伺服电机计算学习资料

合集下载

伺服电机功率计算选型(114)

伺服电机功率计算选型(114)
= 50 * 9.8 * 0.6 * 0.06 / 2 / 10 = 0.882 N.m 加速时所需转矩Ta = M * a * (D / 2) / R2 / R1 = 50 * (30 / 60 / 0.2) * 0.06 / 2 / 10 = 0.375 N.m 伺服电机额定转矩 > Tf ,最大扭矩 > Tf + Ta
(以电机轴心为基准计算转动惯量)
直线运动部分
JK=M
×(
PB 2π
)²
经过减速机之后的转动惯量
JL=
JK R²
M
1/R带类传动时惯量计算 JL(㎏ • ㎡)
(以电机轴心为基准计算转动惯量)
电机转矩T (N.m) 小轮1质量M1(kg) 小轮1半径r1(m) 小轮2质量M2(kg) 小轮2半径r2(m) 重物质量M3(kg) 减速比r1/r2=1/R
13
举例计算1
这种传动方式与前一种传动方式相 同,选型时主要考虑负载惯量的计 算,计算公式也与前面相同。 总结:转动型负载主要考虑惯量计算。
14
举例计算2
M
1:R2
D
1:R1
已知:负载重量M=50kg,同步带轮直 径D=120mm,减速比R1=10,R2=2, 负载与机台摩擦系数µ=0.6,负载最高 运动速度30m/min,负载从静止加速到 最高速度时间200ms,忽略各传送带轮 重量,驱动这样的负载最少需要多大功 率电机?
JL=1/2*M1*r12 + (1/2*M2*r22)/R2 + M3*r12
JL=1/2*M1*r12 + 1/2*M2*r12 + M3*r12
M3 M1 r1
r2 M2
10

伺服电机选型计算

伺服电机选型计算

伺服电机选型计算
1.负载惯量计算
负载惯量是指负载的转动惯量,计算方式为质量乘以质心距离平方。

负载惯性大会对电机的加速度和精度要求产生一定的影响。

伺服电机需要
具备足够的能力来加速和控制负载。

负载惯量的计算公式为:
J=m*r^2
其中,J表示负载的转动惯量,m表示负载的质量,r表示负载的质
心距离。

根据实际情况确定负载的质量和质心距离,可以估算负载的转动惯量。

2.加速度计算
加速度是指负载达到一定速度所需的时间。

加速度较大可以提高生产
效率,但可能会引起震动和噪音。

确定合适的加速度需要根据应用需要进
行权衡。

加速度的计算公式为:
a=(ωf-ωi)/t
其中,a表示加速度,ωf表示最终速度,ωi表示初始速度,t表示
加速时间。

3.扭矩计算
扭矩是伺服电机提供的力矩,其大小决定了电机的最大负载能力。

根据应用需求可以计算出负载所需的最大扭矩。

扭矩的计算公式为:
T=J*α
其中,T表示所需的最大扭矩,J表示负载的转动惯量,α表示加速度。

4.功率计算
功率是指电机输出的机械功率,也是伺服电机选型的一个重要参数。

根据应用需求可以计算出对应负载的最大功率。

功率的计算公式为:
P=M*ω
其中,P表示功率,M表示扭矩,ω表示角速度。

5.速度计算
速度是指电机的转速,根据应用需求可以计算出所需的最大速度。

速度的计算公式为:
V=ω*r
其中,V表示速度,ω表示角速度,r表示负载的质心距离。

伺服电机计算大全

伺服电机计算大全

JB
=
32
LBDB 4
= 6.35357E-07 kgm2
JC=
1 mDC2 8
= 5.625E-07
kgm2
JL= JL+JB+JC
= 3.22427E-06 kgm2
2 Nm(Jm Jl)
TS=
60t1
= 0.105460145 Nm
TM= (TL+TS)*S
= 0.178986407 Nm
FPB TL = 2
= 0.013864126 Nm
4)克服惯 量的加速
直线运动平 台与负载惯
滚珠丝杠惯 量
连轴器惯量
总负荷惯量
启动转矩
5)必须转 矩
必须转矩
6)电机选

根据计算,
初步确定电
7)负荷与 电机惯量
8)负荷与 减当速负机荷惯与 电机惯量
JL = m( PB )2 2
= 2.02641E-06 kgm2
I1= 4.010287786
I2= 0.160411511
*
其他常数
*
G=
*
pi=
*
丝杠密度
ρ=
*
*
*
*
* * *
9.8 m/s 3.1416
7900 kg/m3
a cos a)
安全系数
S=
1.5
电机惯量
JM=
0.000000804 kgm2
减速机减速比
i=
5
机械结构 参数:
速滑度动:部分质 量丝杠部分长 度 丝杠直径 丝杠导程 连轴器质量 连轴器直径 摩擦系数 移动距离 机械效率 定加位减时速间时间 比 外力 移动方向与 水平轴夹角

伺服电机计算完整版

伺服电机计算完整版

伺服电机计算完整版伺服电机是一种可以实现高精度运动控制的电机。

它采用了闭环控制系统,通过反馈信号不断调整输出,以实现对位置、速度和加速度的精确控制。

伺服电机在自动化控制、工业机械、机器人等领域有着广泛的应用。

伺服电机的运动控制可以通过数学模型来描述。

一般情况下,可以将伺服电机的运动控制建模为一个二阶系统。

在建立数学模型之前,需要了解一些关键参数,包括电机的转矩常数Kt、电机的动态阻尼比ζ、滤波器的角频率ωn以及PID控制器的增益参数Kp、Ki和Kd。

伺服电机的数学模型可以用以下差分方程来描述:Tm*(θm(k+1)-θm(k))/T=Kt*(Ti/R)*Vi(k)-Td*(θm(k)-θ(k))J*(θ(k+1)-2θm(k)+θ(k-1))/T^2=T*(θm(k+1)-θm(k))/T其中,Tm为电机的转矩,θm(k)为电机的角度,Vi(k)为控制输入,Ti和R分别为电机的转矩常数和电阻,Td为电机的动态阻尼比,J为负载的转动惯量,θ(k)为负载的角度,T为采样周期。

根据以上差分方程,可以推导得到伺服电机的传递函数:G(s)=(Kt*(Ti/R))/(J*s^2+(Td+J)*s+(Kt*(Ti/R)))可以根据传递函数来设计伺服电机的控制器。

一种常见的控制器设计方法是PID控制,它是通过对误差进行比例、积分和微分处理来调整输出。

PID控制器的输出可以表示为:U(s)=Kp*e(s)+Ki*1/s*e(s)+Kd*s*e(s)其中,U(s)为控制器的输出,Kp、Ki和Kd分别为比例、积分和微分增益参数,e(s)为误差信号,s为Laplace变换中的频率变量。

通过将传递函数和控制器的输出进行连接,可以得到整个系统的传递函数:T(s)=G(s)*U(s)=(Kt*(Ti/R))/(J*s^2+(Td+J)*s+(Kt*(Ti/R)))*(Kp*e(s)+Ki*1/s*e(s)+Kd*s*e(s))根据传递函数T(s),可以进行系统的频域和时域分析,以评估系统的稳定性和动态性能。

伺服电机转速与脉冲计算公式

伺服电机转速与脉冲计算公式

伺服电机转速与脉冲计算公式伺服电机是一种根据输入的控制信号来精确控制转速和位置的电机。

它通常由电机、减速器、编码器和控制器组成。

其中,编码器是伺服电机的旋转角度和速度的反馈装置,用来向控制器提供反馈信号,以实现精确的控制。

伺服电机的转速通常是以脉冲方式进行控制。

控制器向编码器发送一定数量的脉冲信号,编码器通过计数脉冲的数量来确定电机的转速。

下面将介绍伺服电机转速与脉冲的计算公式。

1.伺服电机转速的计算公式伺服电机的转速可以用以下的公式来计算:转速=(脉冲频率*60)/(编码器分辨率*编码器线数*减速比)其中:-转速是以转/分钟为单位的;-脉冲频率是控制器发送的脉冲信号频率,以赫兹(Hz)为单位;-编码器分辨率是编码器每一圈的脉冲数;-编码器线数是编码器每一圈的引线数;-减速比是电机的减速比。

伺服电机的脉冲计算公式可以根据电机的转速和编码器的分辨率来确定。

通常,每一圈的脉冲数和编码器的分辨率是成正比的关系。

伺服电机的脉冲数可以用以下的公式来计算:脉冲数=(转速*编码器分辨率*编码器线数*减速比)/60其中:-脉冲数是控制器发送的脉冲信号数量;-转速是电机每分钟的转速;-编码器分辨率是编码器每一圈的脉冲数;-编码器线数是编码器每一圈的引线数;-减速比是电机的减速比。

需要注意的是,以上的计算公式是基于理想情况下的伺服电机转速和脉冲之间的关系。

实际应用中,还需要考虑编码器的误差、电机的自身特性等因素,进行实时的修正和调整,以保证精准的转速控制。

总结起来,伺服电机转速与脉冲计算公式是根据电机的工作原理和编码器的特性来确定的。

了解伺服电机的转速和脉冲之间的关系,可以帮助我们在实际应用中更好地控制和调节伺服电机的转速。

伺服电机功率计算选型课件

伺服电机功率计算选型课件

案例三:搬运机械臂的伺服电机应用
总结词
大负载、高精度定位
详细描述
搬运机械臂需要承受较大负载并实现高精度定位,伺服电机能够提供足够的扭 矩和精确的控制能力,确保机械臂的稳定运行和精确操作。
伺服电机维护与保
05

伺服电机的日常维护
01
02
03
每日检查
检查伺服电机是否有异常 声音、振动或发热,检查 电缆和连接是否松动或破 损。
清洁
定期清除电机上的灰尘和 杂物,保持电机清洁,以 防止灰尘和杂物对电机运 行造成影响。
油脂涂抹
根据需要,在电机的轴承 和齿轮上涂抹适量的润滑 油脂,以减少磨损和摩擦 。
伺服电机的定期保养
定期更换润滑油
根据电机制造商的推荐, 定期更换电机的润滑油, 以保证电机正常运行。
检查绝缘电阻
定期检查电机的绝缘电阻 ,以确保电机电气性能正 常。
伺服电机的工作原理
伺服电机通过将输入的电压或电流信 号转换成转矩或转速,驱动负载进行 转动。
伺服电机内部通常包含一个旋转的转 子,以及一个固定的定子,通过电磁 感应原理实现能量的转换和传递。
伺服电机的分类与特点
根据使用的电源类型,伺服电 机可以分为直流伺服电机和交
流伺服电机两大类。
直流伺服电机具有精度高、 调速范围广、低速稳定性好 等优点,但需要定期更换电
案例一:数控机床的伺服电机应用
总结词
高精度、高效率
详细描述
数控机床需要高精度和高效率的加工能力,伺服电机能够提供稳定的扭矩和转速,确保加工过程的精确性和高效 性。
案例二:包装机械的伺服电机应用
总结词
快速响应、高可靠性
详细描述
包装机械需要快速响应和高可靠性的运行能力,伺服电机能够迅速启动和停止,适应各种包装工艺需 求,确保生产线的稳定性和效率。

(参考资料)伺服设计计算方法

(参考资料)伺服设计计算方法

[设置示例] 求出在 HF-KP 以 3000r/min 速度运行时所需要的指令脉冲频率。 当电子齿轮比(初始参数值)为 1 时,根据 5.6 式得到以下结果:
f0
262144
N0 60
CDV CMX
(指令脉冲频率)
262144
3000 60
1
13107200[pps]
但是,由于差动线性驱动系统的最大指令脉冲频率值为 1Mpps,因此对于通用伺服,不能输入13107200pps 。 要以 3000r/min 速度运行伺服电机且指令频率低于 1Mpps,必须改变电子齿轮设置。此电子齿轮由 5.5 计算:
: 位置控制模式中输入脉冲频率
[pps]
: 位置控制模式快速进给时的输入脉冲频率 [pps]
: 位置控制模式中脉冲频率指令的
[s]
加速时间常数
: 位置控制模式中脉冲频率指令的
[s]
减速时间常数
: 位置控制增益 1
[rad/s]
: 位置控制时间常数 (Tp 1/Kp)
[s]
: 位置控制模式中每个反馈脉冲的
SM
电子齿轮 CMX CDV
Pt 262144pulse/rev
编码器
如上所示,指令脉冲乘以参数中设置的 CMX/CDV 则为位置控制脉冲。每个指令脉冲的行程值用等式 5.2 表示:
Pt CMX
0
S CDV
CMX CDV
.....................................................................................................................
(5.2)

伺服电机选型计算

伺服电机选型计算

伺服电机选型计算引言伺服电机是一种能够精确控制转速、位置和加速度的电机,广泛应用于工业自动化领域。

为了正确选型伺服电机,需要综合考虑多个因素,如负载特性、所需转动速度、加速度和减速度等。

本文将介绍伺服电机的选型计算方法。

1. 伺服电机基本参数在选型计算之前,首先需要了解伺服电机的基本参数,这些参数对于计算非常重要。

常见的基本参数包括:•额定转矩:伺服电机能够连续输出的最大转矩。

•额定转速:伺服电机在额定负载下能够达到的最高转速。

•道数:伺服电机的反馈器件信号周期数量,通常是脉冲或电压。

•分辨率:伺服电机的转子位置检测精度,通常以脉冲数表示。

2. 负载特性分析选型伺服电机的第一步是分析负载特性。

负载特性包括负载转矩和转动惯量。

可以通过以下公式计算负载转矩:负载转矩 = 工作负载 × 工作半径其中,工作负载是指应用中所需的转矩,工作半径是转轴到工作力点的距离。

转动惯量是指负载物体抵抗转动的惯性,可以通过以下公式计算:转动惯量 = 负载质量 × 负载半径²负载质量是指负载物体的质量,负载半径是转轴到负载质心的距离。

3. 加速度计算在伺服电机选型中,需要考虑加速度和减速度,以确保电机能够在规定的时间内达到所需速度。

加速度的计算公式如下:加速度 = (目标速度 - 初始速度) / 时间其中,目标速度是所需达到的最终速度,初始速度是实际启动时的初始速度。

4. 选型计算有了上述参数和计算公式,可以开始具体的选型计算。

选型计算主要包括以下步骤:1.确定工作负载和工作半径。

2.计算负载转矩和转动惯量。

3.确定加速度和减速度的要求。

4.根据负载转矩和转动惯量,选择能够满足要求的伺服电机。

5.检查是否满足速度要求,如果不满足,可以考虑调整加速度和减速度参数。

在具体计算中,还需要考虑一些额外因素,如安全系数、附加负载等。

结论伺服电机选型计算是一项重要且复杂的任务,需要综合考虑多个因素。

通过合理的选型计算,可以确保伺服电机能够满足工作需求,并提供稳定和可靠的运行。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

已知:
1)上位机发出脉冲能力为200Kp/S,200×1000/s,200×1000×60/min;
2)电机额定转速为3000R/ min,3000/60s;
3)伺服电机编码器分辨率是131072;
4)丝杆螺距是10mm;
求:
1、电机额定转速运行时的电子齿轮比?
2、如果电子齿轮比是1,伺服电机的转速?
3、生产时,设定指令脉冲当量,确定电子齿轮比?
解:
1、当上位机满额发出脉冲时,伺服恰好额定速度运行:
1)电机额定转速为3000r/ min,3000r/60s=50r/s;
2) 伺服电机编码器分辨率是131072;
3)电机额定转速时编码器输出检测反馈脉冲频率是131072×50r/s;;
4)上位机发出脉冲能力时发出的脉冲频率=200×1000/s;
5)当上位机满额发出脉冲时,伺服恰好额定速度运行,这时的电子齿轮比:
电子齿轮比=反馈脉冲频率/上位机满额发出脉冲频率
=(131072×50r/s)/ 200×1000/s
=6553600/200000
=3.2768
2、如果电子齿轮比是1:
1)上位机发出的1个脉冲=编码器输出检测反馈的1个脉冲:
2)上位机发出脉冲能力时发出的脉冲频率=200×1000/s;
3)伺服电机的转速是=200×1000/s×60/131072= 91.55 r/min
3、如果丝杆螺距是10mm,
1)要求上位机每发一个指令脉冲,工件移动0.001mm,即指令脉冲当量为0.001mm,也可以说指令脉冲单位为0.001mm:
2)如果伺服转一周,丝杆转一周,减速比是1;
3)丝杆转一周,上位机应该发出的指令脉冲为10mm/0.001mm=10000(个);
4)伺服转一周,编码器检测反馈脉冲为131072(个);
5)电子齿轮比=编码器检测反馈脉冲/上位机发出的指令脉冲=131072/10000=13.7012;
1、从以上计算,现在我们知道:
1)当上位机满额发出脉冲时,伺服恰好额定速度运行,
电子齿轮比=反馈脉冲频率/上位机满额发出脉冲频率=3.2768
2)如果电子齿轮比是1:伺服电机的转速是==91.55 r/min
3)丝杆螺距是10mm,指令脉冲当量为0.001mm,电子齿轮比=编码器检测反馈脉冲/上位机发出的指令脉冲=13.7012;
2、现在我们还想知道,丝杆螺距是10mm,指令脉冲当量为0.001mm,加工时电机额定速度运行时的电子齿轮比?
3、丝杆螺距是10mm,指令脉冲当量为0.001mm,加工时电机额定速度运行时的电子齿轮比?
1)丝杆螺距是10mm,指令脉冲当量为0.001mm,电子齿轮比=编码器检测反馈脉冲/上位机发出的指令脉冲=13.7012;
2)当上位机满额发出脉冲时,伺服恰好额定速度运行,电子齿轮比=反馈脉冲频率/上位机满额发出脉冲频率=3.2768
3)只有1)、2)的电子齿轮比相等时,才可以保证当上位机满额发出脉冲时,伺服恰好额定速度运行,丝杆螺距是10mm,指令脉冲当量为0.001mm;
4)如果我们让上位机,不工作在额定状态,只工作在1/(13.7012/3.2768)额定频率上,而电机工作在额定转速下,这时的电子齿轮比是
电子齿轮比=反馈脉冲频率/【上位机满额发出脉冲频率×1/(13.7012/3.2768)】 =3.2768×(13.7012/3.2768)
=13.7012
5)这样,我们得出:
a、让上位机,不工作在额定状态,只工作在1/(13.7012/3.2768)额定频率上;
b、而电机工作在额定转速下;
c、丝杆螺距是10mm(减速比等于),指令脉冲当量为0.001mm;
d、电子齿轮比是=13.7012
4、如果电子齿轮比是1,伺服电机的转速是=200×1000/s×60/131072= 91.55 r/min,怎么能使电子齿轮比=1时,电机转快一点呢?
1)只要将编码器的刻线数降低,即编码器一周的反馈脉冲缩小(分频),电机的转速就会提高;
2)我们只要将编码器的解析度131072缩小到131072/(3000/91.55);3)伺服电机的转速=200×1000/s×60/【131072/(3000/91.55)】
=(200×1000/s×60/131072)×(3000/91.55)
=3000r/min;
4)我们只要将编码器的解析度131072缩小到131072/(3000/91.55):编码器的解析度= 131072/(3000/91.55)≈ 131072的32分频= 4096 ;5)电子齿轮比=1时,编码器的解析度是4096时,电机的转速为额定转速3000转/分!
5、我主楼计算的三种数字(a、电机额定转速运行时的电子齿轮比?b、如果电子齿轮比是1,伺服电机的转速?c、生产时,设定指令脉冲当量,确定电子齿轮比?)是有关电子齿轮比的三中应用:
1)“b、如果电子齿轮比是1,伺服电机的转速?”,指明要提高电机运行速度的方法,就是对编码器的解析度分频;
2)“a、电机额定转速运行时的电子齿轮比?”,要伺服以额定转速,按指令脉冲当量运行,指明了如何调整确定上位机的发出的指令脉冲频率及电子齿轮比;
3)“c、生产时,设定指令脉冲当量,确定电子齿轮比?”是所有计算的基础;
晒晒我们班的牛人600字初一范文三篇
【导语】每个学校每个班级都有那么几个牛人,或者学习好得不得了的人,或者体育好到不行但学习不怎么样的人,或者嘴皮子耍得好的人……以下是我们为大家带来的晒晒我们班的牛人600字初一范文三篇
,供大家参考。

篇一:
新的学期,新的开始。

步入初中以来,我认识了许许多多的新同学,他们都“身怀绝技”下面就由我向大家介绍几个。

他,外号“邓子”:绝技,超级男高音,是我们班出了名的“洪嗓子”。

我们这次合唱节,选了一首高音歌曲,唱到高音区,班上同学就开始扁着嗓子,满脸通红,声音全是哑的,唱完后连喘粗气,有的还连连咳嗽,而“邓子”就不一样了,他使出一半的力气就能把高音顶上去了。

他的声音十分清亮,如同泉水一般,几乎能盖过班上所有人的声音,以至所有的同学都看不过去,用手捂住他的嘴不让他唱!还有一次,大扫除,人们都在干活,他却像没事一样拿着个扫帚到别人耳边“啊——”尖叫,刺耳的尖叫声,使同学吓了一大跳,拿着扫帚去追他。

他,外号“牛羊”:绝技:搞笑。

这“牛羊”就跟他的名字一样,像牛一样壮,憨厚,却不像羊一样温顺。

比如说上次,“牛羊”上自习课讲话,被老师罚站到后面,人们都在写作业,他也不例外,而他的姿势却是最让人“神魂颠倒”:他弯着腰,靠着后面的墙,
右脚搭在左大腿上,摆个二郎腿,把作业放在右脚上,左脚弯曲,右手拿支笔,在作业上写写画画,时不时发出“呜呜”声响。

班长上前一看,原来他在画飞机打小鸟,“哈哈哈哈。

”上前的班长也笑了,接着,全班同学转过头来,异口同声地说:“怎么了?”牛羊滑稽地说道:“小鸟用嘴扎死了飞机,飞机漏油。

”“哈哈哈哈……”全班同学都笑了,称“牛羊”是个怪才,想像真个了得。

你别看牛羊这么调皮捣蛋,可他的思维却是非常好,那次上数学课,一个很难的奥数题难倒了全班,同学们拿着笔在纸上画来画去,都无从下手。

这时,牛羊举起了手,在跑上讲台的过程中,鞋子被自己踩掉了,差点摔倒,还笑呵呵的,引得同学哈哈的笑声……他说完了,语言惹得全班同学笑得合不拢嘴,并且全都听懂,还连连点头,一边鼓掌还一边说:“超乎常人思维。

”连老师都这么认为。

相关文档
最新文档