高中数学完整讲义——概率-随机事件的概率1.事件及样本空间
高中数学讲义(人教A版必修二):第42讲 随机事件的概率(教师版)

第42课随机事件与概率知识精讲知识点01有限样本空间与随机事件【即学即练1】抛掷一枚骰子(touzi),观察它落地时朝上的面的点数,写出试验的样本空间.解:用i 表示朝上面的“点数为i ”,因为落地时朝上面的点数有1,2,3,4,5,6共6个可能的基本结果,所以试验的样本空间可以表示为Ω={1,2,3,4,5,6}.构建样本空间,这是将实际问题数学化的关键步骤,其作用体现在:可以利用集合工具(语言)描述概率问题,能用数学语言严格刻画随机事件的概念,通过与集合关系与运算的类比,可以更好地理解随机事件的关系和运算意义.可以用符号语言准确而简练地表示求解概率问题的过程.知识点02事件的关系和运算定义表示法图示事件的运算包含关系一般地,对于事件A 与事件B ,如果事件A 发生,则事件B 一定发生,这时称事件B 包含事件A(或称事件A 包含于事件B)B ⊇A (或A ⊆B )并事件若某事件发生当且仅当事件A 发生或事件B 发生,则称此事件为事件A 与事件B 的并事件(或和事件)A ∪B (或A +B )交事件若某事件发生当且仅当事件A 发生且事件B 发生,则称此事件为事件A 与事件B 的交事件(或积事件)A∩B (或AB)互斥关系若A∩B 为不可能事件,则称事件A 与事件B 互斥若A∩B =∅,则A 与B 互斥对立关系若A∩B 为不可能事件,A ∪B 为必然事件,那么称事件A 与事件B 互为对立事件,可记为B =或A =若A∩B =∅,A ∪B =U ,则A 与B 对立事件的关系或运算含义符号表示包含A 发生导致B 发生A ⊆B 并事件(和事件)A 与B 至少一个发生A ∪B 或A +B 交事件(积事件)A 与B 同时发生A ∩B 或AB 互斥(互不相容)A 与B 不能同时发生A ∩B =∅互为对立A 与B 有且仅有一个发生A ∩B =∅,A ∪B =Ω【即学即练2】盒子里有6个红球,4个白球,现从中任取3个球,设事件A ={3个球中有1个红球2个白球},事件B ={3个球中有2个红球1个白球},事件C ={3个球中至少有1个红球},事件D ={3个球中既有红球又有白球}.求:(1)事件D 与A ,B 是什么样的运算关系?(2)事件C 与A 的交事件是什么事件?【答案】(1)D =A ∪B .(2)C ∩A =A .【解析】(1)对于事件D ,可能的结果为1个红球,2个白球或2个红球,1个白球,故D =A ∪B .(2)对于事件C ,可能的结果为1个红球,2个白球或2个红球,1个白球或3个均为红球,所以A ⊆C ,故C ∩A =A .知识点03古典概型【即学即练3】抛掷两枚质地均匀的骰子(标记为I 号和II 号),观察两枚骰子分别可能出现的基本结果,(1)写出这个试验的样本空间,并判断这个试验是否为古典概型;(2)求下列事件的概率:A =“两个点数之和是5”;B =“两个点数相等”;C =“I 号骰子的点数大于II 号骰子的点数”.【答案】(1),,1,2,3,4,5,6m n m n,是古典概型(2)19;16;512【解析】(1)抛掷一枚骰子有6种等可能的结果,I 号骰子的每一个结果都可与II 号骰子的任意一个结果配对,组成掷两枚骰子试验的一个结果.用数字m 表示I 号骰子出现的点数是m ,数字n 表示II 号骰子出现的点数是n ,则数组 ,m n 表示这个试验的一个样本点.因此该试验的样本空间,,1,2,3,4,5,6m n m n ,其中共有36个样本点.由于骰子的质地均匀,所以各个样本点出现的可能性相等,因此这个试验是古典概型.(2)因为 1,4,2,3,3,2,4,1A ,所以 4n A ,从而 41369n A P A n ;因为 1,1,2,2,3,3,4,4,5,5,6,6B,所以 6n B ,从而 61366n B P B n;因为C={(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4),(6,1),(6,2),(6,3),(6,4),(6,5)},所以 15n C ,从而 1553612n C P C n;解题技巧(求古典概型的一般步骤)(1)明确实验的条件及要观察的结果,用适当的符号(字母/数字/数组等)表示实验的可能结果(可借助图表);(2)根据实际问题情景判断样本点的等可能性;(3)计算样本点总个数及事件包含的样本点个数,求出事件A 的概率.知识点04概率的基本性质【即学即练4】一个袋子中有大小和质地相同的4个球,其中有2个红色球(标号为1和2),2个绿色球(标号为3和4),从袋中不放回地依次随机摸出2个球.设事件1R “第一次摸到红球”,2R “第二次摸到红球”,R “两次都摸到红球”,G “两次都摸到绿球”,M “两个球颜色相同”,N “两个球颜色不同”.(1)用集合的形式分别写出试验的样本空间以及上述各事件;(2)事件R 与1R ,R 与G ,M 与N 之间各有什么关系?(3)事件R 与事件G 的并事件与事件M 有什么关系?事件1R 与事件2R 的交事件与事件R 有什么关系?解:(1)所有的试验结果如图10.1-10所示.用数组 12,x x 表示可能的结果,1x 是第一次摸到的球的标号,2x 是第二次摸到的球的标号,则试验的样本空间{(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)} ,事件1R “第一次摸到红球”,即11x 或2,于是1{(1,2),(1,3),(1,4),(2,1),(2,3),(2,4)}R ;事件2R “第二次摸到红球”,即21x 或2,于是2{(2,1),(3,1),(4,1),(1,2),(3,2),(4,2)}R .同理,有{(1,2),(2,1)}R ,{(3,4),(4,3)}G ,{(1,2),(2,1),(3,4),(4,3)}M ,{(1,3),(1,4),(2,3),(2,4),(3,1),(3,2),(4,1),(4,2)}N .(2)因为1R R ,所以事件1R 包含事件R ;因为R G ∩,所以事件R 与事件G 互斥;因为M N ,M N ,所以事件M 与事件N 互为对立事件.(3)因为R G M ,所以事件M是事件R 与事件G 的并事件;因为12R R R ∩,所以事件R 是事件1R 与事件2R 的交事件.能力拓展考法01有限样本空间与随机事件考法02事件的关系和运算【典例2】抛掷一枚质地均匀的骰子一次,事件1表示“骰子向上的点数为奇数”,事件2表示“骰子向上的点数为偶数”,事件3表示“骰子向上的点数大于3”,事件4表示“骰子向上的点数小于3”则()A .事件1与事件3互斥B .事件1与事件2互为对立事件C .事件2与事件3互斥D .事件3与事件4互为对立事件【答案】B【分析】根据互斥事件、对立事件定义判断求解.【详解】由题可知,事件1可表示为: 13,5A ,,事件2可表示为: 2,4,6B ,事件3可表示为: 4,5,6C ,事件4可表示为: 1,2D ,因为 5A C ∩,所以事件1与事件3不互斥,A 错误;因为A B 为不可能事件,A B 为必然事件,所以事件1与事件2互为对立事件,B 正确;因为 4,6B C ∩,所以事件2与事件3不互斥,C 错误;因为C D 为不可能事件,C D 不为必然事件,所以事件3与事件4不互为对立事件,D 错误;故选:B.考法03古典概型与概率基本性质【典例3】芯片是科技产品中的重要元件,其形状通常为正方形.生产芯片的原材料中可能会存在坏点,而芯片中出现坏点即报废,通过技术革新可以减小单个芯片的面积,这样在同样的原材料中可以切割出更多A.50%B.625%.【答案】C【分析】依题意将原材料进行切割,得到有坏点的芯片数,即可判断【详解】依题意将这块原材料如下切割得到第故第5代芯片的产品良率为12100%75% 16故选:C【变式训练】从装有若干个红球和白球(除颜色外其余均相同)的黑色布袋中,随机不放回地摸球两次,每次摸出一个球.若事件“两个球都是红球同”的概率为()A.415B.715【答案】C【分析】首先利用三个事件为互斥事件,再根据互斥事件概率公式,即可求解分层提分题组A 基础过关练一、单选题1.某人在打靶中连续射击两次,事件“至多有一次中靶”的对立事件是A .至少有一次中靶B .只有一次中靶C .两次都中靶D .两次都不中靶【答案】C【分析】至多有一次的反面是至少有两次.【详解】射击两次中靶的次数可能是0,1,2.至多1次中靶,即中靶次数为0或1,故它的对立事件为中靶两次.选C.【点睛】本题考查对立事件的概念,解题关键是掌握至少、至多等词语的否定.2.在投掷骰子的试验中,可以定义许多事件,例如:1 C {出现1点},2 C {出现的点数小于1},3 C {出现的点数小于7},4C {出现的点数大于6},5C {出现的点数是偶数},以上5个事件中的随机事件个数为().A .1B .2C .3D .4【答案】B【分析】根据随机事件的定义即可得解.【详解】解:∵24C C ,是不可能事件,3C 是必然事件,在一定条件下可能发生也可能不发生的事件叫随机事件,二、多选题7.下列事件是随机事件的是()A.连续掷一枚硬币两次,两次都出现正面朝上B.异性电荷相互吸引C.在标准大气压下,水在1℃结冰D.买一注彩票中了特等奖E.掷一次骰子,向上的一面的点数是6A .应从第3,4,5组中分别抽取3人、2人、1人B .第4组志愿者恰有一人被抽中的概率为815C .第5组志愿者被抽中的概率为13D .第3组志愿者至少有一人被抽中的概率为23【答案】ABC【分析】根据分层抽样得定义即可判断A ;利用列举法结合古典概型计算即可判断【详解】第3组的人数有0.06630.060.040.02人,第4组的人数有0.04620.060.040.02人,第5组的人数有0.02610.060.040.02人,故A 正确;设第3组的人分别为,,a b c ,第4组的人分别为,d e ,第则6人中随机抽取2人有 ,,,,,,,,,a b a c a d a e a f种结果,满足条件的事件是为坐标的点落在直线上,当,,,;,,共有种结果,根据古典概型的概率公式得到以为坐标的点落在直线上的概率:.故答案为.四、解答题13.判断下列现象是否是随机现象,如果是,写出该试验的样本空间.(1)抛一个苹果,下落;(2)种下一粒种子,观察是否发芽;(3)甲、乙两队进行一场足球比赛,观察甲队的比赛结果(可以是平局).【答案】(1)是确定性现象,不是随机现象(2)是随机现象,答案见解析(3)是随机现象,答案见解析(1)试根据频率分布直方图求出这100据用该组区间的中点值代替);(2)若先采用分层抽样的方法从成绩在社区开展全运会、特奥会宣传活动,求做宣传的这【答案】(1)18人,73(2)115【分析】(1)根据频率分布直方图中数据计算频率,从而求出人数,再代入平均数公式求解平均分;(2)先通过分层抽样确定各组人数,然后列举基本事件,利用古典概型概率公式求概率【详解】(1)由频率分布直方图中数据知,成绩低于平均成绩0.02450.16550.22x题组B能力提升练A.518B.13【答案】A的表格,再根据古典概型的概率公式计算可得;【分析】依题意画出345648【详解】解:根据题意,结合范例画出个,所以从表内任取一数,恰好取到奇数的概率故选:A.4.古代《冰糖葫芦》算法题:一个小摊上摆满了五彩缤纷的5个山楂;另一种是2个山楂、3个小桔子.若小摊上山楂共选取一个“冰糖葫芦”,则这个“冰糖葫芦”是A.0.3B.0.4【答案】B【分析】设5个山楂的“冰糖葫芦”有x个,2个山楂、y ,基本事件总数80120200120n ,这个求出这个“冰糖葫芦”是5个山楂的概率.【点睛】本题考查古典概型的概率公式和互斥事件的概率加法公式的应用,解题时要将所求事件进行分类讨论,结合相关公式进行计算,考查计算能力,属于中等题.(1)按分层抽样的方法从质量落在[350,400),[400,抽2个,求这2个黄桃质量至少有一个不小于400(2)以各组数据的中间数值代表这组数据的平均水平,以频率代表概率,已知该村的黄桃树上大约还有100000个黄桃待出售,某电商提出两种收购方案:A .所有黄桃均以20元/千克收购;B .低于350克的黄桃以5元/个收购,高于或等于请你通过计算为该村选择收益最好的方案.(参考数据:2250.052750.163250.24375 【答案】(1)710(2)B 【分析】(1)由题得黄桃质量在 350,400和 400,2A ,3A ,质量在 400,450的黄桃为1B ,2B ,列出取出400克的事件个数,根据古典概型即可求解(2)分别计算两种方案的收益,比较收益大小即可确定需选择的方案.【详解】(1)由题得黄桃质量在 350,400和 400,∴应分别在质量为 350,400和 400,450的黄桃中各抽取记抽取质量在 350,400的黄桃为1A ,2A ,3A ,质量在(1)求实数a 的值;(2)若从第四组、第五组的学生中按组用分层抽样的方法抽取用简单随机抽样方法从6人中抽取2人作为正、副队长,求【答案】(1)0.04(2)815【分析】(1)根据频率分布直方图中各矩形面积之和为(2)求出第四组和第五组中人数之比,即可求得简单随机抽样方法取2人作为正、副队长的所有的基本事件和“抽取的可求得答案.(1)由题意可得(0.010.070.060.02)51a ,可得(2)由题意,100名大学生中第三组有20人,第五组有故从第四组、第五组的学生中用分层抽样的方法抽取20642010人,第五组有2人,设第四组的4人分别为a,b,c,d,第五组的2人为A,B ,则从中抽取2人的所有基本事件有:,,,,,,,,,,,,,,ab ac ad aA aB bc bd bA bB cd cA cB dA dB AB 共其中“抽取的2人为不同组”的基本事件有,,,aA aB bA 故“抽取的2人为不同组”的概率为815P.题组C培优拔尖练A.38【答案】B【分析】根据古典概型的概率公式即可求解【详解】从甲、乙两位同学的则共有16种情况,其中甲的得分高于乙的得分的情况有故所求的概率为7 16故选:B.2.柜子里有3双不同的鞋子,如果从中随机地取出一双的概率为(“”,“”“”“”“”“”“”二、多选题7.如果知道事件X 已发生,则该事件所给出的信息量称为“自信息”.设随机变量X 的所有可能取值为1x ,2x ,…,n x ,且 01,2,,i p x i n , 11ni i p x ,定义X 的“自信息”为 2log i i I x p x .一次掷两个不同的骰子,若事件A 为“仅出现一个2”,事件B 为“至少出现一个5”,事件C 为“出现的两个数之和是偶数”,则()A .当 1i p x 时,“自信息” 0i I xB .当 120p x p x 时, 12I x I xC .事件C 的“自信息” 1I C D .事件A 的“自信息” I A 大于事件B 的“自信息”I B三、填空题9.抛掷3枚硬币,试验的样本点用(x ,y ,z )表示,集合M 表示“既有正面朝上,也有反面朝上”,则M =________________________________________________________________________.【答案】{(正,正,反),(正,反,正),(反,正,正),(正,反,反),(反,正,反),(反,反,正)}.【分析】根据试验结果,直接写出事件M 包含的基本事件即可求解.【详解】抛掷3枚硬币,试验的样本点用(x ,y ,z )表示,其中,,x y z 分别表示正反,则{M (正,正,反),(正,反,正),(反,正,正),(正,反,反),(反,正,反),(反,反,正)}.四、解答题13.抛掷一枚硬币,观察它落地时哪一面朝上,写出试验的样本空间.【答案】详见解析【解析】根据抛一枚硬币,落地时有正面朝上和反面朝上两种可能情况,可得样本空间。
高中数学完整讲义——概率_随机事件的概率1.事件及样本空间

B ,简记为AB ; 2.一般地,对于两个事件A B ,,如果有()()()P AB P A P B =,就称事件A 与B 相互独立,简称A 与B 独立.当事件A 与B 独立时,事件A 与B ,A 与B ,A =.若C A B =,则若C 发生,则A 、B 中至少有一个发生,事件A +若事件12n A A A ,,,两两互斥(彼此互斥),有1212()()()()n nP A A A P A P A P A =+++. 事件“12n A A A ”发生是指事件12n A A A ,,,中至少有一个发生.中至少有一个发生.6.互为对立事件高中数学讲义版块一:事件及样本空间 1.必然现象与.必然现象与随机现象随机现象必然现象是在一定条件下必然发生某种结果的现象;必然现象是在一定条件下必然发生某种结果的现象;随机现象是在相同条件下,很难预料哪一种结果会出现的现象.随机现象是在相同条件下,很难预料哪一种结果会出现的现象.2.试验:我们把观察随机现象或为了某种目的而进行的实验统称为试验,把观察结果或实验的结果称为试验的结果.为试验的结果.一次试验是指事件的条件实现一次.一次试验是指事件的条件实现一次.在同样的条件下重复进行试验时,始终不会发生的结果,称为不可能事件;在同样的条件下重复进行试验时,始终不会发生的结果,称为不可能事件;在每次试验中一定会发生的结果,称为必然事件;在每次试验中一定会发生的结果,称为必然事件;在试验中可能发生,也可能不发生的结果称为在试验中可能发生,也可能不发生的结果称为随机事件随机事件.通常用大写通常用大写英文英文字母A B C ,,,来表示随机事件,简称为事件.来表示随机事件,简称为事件.3.基本事件:在一次试验中,可以用来描绘其它事件的,不能再分的最简单的随机事件,称为基本事件.它包含所有可能发生的基本结果.件.它包含所有可能发生的基本结果.所有基本事件构成的集合称为所有基本事件构成的集合称为基本事件空间基本事件空间,常用W 表示.表示.版块二:随机事件的版块二:随机事件的概率概率计算1.如果事件A B ,同时发生,我们记作A 与B 都是相互独立的.都是相互独立的.3.概率的.概率的统计统计定义定义一般地,在n 次重复进行的试验中,事件A 发生的频率m n,当n 很大时,总是在某个很大时,总是在某个常数常数附近摆动,随着n 的增加,摆动幅度越来越小,这时就把这个常数叫做事件A 的概率,记为()P A .从概率的定义中,我们可以看出随机事件的概率()P A 满足:0()1P A ≤≤.当A 是必然事件时,()1P A =,当A 是不可能事件时,()0P A =.4.互斥事件与事件的并.互斥事件与事件的并互斥事件:不可能同时发生的两个事件叫做互斥事件,或称互不相容事件.互斥事件:不可能同时发生的两个事件叫做互斥事件,或称互不相容事件.由事件A 和事件B 至少有一个发生(即A 发生,或B 发生,或A B ,都发生)所构成的事件C ,称为事件A 与B 的并(或和),记作C A B B 是由事件A 或B 所包含的基本事件组成的集合.件组成的集合.5.互斥事件的概率.互斥事件的概率加法加法公式:公式:若A 、B 是互斥事件,有()()()P A B P A P B =知识内容 板块一.事件及样本空间不能同时发生且必有一个发生的两个事件叫做互为对立事件.事件A 的对立事件记作A . 第三步,运用公式()()()()()()()()(1)k k n k n n m P A n P A B P A P B P A B P A P B n P k C p p -ì=ïïï+=+íï×=×ï=-ïî等可能事件等可能事件: : 互斥事件: 独立事件: 次独立重复试验次独立重复试验::求解求解 第四步,答,即给提出的问题有一个明确的答复.第四步,答,即给提出的问题有一个明确的答复.解决此类问题的关键是会正确求解以下六种事件的概率(尤其是其中的(4)、(5)两种概率): ⑴ 随机事件的概率,等可能性事件的概率;随机事件的概率,等可能性事件的概率;⑵ 互斥事件有一个发生的概率;互斥事件有一个发生的概率;⑶ 相互独立事件同时发生的概率;相互独立事件同时发生的概率;⑷ n 次独立重复试验中恰好发生k 次的概率;次的概率;⑸ n 次独立重复试验中在第k 次才首次发生的概率;次才首次发生的概率;⑹ 对立事件的概率.对立事件的概率.另外:要注意区分这样的语句:“至少有一个发生”,“至多有一个发生”,“恰好有一个发生”,“都发生”,“不都发生”,“都不发生”,“第k 次才发生”等.等.题型一 事件及样本空间【例1】 (2010安徽) 甲罐中有5个红球,2个白球和3个黑球.乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以1A ,2A 和3A ,表示由甲罐取出的球是红球.白球和黑球的典例分析 高中数学讲义有()1()P A P A =-.<教师教师备案备案> 1.概率中的“事件”是指“随机试验的结果”,与通常所说的事件不同.,与通常所说的事件不同.基本事件空间基本事件空间是指一次试验中所有可能发生的基本结果.有可能发生的基本结果.有时我们提到事件或有时我们提到事件或有时我们提到事件或随机事件随机事件,也包含不可能事件和必然事件,也包含不可能事件和必然事件,将其作为随机将其作为随机事件的事件的特例特例,需要根据情况作出判断.,需要根据情况作出判断.2.概率可以通过频率来“测量”,或者说是频率的一个近似,此处概率的定义叫做概率的,或者说是频率的一个近似,此处概率的定义叫做概率的统计统计定义.在实践中,很多时候采用这种方法求事件的概率.实践中,很多时候采用这种方法求事件的概率.随机事件的频率是指事件发生的次数与试验总次数的比值,它具有一定的它具有一定的稳定性稳定性,总是在某个总是在某个常数常数附近摆,且随着试验次数的增加,且随着试验次数的增加,摆动的幅度越来越小,摆动的幅度越来越小,摆动的幅度越来越小,这个常数叫做这个随机事件的概率.这个常数叫做这个随机事件的概率.这个常数叫做这个随机事件的概率.概率可以看成概率可以看成频率在理论上的期望值,它从数量上反映了随机事件发生的可能性的大小,频率在大量重复试验的前提下可近似地看作这个事件的概率.下可近似地看作这个事件的概率.3.基本事件一定是两两.基本事件一定是两两互斥互斥的,它是互斥事件的特殊情形.的,它是互斥事件的特殊情形.主要方法:主要方法:解决概率问题要注意“四个步骤,一个结合”:求概率的步骤是:求概率的步骤是:第一步,确定事件性质ìïïíïïî等可能事件等可能事件互斥事件互斥事件 独立事件独立事件 n 次独立重复试验,即所给的问题归结为四类事件中的某一种.,即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算ìíî和事件积事件,即是至少有一个发生,还是同时发生,分别运用相加或相乘事件.事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件.则下列结论中正确的是确的是 __ __(写出所有正确结论的编号). ① ()25P B =; ②(高中数学讲义)15|11P B A =; ③事件B 与事件1A 相互独立;相互独立;④1A ,2A ,3A 两两互斥的事件;两两互斥的事件;⑤()P B 的值不能确定,因为它与1A ,2A ,3A 中究竟哪一个发生有关.中究竟哪一个发生有关.【例2】 下列事件:①同学甲竞选同学甲竞选班长班长成功;②两队球赛,强队胜利了;③一所学校共有998名学生,至少有三名学生的生日相同;④若集合A B C ,,,满足A B B C ÍÍ,,则A C Í; ⑤古代有一个国王想处死一位画师,背地里在2张签上都写上“死”字,再让画师抽“生死签”,画师抽到死签;⑥从1359,,,中任选两数相加,其和为偶数; 其中属于其中属于随机事件随机事件的有( )A .2个B .3个C .4个D .5个【例3】 指出下列事件是必然事件,不可能事件,还是随机事件:⑴六月天下雪;⑵同时掷两颗骰子,事件“点数之和不超过12”;⑶太阳从西边升起;⑷当100x ≥时,事件“lg 2x ≥”;⑸数列{}n a 是单调递增数列时,事件“20082009a a >”; ⑹骑车通过10个十字路口,均遇红灯.【例4】 指出下列事件是必然事件,不可能事件,还是随机事件:⑴在标准大气压下且温度低于0C 时,冰融化;⑵今天晚上下雨;⑶没有水分,种子发芽;⑷技术充分发达后,不需要任何技术充分发达后,不需要任何能量能量的“永动机”将会出现;⑸买彩票中一等奖;⑹若平面a 平面m b =,n b ∥,n a ∥,则m n ∥.【例5】 将一颗骰子连续投掷两次,观察落地后的点数.⑴写出这个试验的写出这个试验的基本事件空间基本事件空间和基本事件总数;⑵“两次点数相同”这一事件包含了几个基本事件; ⑶“两次点数之和为6”这一事件包含了几个基本事件; ⑷“两次点数之差为1”这一事件包含了几个基本事件.【例6】 一个口袋中有完全相同的2个白球,3个黑球,4个红球,从中任取2球,观察球的球,观察球的颜色颜色.⑴写出这个试验的基本事件空间;事件,点数之和为的事件是 事件,点数之差为点的事件是 事43214321高中数学讲义 点间的事件是。
数学必修二概率知识点

数学必修二概率知识点概率是数学中一个重要的分支,它是研究随机现象的规律性和可预测性的数学工具。
在数学必修二中,概率是一个重点内容,学生需要掌握一些基础概率知识和计算方法。
下面是数学必修二中的一些概率知识点。
1.事件与样本空间:-事件:事件是对一些结果或结果集合的描述,可以是简单事件或复合事件。
例如,抛一枚硬币的结果可以是正面或反面。
-样本空间:样本空间是所有可能结果的集合,用S表示。
例如,抛一枚硬币的样本空间为{正面,反面}。
2.事件的概率:-基本概率公式:对于有限样本空间S,事件A的概率P(A)等于A中元素的个数除以S中元素的个数。
例如,抛一枚硬币正面的概率是1/2 -相对频率法:通过实验反复重复进行一系列试验,记录事件发生的次数,然后事件发生的频率趋于稳定值,该稳定值就是事件的概率。
3.概率的性质:-0≤P(A)≤1:事件的概率介于0和1之间。
-P(S)=1:样本空间中所有可能事件的概率之和等于1-互斥事件:两个事件A和B不能同时发生,P(A∪B)=P(A)+P(B)。
-对立事件:两个事件A和B互为对立事件,发生A的概率等于1减去发生B的概率,即P(A)=1-P(B)。
4.条件概率:-条件概率:在事件B发生的条件下,事件A发生的概率。
记作P(A,B)。
例如,在已知一个人是男性的情况下,他是个体育迷的概率。
-乘法定理:P(A∩B)=P(A,B)P(B)=P(B,A)P(A),其中P(A∩B)表示事件A和事件B同时发生的概率,P(A,B)表示在事件B发生的条件下,事件A发生的概率。
5.独立事件:-独立事件:两个事件A和B相互独立,表示事件A的发生与事件B的发生无关。
P(A,B)=P(A),P(B,A)=P(B),P(A∩B)=P(A)P(B)。
-互不独立事件:事件A和事件B不是独立事件,表示事件A的发生与事件B的发生有关。
6.全概率公式与贝叶斯定理:-全概率公式:设B1、B2、..、Bn是样本空间S的一个划分(即两两互斥且并起来为S),则对任一事件A,有P(A)=P(A,B1)P(B1)+P(A,B2)P(B2)+...+P(A,Bn)P(Bn)。
高一随机事件的概率知识点

高一随机事件的概率知识点概述:随机事件概率是高中数学中的重要内容,通过对随机事件的概率进行研究和计算,可以帮助我们理解事件发生的可能性,以及在实际问题中的应用。
本文将介绍高一阶段涉及的随机事件的概率知识点。
一、基本概念在进一步讨论高一随机事件的概率知识点之前,我们先来了解一些基本概念。
1.1 随机试验随机试验指的是满足以下三个条件的试验:试验进行前无法确定出现的结果,试验的结果有多种可能性,每次试验的结果不会受到上一次结果的影响。
1.2 样本空间与事件在随机试验中,样本空间是指所有可能结果的集合,一般用"S"表示。
而事件是样本空间的子集,是指我们感兴趣的某些结果组成的集合。
1.3 事件的概率事件的概率是指该事件在所有可能结果中出现的可能性大小,通常用"P(A)"表示。
概率的取值范围在0到1之间,其中0表示不可能事件,1表示必然事件。
二、概率计算方法在计算随机事件的概率时,可以采用以下几种方法:2.1 等可能性原则当每个事件在样本空间中的出现是等可能的情况下,可以使用等可能性原则来计算事件的概率。
也就是说,如果一个随机试验有n个等可能的结果,而事件A有m个结果,那么事件A发生的概率可以表示为P(A) = m/n。
2.2 排列组合法当样本空间中的结果不是等可能的情况下,可以使用排列组合法来计算事件的概率。
排列和组合是高中数学中的基本概念,通过这些方法可以计算不同情况下事件的出现次数,从而求解事件的概率。
2.3 频率计算法频率计算法是通过实验的方式计算事件发生的概率。
当试验次数足够大时,事件发生次数与总试验次数的比值趋近于事件的概率。
三、概率的性质和应用在了解了概率计算方法之后,我们来探讨一些概率的性质和应用。
3.1 加法定理加法定理是指对于两个不相容事件A和B,它们的概率之和等于它们各自的概率之和。
即P(A∪B) = P(A) + P(B)。
3.2 乘法定理乘法定理是指对于两个相互独立的事件A和B,它们的概率乘积等于它们各自的概率之积。
高中数学 《随机事件的概率》课件 北师大必修3

定义
符号表示
若某事件发生当且仅当 事件A发生 交事件 且事件B发生 ,则称此事件为
(积事件) 事件A与事件B的交事件(或积事
A∩B
(或
AB )
件).
定义
符号表示
若A∩B为 不可能 事件,那么
互斥事件
A∩B=∅
事件A与事件B互斥.
若A∩B为 不可能 事件,A∪B
为
A∩B=∅且
对立事件 必然 事件,那么称事件A与事 A∪B=U
P(A)=
,P(B)=Leabharlann ,P(C)=.
又因为事件A、B、C是互斥事件,所以所求事件的概率为
P(A+B+C)=P(A)+P(B)+P(C)=
.
题型三 互斥事件、对立事件的概率
【例3】(12分)一盒中装有大小和质地均相同的12
只小球,其中5个红球,4个黑球,2个白球,1个绿
球.从中随机取出1球,求
(1)取出的小球是红球或黑球的概率;
1.从6个男生、2个女生中任选3人,则下列事件中必然
事件是 A.3个都是男生
答案:B
()
B.至少有1个男生
C.3个都是女生
D.至少有1个女生
2.从某班学生中任意找出一人,如果该同学的身高小于160 cm的概率为0.2,该同学的身高在[160,175]的概率为0.5,
那么该同学的身高超过175 cm的概率为 ( ) A.0.2 B.0.3 C.0.7 D.0.8 答案:B
4.概率的几个基本性质 (1)概率的取值范围: 0≤P(A)≤1 . (2)必然事件的概率P(E)= . 1
(3)不可能事件的概率P(F)= . 0
(4)互斥事件概率的加法公式.
①如果事件A与事件B互斥,则P(A∪B)=
概率_随机事件的概率.板块一.事件及样本空间.学生版

版块一:事件及样本空间1.必然现象与随机现象必然现象是在一定条件下必然发生某种结果的现象;随机现象是在相同条件下,很难预料哪一种结果会出现的现象.2.试验:我们把观察随机现象或为了某种目的而进行的实验统称为试验,把观察结果或实验的结果称为试验的结果.一次试验是指事件的条件实现一次.在同样的条件下重复进行试验时,始终不会发生的结果,称为不可能事件; 在每次试验中一定会发生的结果,称为必然事件;在试验中可能发生,也可能不发生的结果称为随机事件. 通常用大写英文字母A B C ,,,来表示随机事件,简称为事件.3.基本事件:在一次试验中,可以用来描绘其它事件的,不能再分的最简单的随机事件,称为基本事件.它包含所有可能发生的基本结果.所有基本事件构成的集合称为基本事件空间,常用Ω表示.版块二:随机事件的概率计算1.如果事件A B ,同时发生,我们记作A B ,简记为AB ; 2.一般地,对于两个事件A B ,,如果有()()()P AB P A P B =,就称事件A 与B 相互独立,简称A 与B 独立.当事件A 与B 独立时,事件A 与B ,A 与B ,A 与B 都是相互独立的. 3.概率的统计定义一般地,在n 次重复进行的试验中,事件A 发生的频率mn,当n 很大时,总是在某个常数附近摆动,随着n 的增加,摆动幅度越来越小,这时就把这个常数叫做事件A 的概率,记为()P A .从概率的定义中,我们可以看出随机事件的概率()P A 满足:0()1P A ≤≤. 当A 是必然事件时,()1P A =,当A 是不可能事件时,()0P A =. 4.互斥事件与事件的并互斥事件:不可能同时发生的两个事件叫做互斥事件,或称互不相容事件. 由事件A 和事件B 至少有一个发生(即A 发生,或B 发生,或A B ,都发生)所构成的事件C ,称为事件A 与B 的并(或和),记作C A B =. 若C A B =,则若C 发生,则A 、B 中至少有一个发生,事件A B 是由事件A 或B 所包含的基本事件组成的集合. 5.互斥事件的概率加法公式:若A 、B 是互斥事件,有()()()P A B P A P B =+ 若事件12nA A A ,,,两两互斥(彼此互斥),有1212()()()()n n P A A A P A P A P A =+++.知识内容板块一.事件及样本空间事件“12n A A A ”发生是指事件12n A A A ,,,中至少有一个发生. 6.互为对立事件不能同时发生且必有一个发生的两个事件叫做互为对立事件.事件A 的对立事件记作A . 有()1()P A P A =-. <教师备案>1.概率中的“事件”是指“随机试验的结果”,与通常所说的事件不同.基本事件空间是指一次试验中所有可能发生的基本结果.有时我们提到事件或随机事件,也包含不可能事件和必然事件,将其作为随机事件的特例,需要根据情况作出判断.2.概率可以通过频率来“测量”,或者说是频率的一个近似,此处概率的定义叫做概率的统计定义.在实践中,很多时候采用这种方法求事件的概率. 随机事件的频率是指事件发生的次数与试验总次数的比值,它具有一定的稳定性,总是在某个常数附近摆,且随着试验次数的增加,摆动的幅度越来越小,这个常数叫做这个随机事件的概率.概率可以看成频率在理论上的期望值,它从数量上反映了随机事件发生的可能性的大小,频率在大量重复试验的前提下可近似地看作这个事件的概率. 3.基本事件一定是两两互斥的,它是互斥事件的特殊情形.主要方法:解决概率问题要注意“四个步骤,一个结合”: 求概率的步骤是:第一步,确定事件性质⎧⎪⎪⎨⎪⎪⎩等可能事件 互斥事件独立事件 n 次独立重复试验,即所给的问题归结为四类事件中的某一种.第二步,判断事件的运算⎧⎨⎩和事件积事件,即是至少有一个发生,还是同时发生,分别运用相加或相乘事件.第三步,运用公式()()()()()()()()(1)k k n k n n m P A nP A B P A P B P A B P A P B n P k C p p -⎧=⎪⎪⎪+=+⎨⎪⋅=⋅⎪=-⎪⎩等可能事件: 互斥事件: 独立事件: 次独立重复试验:求解第四步,答,即给提出的问题有一个明确的答复.解决此类问题的关键是会正确求解以下六种事件的概率(尤其是其中的(4)、(5)两种概率): ⑴ 随机事件的概率,等可能性事件的概率; ⑵ 互斥事件有一个发生的概率; ⑶ 相互独立事件同时发生的概率;⑷ n 次独立重复试验中恰好发生k 次的概率;⑸ n 次独立重复试验中在第k 次才首次发生的概率; ⑹ 对立事件的概率.另外:要注意区分这样的语句:“至少有一个发生”,“至多有一个发生”,“恰好有一个发生”,“都发生”,“不都发生”,“都不发生”,“第k 次才发生”等.题型一 事件及样本空间典例分析【例1】 (2010安徽)甲罐中有5个红球,2个白球和3个黑球.乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以1A ,2A 和3A ,表示由甲罐取出的球是红球.白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件.则下列结论中正确的是 __ __(写出所有正确结论的编号).① ()25P B =;②()15|11P B A =;③事件B 与事件1A 相互独立; ④1A ,2A ,3A 两两互斥的事件;⑤()P B 的值不能确定,因为它与1A ,2A ,3A 中究竟哪一个发生有关.【例2】 下列事件:①同学甲竞选班长成功; ②两队球赛,强队胜利了;③一所学校共有998名学生,至少有三名学生的生日相同; ④若集合A B C ,,,满足A B B C ⊆⊆,,则A C ⊆;⑤古代有一个国王想处死一位画师,背地里在2张签上都写上“死”字,再让画师抽“生死签”,画师抽到死签; ⑥从1359,,,中任选两数相加,其和为偶数; 其中属于随机事件的有( ) A .2个 B .3个 C .4个 D .5个【例3】 指出下列事件是必然事件,不可能事件,还是随机事件:⑴六月天下雪;⑵同时掷两颗骰子,事件“点数之和不超过12”; ⑶太阳从西边升起;⑷当100x ≥时,事件“lg 2x ≥”; ⑸数列{}n a 是单调递增数列时,事件“20082009a a >”; ⑹骑车通过10个十字路口,均遇红灯.【例4】 指出下列事件是必然事件,不可能事件,还是随机事件:⑴在标准大气压下且温度低于0C 时,冰融化; ⑵今天晚上下雨;⑶没有水分,种子发芽;⑷技术充分发达后,不需要任何能量的“永动机”将会出现; ⑸买彩票中一等奖;⑹若平面α平面m β=,n β∥,n α∥,则m n ∥.【例5】 将一颗骰子连续投掷两次,观察落地后的点数.⑴写出这个试验的基本事件空间和基本事件总数; ⑵“两次点数相同”这一事件包含了几个基本事件; ⑶“两次点数之和为6”这一事件包含了几个基本事件;⑷“两次点数之差为1”这一事件包含了几个基本事件.【例6】 一个口袋中有完全相同的2个白球,3个黑球,4个红球,从中任取2球,观察球的颜色.⑴写出这个试验的基本事件空间; ⑵求这个试验的基本事件总数;⑶“至少有1个白球”这一事件包含哪几个基本事件;【例7】 同时转动如图所示的两个转盘,记转盘①得到的数为x ,转盘②得到的数为y ,结果为()x y ,.⑴写出这个试验的基本事件空间; ⑵求这个试验的基本事件总数;⑶“5x y +=”这一事件包含哪几个基本事件?“3x <且1y >”呢? ⑷“4xy =”这一事件包含哪几个基本事件?“x y =”呢?【例8】 在天气预报中,如果预报“明天的降水概率为85%”,这是指( )A .明天该地区约有85%的地区降水,其它15%的地区不降水B .明天该地区约有85%的时间降水,其它时间不降水C .气象台的专家中,有85%的人认为会降水,另外15%的专家认为不会降水D .明天该地区降水的可能性为85%【例9】 同时掷两枚骰子,点数之和在2~12点间的事件是 事件,点数之和为12点的事件是 事件,点数之和小于2或大于12的事件是 事件,点数之差为6点的事件是 事件.。
概率_随机事件的概率.板块一.事件及样本空间.学生版 普通高中数学复习讲义Word版
版块一:事件及样本空间 1.必然现象与随机现象必然现象是在一定条件下必然发生某种结果的现象;随机现象是在相同条件下,很难预料哪一种结果会出现的现象.2.试验:我们把观察随机现象或为了某种目的而进行的实验统称为试验,把观察结果或实验的结果称为试验的结果.一次试验是指事件的条件实现一次.在同样的条件下重复进行试验时,始终不会发生的结果,称为不可能事件;在每次试验中一定会发生的结果,称为必然事件;在试验中可能发生,也可能不发生的结果称为随机事件.通常用大写英文字母A B C ,,,来表示随机事件,简称为事件.3.基本事件:在一次试验中,可以用来描绘其它事件的,不能再分的最简单的随机事件,称为基本事件.它包含所有可能发生的基本结果.所有基本事件构成的集合称为基本事件空间,常用Ω表示.版块二:随机事件的概率计算1.如果事件A B ,同时发生,我们记作A B ,简记为AB ;2.一般地,对于两个事件A B ,,如果有()()()P AB P A P B =,就称事件A 与B 相互独立,简称A 与B 独立.当事件A 与B 独立时,事件A 与B ,A 与B ,A 与B 都是相互独立的.3.概率的统计定义一般地,在n 次重复进行的试验中,事件A 发生的频率m n,当n 很大时,总是在某个常数附近摆动,随着n 的增加,摆动幅度越来越小,这时就把这个常数叫做事件A 的概率,记为()P A .从概率的定义中,我们可以看出随机事件的概率()P A 满足:0()1P A ≤≤.当A 是必然事件时,()1P A =,当A 是不可能事件时,()0P A =.4.互斥事件与事件的并互斥事件:不可能同时发生的两个事件叫做互斥事件,或称互不相容事件.由事件A 和事件B 至少有一个发生(即A 发生,或B 发生,或A B ,都发生)所构成的事件C ,称为事件A 与B 的并(或和),记作C A B =. 若C A B =,则若C 发生,则A 、B 中至少有一个发生,事件A B 是由事件A 或B 所包含的基本事件组成的集合.5.互斥事件的概率加法公式:若A 、B 是互斥事件,有()()()P A B P A P B =+若事件12n A A A ,,,两两互斥(彼此互斥),有1212()()()()n n P A A A P A P A P A =+++.知识内容板块一.事件及样本空间事件“12n A A A ”发生是指事件12n A A A ,,,中至少有一个发生.6.互为对立事件不能同时发生且必有一个发生的两个事件叫做互为对立事件.事件A 的对立事件记作A . 有()1()P A P A =-.<教师备案>1.概率中的“事件”是指“随机试验的结果”,与通常所说的事件不同.基本事件空间是指一次试验中所有可能发生的基本结果.有时我们提到事件或随机事件,也包含不可能事件和必然事件,将其作为随机事件的特例,需要根据情况作出判断.2.概率可以通过频率来“测量”,或者说是频率的一个近似,此处概率的定义叫做概率的统计定义.在实践中,很多时候采用这种方法求事件的概率.随机事件的频率是指事件发生的次数与试验总次数的比值,它具有一定的稳定性,总是在某个常数附近摆,且随着试验次数的增加,摆动的幅度越来越小,这个常数叫做这个随机事件的概率.概率可以看成频率在理论上的期望值,它从数量上反映了随机事件发生的可能性的大小,频率在大量重复试验的前提下可近似地看作这个事件的概率.3.基本事件一定是两两互斥的,它是互斥事件的特殊情形.主要方法:解决概率问题要注意“四个步骤,一个结合”:求概率的步骤是:第一步,确定事件性质⎧⎪⎪⎨⎪⎪⎩等可能事件 互斥事件 独立事件 n 次独立重复试验,即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算⎧⎨⎩和事件积事件,即是至少有一个发生,还是同时发生,分别运用相加或相乘事件. 第三步,运用公式()()()()()()()()(1)k k n k n n m P A n P A B P A P B P A B P A P B n P k C p p -⎧=⎪⎪⎪+=+⎨⎪⋅=⋅⎪=-⎪⎩等可能事件: 互斥事件: 独立事件: 次独立重复试验:求解第四步,答,即给提出的问题有一个明确的答复.解决此类问题的关键是会正确求解以下六种事件的概率(尤其是其中的(4)、(5)两种概率): ⑴ 随机事件的概率,等可能性事件的概率;⑵ 互斥事件有一个发生的概率;⑶ 相互独立事件同时发生的概率;⑷ n 次独立重复试验中恰好发生k 次的概率;⑸ n 次独立重复试验中在第k 次才首次发生的概率;⑹ 对立事件的概率.另外:要注意区分这样的语句:“至少有一个发生”,“至多有一个发生”,“恰好有一个发生”,“都发生”,“不都发生”,“都不发生”,“第k 次才发生”等.题型一 事件及样本空间典例分析【例1】 (2010安徽)甲罐中有5个红球,2个白球和3个黑球.乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以1A ,2A 和3A ,表示由甲罐取出的球是红球.白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件.则下列结论中正确的是 __ __(写出所有正确结论的编号).① ()25P B =; ②()15|11P B A =; ③事件B 与事件1A 相互独立;④1A ,2A ,3A 两两互斥的事件;⑤()P B 的值不能确定,因为它与1A ,2A ,3A 中究竟哪一个发生有关.【例2】 下列事件:①同学甲竞选班长成功;②两队球赛,强队胜利了;③一所学校共有998名学生,至少有三名学生的生日相同;④若集合A B C ,,,满足A B B C ⊆⊆,,则A C ⊆; ⑤古代有一个国王想处死一位画师,背地里在2张签上都写上“死”字,再让画师抽“生死签”,画师抽到死签;⑥从1359,,,中任选两数相加,其和为偶数;其中属于随机事件的有( )A .2个B .3个C .4个D .5个【例3】 指出下列事件是必然事件,不可能事件,还是随机事件:⑴六月天下雪;⑵同时掷两颗骰子,事件“点数之和不超过12”;⑶太阳从西边升起;⑷当100x ≥时,事件“lg 2x ≥”;⑸数列{}n a 是单调递增数列时,事件“20082009a a >”;⑹骑车通过10个十字路口,均遇红灯.【例4】 指出下列事件是必然事件,不可能事件,还是随机事件:⑴在标准大气压下且温度低于0C 时,冰融化;⑵今天晚上下雨;⑶没有水分,种子发芽;⑷技术充分发达后,不需要任何能量的“永动机”将会出现;⑸买彩票中一等奖;⑹若平面α平面m β=,n β∥,n α∥,则m n ∥.【例5】 将一颗骰子连续投掷两次,观察落地后的点数.⑴写出这个试验的基本事件空间和基本事件总数;⑵“两次点数相同”这一事件包含了几个基本事件;⑶“两次点数之和为6”这一事件包含了几个基本事件;⑷“两次点数之差为1”这一事件包含了几个基本事件.【例6】 一个口袋中有完全相同的2个白球,3个黑球,4个红球,从中任取2球,观察球的颜色.⑴写出这个试验的基本事件空间;⑵求这个试验的基本事件总数;⑶“至少有1个白球”这一事件包含哪几个基本事件;【例7】 同时转动如图所示的两个转盘,记转盘①得到的数为x ,转盘②得到的数为y ,结果为()x y ,.⑴写出这个试验的基本事件空间;⑵求这个试验的基本事件总数;⑶“5x y +=”这一事件包含哪几个基本事件?“3x <且1y >”呢? ⑷“4xy =”这一事件包含哪几个基本事件?“x y =”呢?【例8】 在天气预报中,如果预报“明天的降水概率为85%”,这是指( )A .明天该地区约有85%的地区降水,其它15%的地区不降水B .明天该地区约有85%的时间降水,其它时间不降水C .气象台的专家中,有85%的人认为会降水,另外15%的专家认为不会降水D .明天该地区降水的可能性为85%【例9】 同时掷两枚骰子,点数之和在2~12点间的事件是 事件,点数之和为12点的事件是 事件,点数之和小于2或大于12的事件是 事件,点数之差为6点的事件是 事件.。
§1.1随机事件与样本空间
§1.1随机事件与样本空间§1.1 随机事件与样本空间随机事件与样本空间是概率论中的两个最基本的概念。
⼀、基本事件与样本空间对于随机试验来说,我们感兴趣的往往是随机试验的所有可能结果。
例如掷⼀枚硬币,我们关⼼的是出现正⾯还是出现反⾯这两个可能结果。
若我们观察的是掷两枚硬币的试验,则可能出现的结果有(正、正)、(正、反)、(反、正)、(反、反)四种,如果掷三枚硬币,其结果还要复杂,但还是可以将它们描述出来的,总之为了研究随机试验,必须知道随机试验的所有可能结果。
1、基本事件通常,据我们研究的⽬的,将随机试验的每⼀个可能的结果,称为基本事件。
因为随机事件的所有可能结果是明确的,从⽽所有的基本事件也是明确的,例如:在抛掷硬币的试验中“出现反⾯”,“出现正⾯”是两个基本事件,⼜如在掷骰⼦试验中“出现⼀点”,“出现两点”,“出现三点”,……,“出现六点”这些都是基本事件。
2、样本空间基本事件的全体,称为样本空间。
也就是试验所有可能结果的全体是样本空间,样本空间通常⽤⼤写的希腊字母Ω表⽰,Ω中的点即是基本事件,也称为样本点,常⽤ω表⽰,有时也⽤A,B,C 等表⽰。
在具体问题中,给定样本空间是研究随机现象的第⼀步。
例1、⼀盒中有⼗个完全相同的球,分别有号码1、2、3……10,从中任取⼀球,观察其标号,令=i {取得球的标号为i },=i 1,2,3,…,10. 则Ω={1,2,3,…,10},=i ω{标号为i },=i 1,2,3,…,101ω,2ω,…, 10ω为基本事件(样本点)例2 在研究英⽂字母使⽤状况时,通常选⽤这样的样本空间:Ω={空格,A,B,C,…,X,Y,Z}例 1,例 2讨论的样本空间只有有限个样本点,是⽐较简单的样本空间。
例3讨论某寻呼台在单位时间内收到的呼叫次数,可能结果⼀定是⾮负整数⽽且很难制定⼀个数为它的上界,这样,可以把样本空间取为Ω={0,1,2,3,…}这样的样本空间含有⽆穷个样本点,但这些样本点可以依照某种顺序排列起来,称它为可列样本空间。
(完整版)高中数学第三章第1节随机事件的概率(理)知识精讲人教新课标A版必修3
选项 B ,由于射击 10 次,中 8 次,能说明击中靶心的概率为 0.8,选项 B 的说法正确。
选项 C,由直线方程我们可以知道这是直线的点斜式方程,过定点(- 观的事实,因此是必然事件。故选项 C 的说法正确。
1, 0),这是客
选项 D ,根据先后抛掷两枚硬币,共出现四种情况:两面都正,两面都反,一个正面一
用心 爱心 专心
射击次数 n
10
20
50
100
200
500
击中靶心次数 m
8
19
44
92
178
455
m
击中靶心的频率
n
( 1)填写表中击中靶心的频率;
( 2)这个射手射击一次,击中靶心的概率约是多少?
【思路分析】
题意分析: 本题考查事件的频率这一基本概念,及频率与概率的关系的运用。
解题思路: 事件 A 出现的频数 nA 与试验次数 n 的比值即为事件 A 的频率,当事件 A
个反面, 一个反面一个正面, 那么出现两枚硬币都是反面的概率为 故答案为 D 。
1/4。选项 D 的说法错误。
【题后思考】 通过这几个选项, 我们充分认识到概率的基本概念及其性质的重要性,
因
此要熟练理解和掌握这些概念和性质。
例 6: 下列说法:( 1)频率反映的是事件发生的频繁程度,概率反映的是事件发生的可能
性的大小;( 2)做 n 次随机试验,事件 A 发生的频率 m 就是事件的概率; ( 3)百分率是频 n
率,但不是概率; (4)频率是不能脱离具体的 n 次试验的实验值,而概率是具有确定性的不
依赖于试验次数的理论值; ( 5)频率是概率的近似值,概率是频率的稳定值。 其中正确的是
随机事件的概率简介
随机事件的概率简介概率是数学中一个非常重要的概念,它用来描述随机事件发生的可能性大小。
在我们日常生活中,随机事件无处不在,比如抛硬币的结果、掷骰子的点数、抽奖的中奖概率等等。
本文将简要介绍随机事件的概率以及相关概念。
一、基本概念1. 随机事件随机事件指的是在一次试验中,可能发生也可能不发生的结果。
比如抛掷一枚硬币出现正面,就是一个随机事件。
2. 样本空间样本空间是指试验所有可能结果的集合。
以抛硬币为例,样本空间就是{正面,反面}。
3. 事件事件是样本空间的一个子集,表示我们关注的一些结果。
以抛硬币为例,出现正面就是一个事件。
二、概率的定义概率可以通过频率和古典概型来定义。
1. 频率定义频率定义是通过实验结果的频率来计算概率。
当试验次数趋于无穷大时,事件发生的频率将逐渐接近概率。
比如抛硬币,当我们大量重复抛掷硬币,并记录正面朝上的次数,我们就可以得到近似的概率。
2. 古典概型古典概型也称为等可能概型。
它适用于所有的试验结果等可能且有限的情况。
比如抛硬币,正反两面出现的概率都是1/2。
三、概率的性质概率具有以下几个性质:1. 非负性概率值始终大于等于0。
对于任何事件A,P(A) ≥ 0。
2. 规范性对于样本空间Ω,必然发生的概率为1。
即P(Ω) = 1。
3. 加法性对于两个互斥事件A和B,它们的概率之和等于它们分别的概率之和。
即P(A∪B) = P(A) + P(B)。
四、概率的计算方法概率的计算可以通过以下方法进行:1. 经典概型法当试验结果等可能且有限时,可以使用经典概型法计算概率。
比如抛硬币,正反两面的概率均为1/2。
2. 频率法当试验次数无限大时,可以通过频率法计算概率。
即记录实验结果的频率,当试验次数很大时,事件发生的频率接近概率。
3. 条件概率条件概率是指在已知某一事件发生的条件下,另一个事件发生的概率。
条件概率可以表示为P(A|B),读作“在事件B发生的条件下,事件A发生的概率”。
4. 乘法定理乘法定理用于计算多个事件同时发生的概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 / 4
版块一:事件及样本空间 1.必然现象与随机现象
必然现象是在一定条件下必然发生某种结果的现象;
随机现象是在相同条件下,很难预料哪一种结果会出现的现象.
2.试验:我们把观察随机现象或为了某种目的而进行的实验统称为试验,把观察结果或实验的结果称为试验的结果.
一次试验是指事件的条件实现一次.
在同样的条件下重复进行试验时,始终不会发生的结果,称为不可能事件;
在每次试验中一定会发生的结果,称为必然事件;
在试验中可能发生,也可能不发生的结果称为随机事件.
通常用大写英文字母A B C L ,,,来表示随机事件,简称为事件.
3.基本事件:在一次试验中,可以用来描绘其它事件的,不能再分的最简单的随机事件,称为基本事件.它包含所有可能发生的基本结果.
所有基本事件构成的集合称为基本事件空间,常用Ω表示.
版块二:随机事件的概率计算
1.如果事件A B ,同时发生,我们记作A B I ,简记为AB ;
2.一般地,对于两个事件A B ,,如果有()()()P AB P A P B =,就称事件A 与B 相互独立,简称A 与B 独立.当事件A 与B 独立时,事件A 与B ,A 与B ,A 与B 都是相互独立的.
3.概率的统计定义
一般地,在n 次重复进行的试验中,事件A 发生的频率m n
,当n 很大时,总是在某个常数附近摆动,随着n 的增加,摆动幅度越来越小,这时就把这个常数叫做事件A 的概率,记为()P A .
从概率的定义中,我们可以看出随机事件的概率()P A 满足:0()1P A ≤≤.
当A 是必然事件时,()1P A =,当A 是不可能事件时,()0P A =.
4.互斥事件与事件的并
互斥事件:不可能同时发生的两个事件叫做互斥事件,或称互不相容事件.
由事件A 和事件B 至少有一个发生(即A 发生,或B 发生,或A B ,都发生)所构成的事件C ,称为事件A 与B 的并(或和),记作C A B =U .
若C A B =U ,则若C 发生,则A 、B 中至少有一个发生,事件A B U 是由事件A 或B 所包含的基本事件组成的集合.
5.互斥事件的概率加法公式:
若A 、B 是互斥事件,有()()()P A B P A P B =+U
若事件12n A A A L ,,,两两互斥(彼此互斥),有1212()()()()n n P A A A P A P A P A =+++U UL U L .
事件“12n A A A U UL U ”发生是指事件12n A A A L ,
,,中至少有一个发生. 6.互为对立事件
知识内容
板块一.事件及样本空间
不能同时发生且必有一个发生的两个事件叫做互为对立事件.事件A 的对立事件记作A . 有()1()P A P A =-.
<教师备案>
1.概率中的“事件”是指“随机试验的结果”,与通常所说的事件不同.基本事件空间是指一次试验中所有可能发生的基本结果.有时我们提到事件或随机事件,也包含不可能事件和必然事件,将其作为随机事件的特例,需要根据情况作出判断.
2.概率可以通过频率来“测量”,或者说是频率的一个近似,此处概率的定义叫做概率的统计定义.在实践中,很多时候采用这种方法求事件的概率.
随机事件的频率是指事件发生的次数与试验总次数的比值,它具有一定的稳定性,总是在某个常数附近摆,且随着试验次数的增加,摆动的幅度越来越小,这个常数叫做这个随机事件的概率.概率可以看成频率在理论上的期望值,它从数量上反映了随机事件发生的可能性的大小,频率在大量重复试验的前提下可近似地看作这个事件的概率.
3.基本事件一定是两两互斥的,它是互斥事件的特殊情形.
主要方法:
解决概率问题要注意“四个步骤,一个结合”:
求概率的步骤是:
第一步,确定事件性质⎧⎪⎪⎨⎪⎪⎩等可能事件 互斥事件 独立事件 n 次独立重复试验
,即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算⎧⎨⎩
和事件积事件,即是至少有一个发生,还是同时发生,分别运用相加或相乘事件. 第三步,运用公式()()()()()()()()(1)
k k n k n n m P A n P A B P A P B P A B P A P B n P k C p p -⎧=⎪⎪⎪+=+⎨⎪⋅=⋅⎪=-⎪⎩等可能事件: 互斥事件: 独立事件: 次独立重复试验:求解
第四步,答,即给提出的问题有一个明确的答复.
解决此类问题的关键是会正确求解以下六种事件的概率(尤其是其中的(4)、(5)两种概率): ⑴ 随机事件的概率,等可能性事件的概率;
⑴ 互斥事件有一个发生的概率;
⑴ 相互独立事件同时发生的概率;
⑴ n 次独立重复试验中恰好发生k 次的概率;
⑴ n 次独立重复试验中在第k 次才首次发生的概率;
⑴ 对立事件的概率.
另外:要注意区分这样的语句:“至少有一个发生”,“至多有一个发生”,“恰好有一个发生”,“都发生”,“不都发生”,“都不发生”,“第k 次才发生”等.
题型一 事件及样本空间
【例1】 (2010安徽)
甲罐中有5个红球,2个白球和3个黑球.乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以1A ,2A 和3A ,表示由甲罐取出的球是红球.白球和黑球的典例分析
3 / 4
事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件.则下列结论中正确的是 __ __(写出所有正确结论的编号).
① ()25
P B =; ②()15|11
P B A =; ③事件B 与事件1A 相互独立;
④1A ,2A ,3A 两两互斥的事件;
⑤()P B 的值不能确定,因为它与1A ,2A ,3A 中究竟哪一个发生有关.
【例2】 下列事件:
⑴同学甲竞选班长成功;
⑴两队球赛,强队胜利了;
⑴一所学校共有998名学生,至少有三名学生的生日相同;
⑴若集合A B C ,,,满足A B B C ⊆⊆,
,则A C ⊆; ⑴古代有一个国王想处死一位画师,背地里在2张签上都写上“死”字,再让画师抽“生死签”,画师抽到死签;
⑴从1359,,,中任选两数相加,其和为偶数;
其中属于随机事件的有( )
A .2个
B .3个
C .4个
D .5个
【例3】 指出下列事件是必然事件,不可能事件,还是随机事件:
⑴六月天下雪;
⑴同时掷两颗骰子,事件“点数之和不超过12”;
⑴太阳从西边升起;
⑴当100x ≥时,事件“lg 2x ≥”;
⑴数列{}n a 是单调递增数列时,事件“20082009a a >”;
⑴骑车通过10个十字路口,均遇红灯.
【例4】 指出下列事件是必然事件,不可能事件,还是随机事件:
⑴在标准大气压下且温度低于0C o 时,冰融化;
⑴今天晚上下雨;
⑴没有水分,种子发芽;
⑴技术充分发达后,不需要任何能量的“永动机”将会出现;
⑴买彩票中一等奖;
⑴若平面αI 平面m β=,n β∥,n α∥,则m n ∥.
【例5】 将一颗骰子连续投掷两次,观察落地后的点数.
⑴写出这个试验的基本事件空间和基本事件总数;
⑴“两次点数相同”这一事件包含了几个基本事件;
⑴“两次点数之和为6”这一事件包含了几个基本事件;
⑴“两次点数之差为1”这一事件包含了几个基本事件.
【例6】 一个口袋中有完全相同的2个白球,3个黑球,4个红球,从中任取2球,观察球的颜色.
⑴写出这个试验的基本事件空间;
⑴求这个试验的基本事件总数;
⑴“至少有1个白球”这一事件包含哪几个基本事件;
【例7】 同时转动如图所示的两个转盘,记转盘⑴得到的数为x ,转盘⑴得到的数为y ,结果为()x y ,.
⑴写出这个试验的基本事件空间;
⑴求这个试验的基本事件总数;
⑴“5x y +=”这一事件包含哪几个基本事件?“3x <且1y >”呢?
⑴“4xy =”这一事件包含哪几个基本事件?“x y =”呢?
【例8】 在天气预报中,如果预报“明天的降水概率为85%”,这是指( )
A .明天该地区约有85%的地区降水,其它15%的地区不降水
B .明天该地区约有85%的时间降水,其它时间不降水
C .气象台的专家中,有85%的人认为会降水,另外15%的专家认为不会降水
D .明天该地区降水的可能性为85%
【例9】 同时掷两枚骰子,点数之和在2~12点间的事件是 事件,点数之和为12点的事件是
事件,点数之和小于2或大于12的事件是 事件,点数之差为6点的事件是 事件.。