电力机车

合集下载

简述电力机车的优劣

简述电力机车的优劣

简述电力机车的优劣
电力机车是使用电力驱动的铁路机车,相对于传统的内燃机车,具有以下优势:
1. 环保节能:电力机车使用电能作为动力源,不产生尾气排放,减少了对环境的污染。

由于电力机车的动力转换效率较高,相比内燃机车,能源利用率更高,节约能源。

2. 电动性能优越:电力机车在起动和加速方面表现更出色,能够更快地达到设定的速度,并具备更好的牵引力和制动性能。

这样可以提高列车的运行效率和安全性。

3. 维护成本低:相比内燃机车,电力机车的维护成本相对较低。

电力机车的动力系统相对简单,不需要定期更换机油和滤芯等部件,减少了维护费用。

4. 噪音和振动小:电力机车在运行过程中噪音和振动相对较小,可以提升列车的乘坐舒适度,并减少对附近居民的噪音干扰。

然而,电力机车也存在一些劣势:
1. 供电设备限制:电力机车需要有供电设备以提供电能,如果供电设备建设不完善或遭受灾害等影响,会导致机车无法正常运行。

2. 依赖电网:电力机车需要依赖电力网进行供电,如果电力网供电不稳定或存在故障,会影响机车的运行和可靠性。

3. 建设成本较高:与内燃机车相比,电力机车的建设成本较高。

为了实现电力机车的运行,需要进行供电设备的建设和改造,相关投资较大。

综上所述,电力机车在运行效率、环保性和维护成本方面具备优势,但也存在一些限制,需要在供电设备和电力网等方面进行改进和完善。

铁路机车种类及应用

铁路机车种类及应用

铁路机车种类及应用铁路机车是指在铁路运输系统中,用来牵引列车或铁路车辆的机械设备。

铁路机车种类繁多,主要分为以下几类:1. 电力机车:电力机车是指使用电力作为动力的机车。

它的主要优点是能够充分利用电力机车行驶时所产生的制动能量,将其回收为电能,从而实现能量回收和节能减排。

电力机车还具有加速性能好、运行速度快、负载能力大等优点,因此在现代铁路运输中得到了广泛应用。

2. 内燃机车:内燃机车是指采用燃油等燃料作为动力的机车。

它具有经济性好、使用方便、机动性强等优点,因此在一些铁路运输系统中广泛应用。

3. 柴电机车:柴电机车是一种同时使用内燃机和电力机车技术的机车。

它采用柴油机作为动力源,同时还配备了发电机和电动机,可以实现电力机车和内燃机车的双重功能。

柴电机车的优点是能够兼顾电力机车和内燃机车的优点,使其更加适用于各种铁路运输环境。

4. 蓄电池机车:蓄电池机车是指使用蓄电池作为动力源的机车。

它的主要优点是免去了传统机车对导线和变电站的依赖,因此可以在无电化铁路线路上独立运行。

蓄电池机车还具有静音、无污染等优点,因此在一些城市轨道交通系统中得到了广泛应用。

除了以上几类机车,还有一些特殊用途的机车,如矿用机车、拖车机车、液压机车等。

铁路机车的应用非常广泛,主要用于牵引铁路列车、移动重型机器设备、矿山运输、工厂内部运输、港口装卸等。

在铁路运输中,机车的作用是非常重要的。

它不仅能够提高运输效率,还能够减少劳动力成本、节省能源、降低排放等。

总之,铁路机车多种多样,各具特色,在铁路运输中具有不可替代的作用。

随着铁路运输的不断进步和技术的不断发展,机车的性能和功能也在不断得到提升。

相信在未来的发展中,铁路机车将会发挥更加重要的作用。

电力机车的概念

电力机车的概念

电力机车的概念电力机车是指通过电力传动来驱动车辆运行的一种列车。

它与传统的内燃机车相比,具有更多的优势和发展潜力。

在过去的几十年里,电力机车在全球范围内得到了广泛的应用和推广,成为现代化铁路运输系统的重要组成部分。

首先,电力机车的环保性是其最大的优势之一。

相比于传统的内燃机车,电力机车使用电能作为动力源,无需燃料燃烧,从而减少了大量的废气和尾气排放。

这不仅有利于减少污染物的排放,保护环境,也有助于改善空气质量,减少对人体健康的影响。

随着全球对环境保护的呼吁日益高涨,电力机车的推广将成为未来铁路运输的重要发展方向。

其次,电力机车的经济性也是其吸引力之一。

与传统内燃机车相比,电力机车的能耗更低,运行成本更低廉。

电能的价格相对稳定且较低,能够有效降低铁路运输的能源消耗,提高运营效率。

此外,电力机车由于采用电力传动,摩擦和磨损较小,维护成本相对较低,减少了停车维修时间,提高了列车的可靠性和运行效率。

因此,从经济角度考虑,电力机车具有明显的优势。

此外,电力机车还具备灵活性和可持续性的特点。

电力机车的动力源来自电能,并可以通过供电系统实时供给和控制。

这意味着电力机车可以根据实际需要灵活调整运行速度和负载,适应不同条件下的运输需求。

同时,电力机车采用了先进的能量回收技术,能够将制动能量转化为电能进行回收利用,减少能量的浪费,实现能源的可持续利用。

这些特点使得电力机车在应对不同运输需求和面对未来能源挑战时更具有优势和发展潜力。

然而,电力机车的发展也面临着一些挑战。

首先,电力机车所依赖的供电系统需要建设和维护,这对铁路基础设施提出了更高的要求。

其次,电力机车的电池技术尚不成熟,其续航能力和充电速度等方面还需要进一步改进。

此外,电力机车在极端气候条件下的可靠性和适应性也需要加强。

针对这些挑战,铁路部门和相关企业需要加大研发投入,提高供电系统的可靠性和容量,推动电池技术的发展和创新,以提升电力机车的实用性和竞争力。

综上所述,电力机车作为一种环保、经济、灵活和可持续的列车型号,在现代铁路运输中发挥着重要作用。

电力机车的分类

电力机车的分类

--电力机车的分类:1.按用途分:客运电力机车:用来牵引客运列车。

其特点是牵引力不大,运行速度高:货运电力机车:用来牵引重载货物列车。

其特点是牵引力大,速度不高:客车两用电力机车:用来牵引客运或货运列车。

其牵引力和速度介于客,货电力机车之间:调车电力机车:用来在站场上编组列车。

机车大的功率不大,速度和牵引力均较低2.按传动形式分:⑴具有个别传动的电力机车:电力机车每一轮对都由单独的牵引电动机驱动。

这些轮对称为动轮或动轴。

⑵具有组合传动的电力机车:电力机车上某几个轮对互相连接成组,然后由一台牵引电动机驱动。

4.按供电电流制-传动型式分:直流供电-直流牵引电动机驱动的直直型电力机车- :交流供电-直(脉)流牵引电动机驱动的交直型电力机车:交流供电-变流器环节-三相交流异步电动机驱动的交直交型电力机车:交流供电-变频器环节-三相交流同步电动机驱动的交交型电力机车--交流供电按接触网供电频率的不同可分为单相低频制和单相工频制--我国电气化铁路始建于1958年,采用单相工频交流供电制,接触网电压25KV--机车的工作特点:⑴机车结构简单,造价低,经济性好⑵直流串励电动机做牵引电机,牵引性能好,调速范围广,过载能力强⑶供电效率低。

⑷基建投资大⑸直流电力机车由于受牵引力电动机功率的限制,其最高速度一般为35—100km/h,因此不适于干线轨道运输,多应用于工矿及城市轨道交通运输中--交直型整流器电力机车工作原理是将接触网供给的单相工频交流电,经机车内部的牵引变压器降压,再经整流器装置将交流转换为直流,然后向直流(脉冲)牵引电动机供电,从而产生引力牵引列车运行。

P11 --脉动方式如增加第二气隙,在电气线路中将牵引电动机励磁绕组两端并联磁场分路电阻,利用励磁绕组电流变化的滞后作用,将交流高频成分引入分路电阻支路,净化电机电流,减少电机换向的火花等级以改善牵引电机的换向--牵引电动机采用适合牵引的串励或复励电动机--交直交型电力机车各环节作用1.电源交流器2.中间回路3.电动机侧逆变器4.电抗器5.牵引电动机--交流传动电力机车,由于应用了四象限脉冲整流器,使得机车在1/4额定功率以上是的功率因数接近于1 --列车的整个运行过程概括起来只有启动,调速,制动三种基本的运行,其都是速度的调节--常用的机车调速方案有两种1.改变牵引电动机端电压UD的调压调速2.改变磁通量ψ的磁削调速--磁场削弱调速一般是在牵引电动机端电压已达到额定电压,而牵引电动机电流比额定值小时实施。

电力机车运用与规章

电力机车运用与规章

电力机车运用与规章
引言概述:
电力机车是一种重要的铁路运输工具,其运用与规章对于铁路运输的安全和效率具有重要意义。

本文将从五个大点来阐述电力机车的运用与规章,并详细介绍每一个大点下的小点内容。

正文内容:
一、电力机车的基本概念和分类
1.1 电力机车的定义和特点
1.2 电力机车的分类和用途
二、电力机车的运行原理和技术要求
2.1 电力机车的动力来源和传动方式
2.2 电力机车的牵引力和制动方式
2.3 电力机车的供电系统和路线要求
三、电力机车的安全运行规章
3.1 电力机车的驾驶员要求和培训
3.2 电力机车的行车规定和信号系统
3.3 电力机车的防护装置和应急措施
四、电力机车的维护与检修规程
4.1 电力机车的定期检查和维护
4.2 电力机车的故障排除和修理
4.3 电力机车的更新和改造要求
五、电力机车的环保与能源节约
5.1 电力机车的排放控制和减少污染
5.2 电力机车的能源利用和节约措施
5.3 电力机车的可持续发展和未来展望
总结:
综上所述,电力机车的运用与规章对于铁路运输的安全和效率至关重要。

我们需要了解电力机车的基本概念和分类,掌握其运行原理和技术要求,遵守相关的安全运行规章,严格执行维护与检修规程,同时注重环保与能源节约。

惟独充分理解和遵守这些规定,才干保障电力机车的安全运行,为铁路运输的发展做出贡献。

1.电力机车总体介绍

1.电力机车总体介绍

(3)曲线通过性能好。机车在曲线上运行时要遇到 几何位移和横向力等特殊问题。高速下能否安全顺 利的通过曲线,尽量减轻缘轨间的磨耗,与转向架、 支承装置性能的优劣,有很大关系。 (4)黏着重量利用系数大。机车在牵引运行中,其 黏着重量的大小必然要发生变化,轴重要发生转移。 减载最大的轴将首先发生空转,牵引力就受到了严 重限制。轴重转移的程度与转向架的结构、尺寸有 直接的关系。为保证充分发挥机车牵引力,在这方 面也必须进行精心的计算与试验,以确定最佳方案。
(2)字母表示法 规则:以英文字母表示动轴数,如A即1,B即2,C即 3,D即4等。注脚“0”表示每一动轴为单独驱动; 无注脚表示动轴为成组驱动。 这样,上例中2-2表示为B-B,30-30表示为C0-C0; 20-20-20-20表示为B0-B0-B0-B0。 各数字或字母之间的连接号“-”往往被省略,因 此上例常写成BB;C0C0;B0B0B0B0。


空气管路系统包括空气制动机管路系统、控制气路 系统和辅助气路系统三部分,分别实现机车的空气 制动、机车上各种设备的风动控制,并向各种风动 器械供风。 电力机车钳工是指使用工、夹、量具、仪器仪表及 检修设备进行电力机车机械装置维护、修理和调试 的人员。按国家职业标准电力机车钳工共分为五个 等分,包括初级工(国家职业资格五级)、中级工 (国家职业资格四级)、高级工(国家职业资格三 级)、技师(国家职业资格二级)和高级技师(国 家职业资格一级)。
(5)在满足上述各项要求的前提下,还要求转向架 的结构简单,造价低,工作可靠,维修量小,甚至 除旋轮外,实现百万公里无维修。 由上面分析可知,电力机车机械部分的性能好坏, 将直接影响到机车牵引力的充分发挥和运行的安全 平稳。提高机车设计制造水平是提高机械部分的质 量和性能的一个十分重要的方面。

电力机车工作原理

电力机车工作原理

电力机车工作原理电力机车是一种使用电力作为动力源的机车,其工作原理是通过电能转换为机械能来驱动车辆运行。

下面将详细介绍电力机车的工作原理。

1. 电力供应系统:电力机车的电能供应系统主要包括接触网、牵引变压器、整流器和电池组。

接触网通过接触器将电能传输到机车上,牵引变压器将高压电能转换为适合机车使用的低压电能,整流器将交流电能转换为直流电能供给电动机,而电池组则用于启动机车和提供应急电源。

2. 牵引系统:电力机车的牵引系统由电动机、牵引变压器和控制电路组成。

电动机是电力机车的主要动力装置,通过转化电能为机械能来驱动车辆行驶。

牵引变压器用于调节电动机的电压和电流,以满足不同的运行条件和牵引力要求。

控制电路则负责控制电动机的启停、速度调节和制动等功能。

3. 制动系统:电力机车的制动系统包括电阻制动和再生制动两种方式。

电阻制动通过将电动机接入电阻来产生制动力,将机械能转化为电能消耗。

再生制动则利用电动机的特性,在牵引转换为制动时将部份电能回馈到电力供应系统中,实现能量的回收和利用。

4. 辅助系统:电力机车的辅助系统包括空气压缩机、辅助发机电、冷却系统等。

空气压缩机用于提供制动系统和辅助设备所需的空气压力。

辅助发机电则通过电动机的转动产生电能,为辅助设备供电。

冷却系统用于保持电动机和电力电子设备的温度在正常范围内,确保机车的正常运行。

5. 控制系统:电力机车的控制系统由主控制器、控制面板和传感器等组成。

主控制器负责接收驾驶员的指令,并控制电动机的运行状态。

控制面板提供给驾驶员显示机车运行状态和操作控制的界面。

传感器用于监测机车各部件的状态,反馈给控制系统进行相应的调节和保护。

综上所述,电力机车通过电能转换为机械能来驱动车辆运行。

其工作原理涉及电力供应系统、牵引系统、制动系统、辅助系统和控制系统等多个方面。

掌握电力机车的工作原理对于理解其运行机制和故障排除具有重要意义。

铁道机车分类

铁道机车分类

铁道机车分类一、电力机车电力机车是指通过电力传动装置驱动的铁道机车。

它以电能为动力源,通过电机将电能转化为机械能,从而驱动车辆行驶。

电力机车具有动力强、加速快、起动稳定等特点,适用于长途运输和重载运输。

1. 直流电力机车直流电力机车是最早出现的一种电力机车。

它的电力系统采用直流供电,主要由牵引变流器和电动机组成。

直流电力机车具有结构简单、制造成本低等优点,但由于直流电力传输距离有限,限制了其使用范围。

2. 交流电力机车交流电力机车是一种采用交流供电的电力机车。

它的电力系统采用交流变频技术,通过变频器将高压交流电转换为低压交流电供给电动机。

交流电力机车具有电能传输距离远、能耗低、牵引力大等优点,适用于高速运输和大功率牵引。

二、内燃机车内燃机车是指以内燃机为动力源的铁道机车。

它通过燃烧燃料产生高温高压气体,推动活塞做功,从而驱动车辆行驶。

内燃机车具有灵活性高、加速快、适应性强等特点,适用于短途运输和灵活调度。

1. 汽油机车汽油机车是一种使用汽油作为燃料的内燃机车。

它的内燃机采用汽油发动机,通过点火、燃烧产生高温高压气体推动活塞运动,驱动车辆行驶。

汽油机车具有启动快、加速性能好等优点,但燃料消耗较大。

2. 柴油机车柴油机车是一种使用柴油作为燃料的内燃机车。

它的内燃机采用柴油机,通过压缩燃烧产生高温高压气体推动活塞运动,驱动车辆行驶。

柴油机车具有燃料消耗低、牵引力大等优点,适用于长途运输和大功率牵引。

三、动车组动车组是一种由多个动力车和拖车车组成的铁道机车。

它的每个车厢都配备有独立的动力装置和控制系统,能够独立运行或组成列车运行。

动车组具有快速换乘、灵活调度等优点,适用于城际和高速铁路运输。

1. 电力动车组电力动车组是一种采用电力传动装置的动车组。

它的每个车厢都配备有电机和变流装置,通过电能传输驱动车辆行驶。

电力动车组具有加速快、运行稳定等优点,适用于高速铁路和重载运输。

2. 内燃动车组内燃动车组是一种采用内燃机传动装置的动车组。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电力机车电力机车由牵引电动机驱动车轮的机车。

电力机车因为所需电能由电气化铁路供电系统的接触网或第三轨供运行中的电力机车给,所以是一种非自带能源的机车。

电力机车具有功率大、过载能力强、牵引力大、速度快、整备作业时间短、维修量少、运营费用低、便于实现多机牵引、能采用再生制动以及节约能量等优点。

使用电力机车牵引车列,可以提高列车运行速度和承载重量,从而大幅度地提高铁路的运输能力和通过能力。

目录简介历史沿革构造相关信息分类简介英文名称:Electric locomotives电力机车是指从外界撷取电力作为能源驱动的铁路机车,电源包括架空电缆、第三轨、电池等。

同样使用牵引电动机的电传动柴油机车、燃气机车等不属于电力机车。

春城号由牵引电动机驱动车轮的机车。

电力机车因为所需电能由电气化铁路供电系统的接触网或第三轨供给,所以是一种非自带能源的机车。

电力机车具有功率大、过载能力强、牵引力大、速度快、整备作业时间短、维修量少、运营费用低、便于实现多机牵引、能采用再生制动以及节约能量等优点。

使用电力机车牵引车列,可以提高列车运行速度和承载重量,从而大幅度地提高铁路的运输能力和通过能力。

电力机车起动加速快,爬坡能力强,工作不受严寒的影响,运行时没有煤烟,所以在运输繁忙的铁路干线和隧道多、坡度陡的山区线路上更能发挥优越性。

此外,电力旅客列车,可为客车空气调节和电热取暖提供便利条件。

电力机车由于电气化铁路基本建设投资大,所以应用不如内燃机车和蒸汽机车广泛。

电力机车没有空气污染,且善于保养,牵引列车速度可达几百千米,所以高速列车都是电力机车牵引的。

电力机车另一个优点就是能够在短时间内完成启动和制动,这个性能比蒸汽机车和内燃机车要优秀很多。

所以在世界范围内,正大力发展电气化铁路。

在绿色环保的今天,电力机车的发展更加受到重视。

运行中的电力机车电力机车的牵引力和爬坡能力比内燃机车和蒸汽机车要大得多,在载重过大或坡度较大的情况下无需采用多机牵引。

电力机车最大的优点就是无限行程,只要车辆不驶离电气化段,就不会“饿倒”(故障除外)。

无需像内燃机车和蒸汽机车那样经常补充燃料。

由于我国的电气化铁路较少,所以会选择把原本无电气化的铁路经电气化改造。

电气化改造后的铁路速度将从100-120km/h提高到160-200km/h,这样不仅能缩短列车的运输时间,还能达到5000t以上的货运列车运输。

如今,走向“高铁时代”的中国,正大力发展电气化铁路。

历史沿革历史简述1835年荷兰的斯特拉廷和贝克尔两人就试着制以电池供电的二轴小型铁路车辆。

1842年苏格兰人R.戴维森首先造出一台用40组电池供电的重5吨的标准轨距电力机车。

由于电动机很原始,机车只能勉强工作。

1879年德国人W.von西门子驾驶一辆他设计的小型电力机车,拖着乘坐18人的三辆车,在柏林夏季展览会上表演。

机车电源由外部150伏直流发电机供应,通过两轨道中间绝缘的第三轨向机车输电。

这是电力机车首次成功的实验。

电力机车用于营业是从地下铁道开始的。

1890年英国伦敦首先用电力机车在 5.6公里长的一段地下铁道上牵引车辆。

干线电力机车在1895年应用于美国的巴尔的摩铁路隧道区段,采用675伏直流电,自重97吨,功率1070千瓦。

19世纪末,德国对交流电力机车进行了试验,1903年德国三相交流电力机车创造了每小时210.2公里的高速纪录。

来到中国中国于1914年在抚顺煤矿使用1500伏直流电力机车。

干线铁路电力机车采用单相交流25000伏50赫电流制。

1958年制成第一台以引燃管整流的“韶山”型电力机车。

1968年改用硅整流器成功,称“韶山1”型,持续功率为3780千瓦。

近年来干线电力机车向大功率、高速、耐用方面发展,客运电力机车速度已从每小时160公里增加到200公里,并向250公里迈进。

各国制造的电力机车电压制较复杂,不便于国际间铁路联运过轨。

近年来国际上已定出几种电力机车用标准电压。

直流电压为600伏(非优先选用)、750伏、1500伏和3000伏。

单相交流电压6250伏(非优先选用)、工频50或60赫,电压15000伏、工频赫,电压25000伏、工频50或60赫等几种。

构造简述电力机车由机械部分、电气部分和空气管路系统三部分组成。

机械部分包括走行部和车体。

走行部是承受车辆自重和载重在钢轨上行走的部件,由2轴或3轴转向架以及安装在其上的弹簧悬挂装置、基础制动装置、轮对和轴箱、齿轮传动装置和牵引电动机悬挂装置组成。

车体用来安放各种设备,同时也是乘务人员的工作场所,由底架、司机室、台架、侧墙和车顶等部分组成。

司机室设在车体的两端,有走廊相通。

司机室内安装控制设备,如司机控制器、制动阀、按钮开关、监测仪表和信号灯等。

两司机室之间用来安装机车的全部主要设备,有时划分成小室,分别安装辅助机组、开关设备、换流装置以及牵引变压器等。

部分电气设备如受电弓、主断路器和避雷器等则安装在车顶上。

车钩缓冲装置安装在车体底架的两端牵引梁上。

车体和设备的重量通过车体支承装置传递到转向架上,车体支承装置并起传递牵引力与制动力的作用。

电气部分机车上的各种电气设备及其连接导线。

包括主电路、辅助电路、控制电路以及它们的保护系统。

①主电路:电力机车的最重要组成部分。

它决定机车的基本性能,由牵引电动机以及与之相连接的电气设备和导线共同组成。

在主电路中流过全部的牵引负载电流,其电压为牵引电动机的工作电压,或者接触网的网压,所以主电路是电力机车上的高电压大电流的动力回路。

它将接触网上的电能转变成列车牵引所电力机车制动机故障分析装置需的牵引动力。

②辅助电路:供电给电力机车上的各种辅助电机的电气回路。

辅助电机驱动多种辅助机械设备,如冷却牵引电动机和制动电阻用的通风机,供给各种气动器械所需压缩空气的压缩机等。

辅助电机可以是直流的,也可以是异步的。

③控制电路:由司机控制器和控制电器的传动线圈和联锁触头等组成的低压小功率电路。

控制电路的作用是使机车主电路和辅助电路中的各种电器按照一定的程序动作。

这样,电力机车即可按照司机的意图运行。

④保护系统:保证上述各种电路的设施。

空气管路系统按用途可分为:①供给机车和车辆制动所需压缩空气的空气制动气路系统。

②供给机车电气设备所需压缩空气的控制气路系统。

③供给机车撒砂装置、风嗽叭和刮雨器等辅助装置所需压缩空气的辅助气路系统。

作用:是风压的通道,为机车受电弓上升,机车制动,机车散热提供风源相关信息高铁电力动车组的车型CRH1CRH2CRH3CRH380ACRH380BCRH380CCRH380DCRH5CRH6分类简述电力机车按使用场合可分为:工矿电力机车和干线电力机车两类。

工矿电力机车多采用直流制,功率和速度一般比干线电力机车小,习惯上按机车的粘着重量分级,如150吨,100吨,85吨,70吨,60吨,50吨和更轻的等级。

较大吨位机车用于标准轨距线路,较轻型的机车多用于各种窄轨距线路。

干线电力机车按用途可分为客运电力机车,货运电力机车,客货两用电力机车和调车电力机车四种。

按照电气化铁路采用的电流制来分类,干线电力机车可分为两类。

HXD3型货运电力机车直流电力机车装有直流串励牵引电动机的机车,接触网电压为1500伏或3000伏直流电压。

直流电力机车的起动和速度调节以往是借助于调节起动电阻和牵引电动机的串联-并联转换来完成的。

但这种起动和调速方式不能作到连续平滑地调节速度,而且电能耗损大,线路转换复杂。

随着直流斩波技术的发展,逐渐为新的脉冲调压方式所代替。

在直流电力机车上通常采用牵引电动机磁场削弱的办法来提高机车速度,增加机车功率。

磁场削弱的级数一般为二至三级。

SS9型客运电力机车交流电力机车接触网电压20千伏或25千伏,单相工频为50或60赫。

在欧洲少数国家如联邦德国、瑞典、瑞士等国亦有采用单相低频交流制的,此时接触网电压为11~16千伏,单相工频为或25赫。

交流电力机车根据变流装置和牵引电动机类型,主要有以下三种类型。

①整流器电力机车:又称单相-直流电力机车,是当前应用最广的一种交流电力机车。

在整流器电力机车上,接触网上的单相高压交流电首先通过牵引变压器降压,然后通过由硅整流元件或晶闸管组成的整流装置将单相交流电变换为直流电,供给牵引电动机。

一般采用脉流串励电动机作为牵引电动机。

这种电力机车有变压器和整流装置,因此采用改变变压器副边电压或对整流装置实行相位控制的办法均可改变整流电压,从而达到调节机车速度的目的。

改变变压器副边输出电压的方式有两种,即低压侧调压和高压侧调压。

中国的“韶山”1型电力机车即属于低压侧调压型。

为了防止动轮空转,改善机车的粘着性能,便于牵电力机车电路构造引和制动两种工况间的相互转换,整流器电力机车也可采用他励牵引电动机,如中国试制的“韶山2”型电力机车和瑞典制造的“Rc”型电力机车即是采用他励牵引电动机。

②单相整流子电动机电力机车:又称直接式交流电力机车,采用单相整流子牵引电动机。

接触网上的高压交流电经过变压器降低电压后,就直接供电给牵引电动机。

这种机车电气设备简单,但单相整流子电动机的换相条件随交流电频率的增高而恶化,因此多用于单相低频交流制的电气化铁路上。

③交-直-交流电力机车:有时又称为单相-三相电力机车。

在这种机车上,接触网上的高压交流电首先通过牵引变压器降压、整流,使中间直流环节保持稳定的直流电压或稳定的直流电流。

然后再由逆变电路将中间直流电变换为三相交流电供给三相异步牵引电动机或三相同步牵引电动机。

改变逆变装置输出的三相交流电的频率和电压即可调节机车的功率和速度。

联邦德国研制成的“E120”型电力机车即为此种机车。

接触网电力机车电力机车本身不带原动机,靠接受接触网送来的电流作为能源,由牵引电动机驱动机车的车轮。

电力机车具有功率大、热效率高、速度快、过载能力强和运行可靠等主要优点,而且不污染环境,特别适用于运输繁忙的铁路干线和隧道多,坡度大的山区铁路。

电力机车是从接触网上获取电能的,接触网供给电力机车的电流有直流和交流两种。

由于电流制不同,所用的电力机车也不一样,分为直-直流电力机车、交-直流电力机车、交-直-交流电力机车三类。

直-直流电力机车采用直流制供电,牵引变电所内设有整流装置,它将三相交流电变成直流电后,再送到接触网上。

因此,电力机车可直接从接触网上取得直流电供给直流串励牵引电动机使用,简化了机车上的设备。

直流制的缺点是接触网的电压低,一般为1500V 或3000 V,接触导线要求很粗,要消耗大量的有色金属,加大了建设投资。

交—直流电力机车在交流制中,目前世界上大多数国家都采用工频(50Hz)交流制,或25Hz低频交流制。

在这种供电制下,牵引变电所将三相交流电改变成25 kV工业频率单相交流串励电动机,把交流电变成直流电的任务因机车上完成。

相关文档
最新文档