,激光雷达,激光制导,激光分离同位素,激光可控核聚变,激光武器等等。

这些交叉技术与新的学科的出现,大大地推动了传统产业和新兴产业的发展。

一、激光技术应用简介激光加工技术是利用激光束与物质相互作用的特性对材料(包括金属与非金属)进行切割、焊接、表面处理、打孔、微加工以及做为光源,识别物体等的一门技术,传统应用最大的领域为激光加工技术。

激光技术是涉及到光、机、电、材料及检测等多门学科的一门综合技术,传统上看,它的研究范围一般可分为:1.冠钧激光加工系统。

包括激光器、导光系统、加工机床、控制系统及检测系统。

2.冠钧激光加工工艺。

包括切割、焊接、表面处理、打孔、打标、划线、微调等各种加工工艺。

激光焊接:汽车车身厚薄板、汽车零件、锂电池、心脏起搏器、密封继电器等密封器件以及各种不允许焊接污染和变形的器件。

目前使用的激光器有YAG激光器,CO2激光器和半导体泵浦激光器。

激光切割:汽车行业、计算机、电气机壳、木刀模业、各种金属零件和特殊材料的切割、圆形锯片、压克力、弹簧垫片、2mm以下的电子机件用铜板、一些金属网板、钢管、镀锡铁板、镀亚铅钢板、磷青铜、电木板、薄铝合金、石英玻璃、硅橡胶、1mm以下氧化铝陶瓷片、航天工业使用的钛合金等等。

使用激光器有YAG激光器和CO2激光器。

激光打标:在各种材料和几乎所有行业均得到广泛应用,目前使用的激光器有YAG激光器、CO2激光器和半导体泵浦激光器。

激光打孔:激光打孔主要应用在航空航天、汽车制造、电子仪表、化工等行业。

激光打孔的迅速发展,主要体现在打孔用YAG激光器的平均输出功率已由5年前的400w提高到了800w至1000w。

激光加工技术的发展和应用

激光加工技术的发展和应用

激光加工技术的发展和应用激光加工技术是一种高精度、高效率的加工方式,随着科学技术的不断进步,激光加工技术在工业制造、医疗、通信等领域得到广泛应用。

本文将从发展历程、工艺特点、应用领域几个方面来探讨激光加工技术的发展和应用。

一、发展历程激光加工技术起源于20世纪60年代,当时我们还没有现在所熟知的连续激光器,只有脉冲激光器。

脉冲激光器能够产生高能量密度的光束,用于切割、打孔等加工操作。

激光加工技术的发展主要依赖于光学、电子等各方面技术的发展,随着科技的进步,激光器出现了许多新的形态,如CO2激光器、光纤激光器、半导体激光器等。

同时,激光加工技术也不断发掘新的加工方法,如激光刻蚀、激光沉积、激光转移等。

二、工艺特点激光加工技术与传统加工技术的主要区别在于:激光加工是利用光束将工件表面局部加热,使其融化、气化或发生化学反应,实现加工形状的改变。

这一特点使激光加工具有以下几个突出的优点:1.高精度:激光加工可精确控制激光束的能量密度和加工轨迹,从而获得高精度的加工结果。

2.高效率:激光加工速度快,工艺质量好,且节省能源和材料。

3.灵活性:激光加工不受材料硬度、形状等限制,可对各种材料进行加工,且加工形式多样,如切割、打孔、雕刻、焊接等。

4.环保:激光加工没有污染、噪音和振动,可以实现工艺无废。

三、应用领域激光加工技术在众多领域得到了广泛应用,主要包括以下几个方面:1.工业制造激光加工技术在工业制造中几乎涵盖了所有的制造行业,例如,汽车制造、手机制造、空调制造、家电制造等。

激光加工技术可以用于零部件的切割、作标、打孔等操作,还可以用于三维打印、表面改性等方面。

2.医疗激光加工技术在医疗领域也有很多应用,例如,激光美容、激光治疗、激光手术等。

其中,激光手术是激光加工技术在医疗领域的重要应用之一。

激光手术与传统手术相比,具有切口小、止血快、恢复快等优势。

3.通信现代通信技术中,激光光纤通信技术是一项十分重要的技术。

全球激光产业及发展趋势

全球激光产业及发展趋势

全球激光产业及发展趋势全球激光产业及发展趋势引言:激光技术是20世纪最具划时代意义的科技发明之一,在众多领域都有着广泛的应用。

激光的高能量、高光强、高单色性等独特性质使得它在制造、医疗、通信、军事等领域扮演着重要的角色。

本文将对全球激光产业的发展历程进行分析,并探讨激光技术未来的发展趋势。

一、全球激光产业的发展历程1.1 初期发展(20世纪50年代-60年代)激光技术在20世纪50年代中期得到了首次实验验证,被视为激发科技创新的新方向。

激光器的原理由美国物理学家理查德·汉奥在1958年提出,并在1960年由西恩斯激光公司成功制造了第一台激光器。

自此以后,全球范围内对激光技术的研究和应用进入了一个高速发展的阶段。

在初期发展阶段,激光器主要用于科研领域和军事应用,如光谱分析、激光打靶、激光导引等。

同时,激光技术也逐渐应用于制造和医疗领域,如激光刻字机和激光医疗设备等。

1.2 蓬勃发展(20世纪70年代-80年代)20世纪70年代至80年代是全球激光产业的蓬勃发展阶段。

激光在制造业的应用得到了广泛推广,主要用于材料切割、焊接、打孔等加工工艺。

同时,激光技术在医疗领域也有了突破性的进展,如激光治疗仪、激光手术刀等。

此外,激光技术在通信领域也产生了重要的影响。

20世纪80年代中期,全球范围内开始建立光纤通信网络,而激光技术为实现高速、长距离的信息传输提供了重要的支持。

1.3 快速增长(20世纪90年代至今)20世纪90年代至今,全球激光产业进一步加速了其快速增长的步伐。

激光器的精密化和微型化使得激光技术得以应用于更多领域,如纳米技术、生物医学、新能源等。

在制造业方面,激光技术的应用得以进一步扩展,如激光切割机、激光焊接机、激光打标机等设备得到了广泛应用。

激光技术的出现大大提高了制造业的效率和质量,推动了工业化进程。

激光技术在医疗领域也取得了重大突破,如激光矫正术、激光白内障手术等。

激光手术的痛苦小、恢复快等优势逐渐被认可,为患者提供了更好的治疗选择。

激光发展历程

激光发展历程

激光发展历程激光的发展历程可以追溯到20世纪的早期。

在1917年,爱因斯坦通过他的理论物理学研究,提出了激光的理论基础。

但是直到20世纪50年代,人们才真正开始研究和开发激光技术。

在1954年,一位名叫Charles H. Townes的物理学家在他的实验室中首次发明了微波放大器,这是激光研究的重要里程碑。

随后的几年里,Townes与Arthur L. Schawlow合作,进一步研究激光的原理和技术。

1958年,Theodore Maiman成功地制造出了第一台工作的激光器。

这台激光器使用了合成的红宝石作为激光介质,它发射出了一束可见的红光,并被认为是真正的激光器的里程碑。

从那时起,激光技术迅速发展。

在1960年代初期,人们发明了更多种类的激光器,包括CO2激光器、氨氧化物激光器和液体激光器。

这些激光器的应用范围不断扩大,从科学研究到医疗、通信和材料加工等多个领域。

20世纪70年代,激光技术取得了更大的突破。

光纤激光器的发明使得激光在通信领域得到了广泛应用,成为传输和放大光信号的重要工具。

同时,激光器的价格也逐渐下降,使得激光技术更加普及和可行。

到了21世纪,激光技术已经成为现代社会不可或缺的一部分。

激光器被广泛应用于医疗领域,如眼科手术和皮肤治疗。

激光雷达在无人驾驶汽车和航空器中发挥着重要作用。

激光在制造业中的应用也越来越广泛,如激光切割、激光焊接和激光打印等。

总的来说,激光的发展历程经过了数十年的探索和研究,逐渐成为一项重要的技术和应用领域。

随着技术的不断发展,激光在未来将继续发挥更大的作用,并带来更多的创新和应用。

激光技术的发展与应用

激光技术的发展与应用

激光技术的发展与应用激光技术是一种强大的工具,被广泛应用于科学、医学、工业和军事领域,它的独特性质使得它成为了现代技术中不可或缺的一部分。

本文将会讨论激光技术的发展历程,以及它在不同领域中的应用。

激光技术的发展历程激光技术最早由美国物理学家泰奇·豪斯(Theodore Maiman)于1960年发明,他使用了一种半导体材料来制造激光器,并建造了世界上第一台完全工作的激光器。

这被认为是激光技术的诞生。

近年来,激光技术得到了极大的发展,不仅材料和电子元件得到了改进,激光器的类型与功能也得到了改进。

随着技术的进步,激光技术已经成为了许多行业中必不可少的工具。

激光技术的应用1. 科学领域激光技术在科学领域中具有广泛的应用,比如光学测量和精密加工。

在这方面,激光技术的应用使得科学家们能够实现最小尺寸范围的研究,也能够对材料进行微小的锯切并研磨,或者在不损害其它部分的情况下将它们限制在某个特定的区域内。

2. 医学领域激光技术在医学领域中也有着广泛的应用,比如激光手术。

激光手术是一种微创手术,它通过激光光束使组织破裂,从而达到治疗效果,这种技术使得手术切口更小、更干净,并且患者恢复速度更快。

激光还可以用于治疗近视、激光去毛和激光焊接等操作。

3. 工业领域激光技术在工业领域中也有着广泛的应用,比如激光切割。

激光切割不但可以进行常规的金属切割,还可以进行复杂的雕刻和拼贴操作,这种方法对于需要精确准确的雕刻和拼贴的行业如电子产业和汽车制造业非常重要。

4. 军事领域激光技术在军事领域中也有着重要的应用,比如制导武器和激光测距。

激光制导武器是利用激光束对目标进行跟踪并指引武器击中目标,这种技术对于高精度的精确打击非常重要。

结论总之,激光技术的应用范围非常广泛,包括科学、医学、工业和军事领域。

虽然激光技术还有很多不足,但它已经成为了当今现代技术中的重要组成部分,并将在未来的发展中扮演更为重要的角色。

我国激光的发展历程

我国激光的发展历程

我国激光的发展历程我国激光技术的发展可以追溯到上世纪60年代初。

在那个时代,中国正处于新中国成立后的艰苦时期,国家的科研力量相对较弱,激光技术在国内还属于一个相对较陌生的领域。

然而,正是在那个时期,中国科学家们开始了艰苦卓绝的激光研究工作。

1961年,重庆大学刘隆明教授首次发表了国内第一篇激光方面的学术论文。

他在1962年指导的第一台国产连续氦氖激光器问世,拉开了我国激光研究的序幕。

随着国家对科技研究的投入逐渐增加,激光技术在我国得到了迅速发展。

1963年,上海激光技术研究所成立,成为我国第一家以激光技术为主要研究对象的科研机构。

之后,全国范围内涌现出了多个激光研究所和实验室,各地的科学家开始不断探索和创新。

1964年,我国研制的第一台激光切割器成功试制,实现了对金属材料的高精度切割。

这一成果的取得引起了国际上的广泛关注,为我国激光技术的快速发展奠定了基础。

经过几十年的努力,我国激光技术在各个领域取得了长足发展。

在军事方面,我国发展了一系列先进的激光武器系统,如激光导弹拦截系统和激光器制导武器系统,提升了我国的军事实力。

在医疗领域,我国的激光医疗设备居于世界领先水平,能够进行高精度的手术和治疗,大大提高了医疗效果。

此外,我国的激光技术还应用于通信、制造、能源等众多领域。

激光通信技术已经成为现代通信领域的重要支撑,激光制造技术也在汽车、航天等行业中得到了广泛应用,激光核聚变技术为清洁能源的发展提供了重要的解决方案。

在国际竞争中,我国激光技术也有了显著的突破和进步。

2016年,我国成功实现了千瓦级光纤激光器的研制,填补了国际上的空白。

此外,我国在激光技术的基础研究和应用研究方面都取得了国际领先的成果,逐渐成为激光技术的重要制造和研发大国。

总的来说,我国激光技术的发展经历了起步阶段、探索阶段和突破阶段,取得了令人瞩目的成就。

激光技术促进了我国高科技产业的发展,提升了国家的科技创新能力,为经济社会的发展作出了重要贡献。

激光技术的发展情况和资料特点介绍以及应用概述

激光技术的发展情况和资料特点介绍以及应用概述

激光技术的发展情况和资料特点介绍以及应用概述激光技术最早于1960年面世,是一种因刺激产生辐射而强化的光。

激光被广泛应用是因为它具有单色性好、方向性强、亮度高等特性。

激光技术的原理是:当光或电流的能量撞击某些晶体或原子等易受激发的物质,使其原子的电子达到受激发的高能量状态,当这些电子要回复到平静的低能量状态时,原子就会射出光子,以放出多余的能量;而接着,这些被放出的光子又会撞击其它原子,激发更多的原子产生光子,引发一连串的“连锁反应”,并且都朝同一个方前进,形成强烈而且集中朝向某个方向的光。

这种光就叫做激光。

激光几乎是一种单色光波,频率范围极窄,又可在一个狭小的方向内集中高能量,因此利用聚焦后的激光束可以对各种材料进行打孔。

激光因为拥有这种特性,所以拥有广泛的应用。

激光技术的核心是激光器,世界上第一台激光器是1960年由T.H.梅曼等人制成的第红宝石激光器,激光器的种类很多,可按工作物质、激励方式、运转方式、工作波长等不同方法分类。

但各种激光器的基本工作原理均相同,产生激光的必不可少的条件是粒子数反转和增益大过损耗,所以装置中必不可少的组成部分有激励(或抽运)源、具有亚稳态能级的工作介质两个部分。

半导体物理学的迅速发展及随之而来的晶体管的发明,使科学家们早在50年代就设想发明半导体激光器。

在1962年7月美国麻省理工学院林肯实验室的两名学者克耶斯(Keyes)和奎斯特(Quist)报告了砷化镓材料的光发射现象,通用电气研究实验室工程师哈尔(Hall)与其他研究人员一道研制出世界上第一台半导体激光器。

半导体激光器是用半导体材料作为工作物质的一类激光器,由于物质结构上的差异,产生激光的具体过程比较特殊。

常用材料有砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)等。

激励方式有电注入、电子束激励和光泵浦三种形式。

自1962年世界上第一只半导体激光器是问世以来,经过几十年来的研究,半导体激光器得到了惊人的发展,它的波长从红外、红光到蓝绿光,被盖范围逐渐扩大,各项性能参数也有了很大的提高!半。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

激光技术简介及发展历程介绍
世界上第一台激光器诞生于1960年,我国于1961年研制出第一台激光器,40多年来,激光技术与应用发展迅猛,已与多个学科相结合形成多个应用技术领域,比如光电技术,激光医疗与光子生物学,激光加工技术,激光检测与计量技术,激光全息技术,激光光谱分析技术,非线性光学,超快激光学,激光化学,量子光学,激光雷达,激光制导,激光分离同位素,激光可控核聚变,激光武器等等。

这些交叉技术与新的学科的出现,大大地推动了传统产业和新兴产业的发展。

一、激光技术应用简介
激光加工技术是利用激光束与物质相互作用的特性对材料(包括金属与非金属)进行切割、焊接、表面处理、打孔、微加工以及做为光源,识别物体等的一门技术,传统应用最大的领域为激光加工技术。

激光技术是涉及到光、机、电、材料及检测等多门学科的一门综合技术,传统上看,它的研究范围一般可分为:
1.冠钧激光加工系统。

包括激光器、导光系统、加工机床、控制系统及检测系统。

2.冠钧激光加工工艺。

包括切割、焊接、表面处理、打孔、打标、划线、微调等各种加工工艺。

激光焊接:汽车车身厚薄板、汽车零件、锂电池、心脏起搏器、密封继电器等密封器件以及各种不允许焊接污染和变形的器件。

目前使用的激光器有YAG激光器,CO2激光器和半导体泵浦激光器。

激光切割:汽车行业、计算机、电气机壳、木刀模业、各种金属零件和特殊材料的切割、圆形锯片、压克力、弹簧垫片、2mm以下的电子机件用铜板、一些金属网板、钢管、镀锡铁板、镀亚铅钢板、磷青铜、电木板、薄铝合金、石英玻璃、硅橡胶、1mm以下氧化铝陶瓷片、航天工业使用的钛合金等等。

使用激光器有YAG激光器和CO2激光器。

激光打标:在各种材料和几乎所有行业均得到广泛应用,目前使用的激光器有YAG激光器、CO2激光器和半导体泵浦激光器。

激光打孔:激光打孔主要应用在航空航天、汽车制造、电子仪表、化工等行业。

激光打孔的迅速发展,主要体现在打孔用YAG激光器的平均输出功率已由5年前的400w提高到了800w至1000w。

国内目前比较成熟的激光打孔的应用是在人造金刚石和天然金刚石拉丝模的生产及钟表和仪表的宝石轴承、飞机叶片、多层印刷线路板等行业的生产中。

目前使用的激光器多以YAG激光器、CO2激光器为主,也有一些准分子激光器、同位素激光器和半导体泵浦激光器。

激光热处理:在汽车工业中应用广泛,如缸套、曲轴、活塞环、换向器、齿轮等零部件的热处理,同时在航空航天、机床行业和其它机械行业也应用广泛。

我国的激光热处理应用远比国外广泛得多。

目前使用的激光器多以正明YAG激光器,正明CO2激光器为主。

激光快速成型:将激光加工技术和计算机数控技术及柔性制造技术相结合而形成。

多用于模具和模型行业。

目前使用的激光器多以YAG激光器、CO2激光器为主。

激光涂敷:在航空航天、模具及机电行业应用广泛。

目前使用的激光器多以大功率正明YAG激光器、正明CO2激光器为主。

二、激光加工技术及产业发展研究开发的重点
目前激光加工技术及产业发展研究开发的重点可归纳为:
(1)新一代工业激光器研究,目前处在技术上的更新时期,其标志是二极管泵浦全固态激光器的发展及应用。

(2)激光微细加工的应用研究。

(3)激光加工用大功率CO2和固体激光器及准分子激光器的机型研究,开发和研制专
用配套的激光加工机床,提高激光器产品在生产线上稳定运行的周期。

(4)加工系统智能化,系统集成不仅是加工本身,而是带有实时检测、反馈处理,随着专家系统的建立,加工系统智能化已成为必然的发展趋势。

(5)建立激光加工设备参数的检测手段,并进行方法研究。

(6)激光切割技术研究。

对现有的激光切割系统进行二次开发和产业化,提供性能好、价格便宜的2-3轴数控CO2切割机,并开展相应的切割工艺的研究,使该工艺广泛用于材料加工、汽车、航天及造船等领域。

为此应着重在激光器外围装置,如:导光系统、过程监测和控制、喷咀、浮动装置的设计和研制以及CAD/CAM等方面开展工作。

(7)激光焊接技术研究。

开展激光焊接工艺及材料、焊接工艺对设备要求及焊接过程参数监测和控制技术研究,从而掌握普通钢材、有色金属及特殊钢材的焊接工艺。

(8)激光表面处理技术研究。

开展CAD/CAM技术、激光表面处理工艺、材料性能及激光表面处理工艺参数监测和控制研究,使激光表面处理工艺能较大幅度地应用于生产。

(9)激光加工光束质量及加工外围装置研究。

研究各种激光加工工艺对激光光束的质量要求、激光光束和加工质量监控技术,光学系统及加工头设计和研制。

(10)开展激光加工工艺技术研究,重点是材料表面改性和热处理方面的研究和推广应用;开展激光快速成形技术的应用研究,拓宽激光应用领域。

相关文档
最新文档