超声波焊接
超声波焊接法

超声波焊接法
超声波焊接是一种利用高频振动波传递到两个需焊接的物体表面,在加压的情况下,使两个物体表面相互摩擦而形成分子层之间的熔合的焊接方法。
超声波焊接具有以下优点:
1.熔合强度高,适用于多种塑料焊接,同时还能大大增强焊缝的机械性能;
2.工作效率高,相比于其他焊接方法,超声波焊接的速度更快;
3.对环境污染小,因为整个焊接过程不需要任何辅助剂、焊剂或者气体。
然而,超声波焊接也存在一些缺点:
1.需要对焊头施加压力,导致设备较复杂且维修成本较高;
2.需要焊头传递超声波能量到产品,产品会轻微压痕。
在具体操作过程中,有以下几点注意事项:
1.在熔接法中,通过超音波超高频率振动的焊头在适度压力下,使二块塑胶
的接合面产生摩擦热而瞬间熔融接合,焊接强度可与本体媲美。
此外,采用合适的工件和合理的接口设计,可达到水密及气密的效果;
2.在埋植法中,通过焊头之传道及适当之压力,瞬间将金属零件(如螺母、
螺杆等)挤入预留入塑胶孔内,固定在一定深度。
完成后无论拉力、扭力均可媲美传统模具内成型之强度;
3.在成型法中,该方法与铆焊法类似,将凹状的焊头压着于塑胶品外圈,焊
头发出超音波超高频振动后将塑胶溶融成形而包覆于金属物件使其固定。
总的来说,超声波焊接法是一种有效的塑料焊接方法,它利用了超声波的高频振动来传递能量,使得两个塑料的表面能够迅速地熔合在一起。
超声波焊接技术

超声波金属焊接技术详解定义:超声波金属焊接利用高频振动波传递到需焊接的金属表面,在加压的情况下,使两个金属表面相互摩擦而形成分子层之间的熔合。
原理:超声波金属焊接是利用超声频率的机械振动能量,连接同种金属或异种金属的一种特殊方法.金属在进行超声波焊接时,既不向工件输送电流,也不向工件施以高温热源,只是在静压力之下,将机械能转变为内能、形变能及有限的温升。
两母材达到再结晶温度下发生的固相焊接。
在超声焊接过程中,换能器把高频电信号转化为超声振动信号,高频振动通过焊接工具头传递到待焊金属表面,界面金属氧化膜在一定的压力和超声振动的剧烈摩擦作用下破碎,界面洁净金属接触并在摩擦和超声软化的共同作用下,进一步产生塑性流动和扩散使连接面积逐渐增大最终形成可靠的连接。
系统组成:一套超声波焊接系统的主要组件包括超声波发生器/换能器/变幅杆/焊头三联组/模具和机架。
超声波焊接是通过超声波发生器将50/60赫兹电流转换成15、20、30或40KHz电能。
被转换的高频电能通过换能器再次被转换成为同等频率的机械运动,随后机械运动通过一套可以改变振幅的变幅杆装置传递到焊头。
焊头将接收到的振动能量传递到待焊接工件的接合部,在该区域,振动能量被通过摩擦方式转换成热能,将需要焊接的部件区域熔化。
焊接过程:过渡阶段为清除焊件表面膜和氧化物的短暂过程,稳定阶段为界面产生相互扩散并使相互扩散稳定的过程。
在过渡阶段,焊件表面氧化物膜由于强烈磨擦作用破碎,此时磨擦为主要热源,工件温度升高使工件材料屈服强度降低,有利于工件表面氧化膜破碎及发生塑性变形,对接头形成有重要作用。
稳定阶段,金属接触表面变得平滑后摩擦作用减弱,热量由于产生塑性变形而在焊接界面聚集,在此过程中的热量是由工件的塑性变形过程产生,工具头施加的压力致使界面原子之间产生作用力而形成的金属连接过程。
工艺参数的影响:超声金属焊接过程的主要工艺参数有焊接压力、焊接能量/时间、工具头振幅和工具、头齿纹与尺寸等。
超声波焊接

超声波焊接超声波焊接是一种应用超声波技术进行焊接的方法,它具有高效、可靠、环保等特点,广泛应用于工业生产中。
本文将从超声波焊接的原理、设备、应用领域以及优势等方面进行介绍。
超声波焊接是利用超声波振动产生的能量实现焊接材料的熔接。
超声波是一种频率超过人耳能听到的声音的机械波,其频率一般在20kHz到70kHz之间。
超声波焊接的原理主要是利用超声波振动使材料分子的间距变小,从而产生高温高压的效果,促使材料发生熔接现象。
在焊接过程中,超声波振动会穿透至焊材表面,使接触部分的温度升高,然后通过适当的加压使材料熔化并熔接在一起,最终形成焊接接头。
超声波焊接设备主要由超声波振动系统、机械系统和电气系统组成。
超声波振动系统是超声波焊接的核心部分,它由发声器和承载器组成。
发声器是将电能转化为机械振动的装置,承载器则是将振动传递给焊接件的装置。
机械系统主要包括焊接头、压力机构等部分,用于在焊接过程中施加适当的压力。
电气系统则提供了超声波发生器、控制电路、传感器等设备,用于控制焊接过程的各个参数。
超声波焊接在工业生产中有着广泛的应用。
它可以焊接各种金属材料,如铝、铜、钢等,也可以焊接塑料和纺织品等非金属材料。
超声波焊接常被运用在汽车制造、电子设备生产、包装行业等领域。
例如,在汽车制造中,超声波焊接被应用于制造车灯、排气管和电池等零部件;在电子设备生产中,它被用于焊接电子元件和连接导线等;在包装行业中,超声波焊接可用于封口、划线和熔接等工作。
超声波焊接具有许多优势。
首先,它的焊接速度快,能够在短时间内完成焊接工作,提高生产效率。
其次,超声波焊接的焊接接头牢固可靠,具有较高的拉伸强度和密封性能。
再次,它适用于焊接的材料种类广泛,包括金属、塑料和纺织品等。
此外,超声波焊接过程不需要使用焊接剂和填料,所以它是一种环保、无污染的焊接方法。
总结起来,超声波焊接是一种高效、可靠、环保的焊接方法,广泛应用于多个行业中。
随着技术的不断进步,超声波焊接设备的性能和效果也在不断提高,为我们的生产和生活带来了许多便利和效益。
超声焊接原理

超声焊接原理超声焊接是一种利用超声波在工件表面产生局部高温,通过材料的塑性变形和扩散结合来实现焊接的方法。
它是利用超声振动的作用,使焊接界面产生相对运动,利用材料的塑性变形和扩散结合来实现焊接的一种焊接方法。
超声焊接主要用于金属和塑料等材料的焊接,广泛应用于汽车、电子、航空航天等行业。
超声焊接的原理主要包括超声振动、摩擦加热和塑性变形三个方面。
首先,超声振动是指通过超声波发生器产生的高频振动,传递给焊接头,焊接头再将振动传递给工件表面,使工件表面颗粒产生微小的振动,从而产生摩擦热。
其次,摩擦加热是指工件表面颗粒由于超声振动产生的摩擦力,使工件表面颗粒之间产生热量,达到局部高温的目的。
最后,塑性变形是指在局部高温的作用下,材料发生塑性变形,形成金属流,填充焊接接头间的空隙,最终实现焊接。
超声焊接的优点主要包括焊接速度快、能耗低、焊接接头强度高、焊接过程无需添加外部焊剂等。
首先,焊接速度快是由于超声振动的作用,使得焊接过程中局部高温快速达到,从而大大缩短了焊接时间。
其次,能耗低是指超声焊接过程中,焊接头只在焊接接头处产生热量,减少了能量的浪费。
再者,焊接接头强度高是由于超声焊接过程中,焊接接头处产生的塑性变形,使得焊接接头的强度大大提高。
最后,焊接过程无需添加外部焊剂是指超声焊接过程中,不需要额外的焊接材料,减少了对环境的污染。
然而,超声焊接也存在一些局限性,如焊接材料的选择范围较窄、焊接头设计和加工难度较大等。
首先,焊接材料的选择范围较窄是由于超声焊接对材料的要求较高,只有一些特定的金属和塑料材料才能进行超声焊接。
其次,焊接头设计和加工难度较大是指超声焊接头的设计和加工需要考虑到焊接过程中的超声振动传递和焊接接头的形成,这对焊接头的设计和加工提出了较高的要求。
总的来说,超声焊接作为一种高效、环保的焊接方法,具有广阔的应用前景。
随着科技的不断进步,超声焊接技术也将不断完善和发展,为各行各业的发展提供更加可靠的焊接解决方案。
超声波焊接机原理是什么

超声波焊接机原理是什么
超声波焊接是一种利用超声波振动引起的材料分子间的摩擦产生热量来实现焊接的方法。
其基本原理是通过将电能转化为超声波能,然后将超声波能转化为机械振动能,再通过焊接头传递给被焊接的材料。
具体来说,超声波焊接机中通常包含一个压头和一个换能器。
换能器将电能转化为超声波能,在超声波振动的作用下,焊接头不断地压在需要焊接的材料上。
由于焊接头的振动频率非常高(通常在20kHz以上),使焊接头在短时间内产生大量的微小振动,这种振动将会产生摩擦。
焊接头的振动能量被转移到焊接材料上,使材料表面分子不断地发生碰撞和摩擦,导致材料温度升高。
当材料温度升高到足够高时,材料变软,分子间的结合力变弱,焊接头的压力使材料表面分子之间发生扩散和交联,从而实现焊接。
总的来说,超声波焊接机利用超声波的振动引起的材料分子间的摩擦产生的热量,使材料表面温度升高,从而实现焊接。
这种焊接方法具有速度快、操作简单、能耗低等优点,在工业生产中得到广泛应用。
超声波焊接

超声波焊接超声波焊是一种快捷,干净,有效的装配工艺,用来装配处理热塑性朔料配件,及一些合成构件的方法。
目前被运用的朔胶制品与之间的粘结,朔胶制品与金属配件的粘结及其它非朔胶材料之间的粘结!它取代了溶剂粘胶机械坚固及其它的粘接工艺是一种先进的装配技术!超声波焊接不但有连接装配功能而且具有防潮、防水的密封效果一、超声波的优点:1,节能2,无需装备散烟散热的通风装置3,成本低,效率高4,容易实现自动化生产!目前工厂常用的超声波焊接机二、超声波焊接机的工作原理!超声波焊接装置是通过一个电晶体功能设备将当前50/60Hz的电频转变成20KHz或40KHz 的电能高频电能,供应给转换器。
转换器将电能转换成用于超声波的机械振动能,调压装置负责传输转变后的机械能至超声波焊接机的焊头。
焊头是将机械振动能直接传输至需压合产品的一种声学装置!!振动通过焊接工作件传给粘合面振动磨擦产生热能使塑胶熔化,振动会在熔融状态物质到达其介面时停止,短暂保持压力可以使熔化物在粘合面固化时产生个强分子键,整个周期通常是不到一秒种便完成,但是其焊接强度却接近是一块连着的材料!!三、超声波焊接的应用领域目前被运用的朔胶制品与之间的粘结,朔胶制品与金属配件的粘结及其它非朔胶材料之间的粘结!四、超声波焊接的工艺焊接:指的是广义的将两个热塑性塑料产品熔接的过程。
当超音停止振动时,固体材料熔化,完成焊接。
其接合点强度接近一整块的连生材料,只要产品的接合面设计得匹配,完全密封是绝对没有什么问题的,碟合:熔化机械锁形成一个材质不同的塑料螺栓的过程。
嵌入:将一个金属元件嵌入塑料产品的预留孔内。
具有强度高,成型周期短安装快速的优点!!类似于模具设计中的嵌件!弯曲/生成音波将配件的一部分熔化再组成一个塑料的突起部位或塑料管或其它挤出配件。
这种方式的优势在于处理的快速,较小的内压,良好的外观及对材料本性的克服。
点悍点焊是对没有预留也或能源控制的两个热塑塑料组件的局部焊接。
超声波焊接等级划分
超声波焊接等级划分一、一级超声波焊接一级超声波焊接是最基本的等级,焊接质量较低。
在一级超声波焊接中,焊接接头的强度和气密性较差,容易出现焊接不牢固的情况。
因此,一级超声波焊接通常应用于对焊接质量要求不高的场景,如一些非关键零部件的生产。
二、二级超声波焊接二级超声波焊接的焊接质量相对较高。
在二级超声波焊接中,焊接接头的强度和气密性较一级焊接有所提高,焊接质量更加可靠。
二级超声波焊接常应用于对焊接质量要求较高的场景,如电子设备、汽车零部件等的生产。
三、三级超声波焊接三级超声波焊接是最高等级的焊接技术,焊接质量最好。
在三级超声波焊接中,焊接接头的强度和气密性达到最高水平,焊接质量非常可靠。
三级超声波焊接通常应用于对焊接质量要求极高的场景,如航空航天领域、医疗器械等的生产。
超声波焊接等级的划分主要根据焊接接头的强度和气密性来确定。
随着等级的提高,焊接接头的强度和气密性也会相应提高,焊接质量更加可靠。
因此,在实际应用中,根据产品的具体要求和使用环境,选择合适的超声波焊接等级非常重要。
除了焊接接头的强度和气密性外,超声波焊接还具有许多其他优点。
首先,超声波焊接可以实现无损焊接,不会对焊接接头和周围材料造成热损伤。
其次,超声波焊接速度快,效率高,能够大幅度提高生产效率。
此外,超声波焊接还可以焊接不同类型的材料,具有较好的适用性。
超声波焊接是一种重要的焊接技术,根据焊接质量要求的不同可以划分为不同的等级。
每个等级的超声波焊接都有其特点和应用场景,选择合适的等级对于保证焊接质量至关重要。
随着技术的不断发展,相信超声波焊接在工业生产中的应用会越来越广泛。
超声波焊接机原理
超声波焊接机原理超声波焊接机是一种利用超声波振动产生的热能来实现材料的焊接的设备。
它通过将高频电能转换为机械振动能,然后通过焊接头将振动能传递给焊接材料,从而产生热能,使材料表面熔化,最终实现焊接。
超声波焊接机的核心部件是超声波振动系统,包括超声波发生器、换能器和焊接头。
超声波发生器将电能转换为高频电能,然后通过连接线传递给换能器。
换能器将电能转换为机械振动能,并将振动能传递给焊接头。
焊接头由振动系统和焊接模具组成,振动系统将振动能传递给焊接模具,焊接模具通过对焊接材料施加压力,将振动能转化为热能,使焊接材料熔化并实现焊接。
超声波焊接机的原理是利用超声波的高频振动特性,将焊接头施加在需要焊接的材料上,通过振动产生的摩擦热使材料表面温度升高,达到熔点并融合在一起。
超声波焊接机可以焊接各种材料,包括金属、塑料、陶瓷等,广泛应用于汽车、电子、医疗器械等行业。
超声波焊接机具有以下特点:1. 高效率:超声波焊接机的焊接速度快,一般可以在几秒钟内完成焊接,大大提高了生产效率。
2. 焊接质量好:超声波焊接机焊接时产生的热量局限在焊接区域,不会对材料的其他部分产生影响,焊接接头均匀牢固,焊接强度高。
3. 环保节能:超声波焊接机不需要使用焊接剂或其他辅助材料,不会产生有害气体和废料,符合环保要求。
4. 焊接适应性强:超声波焊接机可以焊接各种材料,无论是金属、塑料还是陶瓷,都可以实现高质量的焊接。
5. 操作简单:超声波焊接机采用自动化控制系统,操作简单方便,只需设置焊接参数即可完成焊接。
总结起来,超声波焊接机利用超声波振动产生的热能实现材料的焊接,具有高效率、焊接质量好、环保节能、焊接适应性强和操作简单等优点。
它在各个行业中得到广泛应用,为生产提供了便利和效益。
超声波焊接的原理
超声波焊接的原理
超声波焊接是一种高效、精确的焊接技术,它利用超声波的振动能量将两个或多个材料加热并融合在一起。
这种焊接技术广泛应用于汽车、电子、医疗、食品和包装等行业。
超声波焊接的原理是利用超声波振动器将高频振动能量传递到焊接部位,使材料表面产生高频振动,从而产生热能。
当材料表面温度升高到熔点时,材料开始融化并形成焊缝。
焊接完成后,焊缝冷却并形成牢固的焊接。
超声波焊接的优点是焊接速度快、焊接质量高、无需使用焊接剂、无污染、无需后处理等。
它可以焊接各种材料,包括金属、塑料、陶瓷、玻璃等。
此外,超声波焊接还可以实现多点焊接、连续焊接和自动化生产。
超声波焊接的应用非常广泛。
在汽车行业中,它可以用于焊接汽车零部件,如车灯、仪表盘、空调出风口等。
在电子行业中,它可以用于焊接电子元件,如电池、电路板、手机壳等。
在医疗行业中,它可以用于焊接医疗器械,如注射器、输液器、手术器械等。
在食品和包装行业中,它可以用于焊接食品包装袋、饮料瓶盖等。
超声波焊接是一种高效、精确、环保的焊接技术,它在各个行业中都有广泛的应用。
随着科技的不断发展,超声波焊接技术将会越来越成熟,为各行各业的生产带来更多的便利和效益。
超声波焊
图1超声波焊的原理
1—发生器;2—换能器;3—传振杆; 4—聚能器;5—耦合器;6—静载荷; 7—上声极;8—焊件;9—下声极; F—静压力;v1—纵向振动方向; v2—弯曲振动方向
2.1、超声波的分类
根据接头形式分类:超声 波焊可分为点焊、缝焊、 环焊和线焊等。 不同类型的超声波焊得到 的焊缝形状不同,分别为 焊点、密封连续焊缝、环 焊缝和平直连续焊缝。 【1】点焊 根据能量传递方式,点焊 可分为单侧式和双侧式两 类。
3.2、超声波焊接工艺
3.2.1 接头设计 超声波焊接的接头目前只限于搭接一种形式。考虑 到焊接过程母材不发生熔化,焊点不受过大压力, 也没有电流分流等问题,设计焊点的点距s、边距e 、和行距r等参数。
1、边距e 电阻点焊时为了防止熔合溢出而要求 e>6δ (δ为板厚)。超声波点焊不受此限制,可以比 它小,只要声极不压碎或穿破薄板的边缘,就采用 最小的e,节省母材,减轻质量。
点焊机
当超声振动能量只通过 上声极导入时为单侧式 点焊;
分别从上、下声极导入
时为双侧式点焊。目前 应用最广泛的是单侧导 入式超声波点焊。
图2 超声波点焊的能量系统类型 1—静压力 2—上声极 3—焊件 4—下声极 V—振动方向
根据上声极的振动情 况,点焊分为纵向振 动式、弯曲振动式和 介于两者之间的轻型 弯曲振动式。 纵向振动系统主要用于 小功率超声波焊机, 弯曲振动系统主要用 于大功率超声波焊机 ,而轻型弯曲振动系 统适用于中小功率的 超声波焊机。
1.2、超声波的原理
超声波焊接时既不向焊件输送电流,也不向焊件 引入高温热源,只是在静压力作用下将弹性振动 能量转变为焊件间的摩擦功、变形能及随后有限 的温升。接头之间的冶金结合是在母材不发生熔 化的情况下实现的,因而是一种固态焊接方法。 超声波焊接的原理如下:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
超声波焊接一.超声波应用原理我们知道正确的波的物理定义是:振动在物体中的传递形成波。
这样波的形成必须有两个条件:一是振动源,二是传播介质。
波的分类一般有如下几种:一是根据振动方向和传播方向来分类。
当振动方向与传播方向垂直时,称为横波。
当振动方向与传播方向一致时,称为纵波。
二是根据频率分类,我们知道人耳敏感的听觉范围是20HZ-20000HZ,所以在这个范围之内的波叫做声波。
低于这个范围的波叫做次声波,超过这个范围的波叫超声波。
波在物体里传播,主要有以下的参数:一是速度V,二是频率F,三是波长λ。
三者之间的关系如下:V=F.λ。
波在同一种物质中传播的速度是一定的,所以频率不同,波长也就不同。
另外,还需要考虑的一点就是波在物体里传播始终都存在着衰减,传播的距离越远,能量衰减也就越厉害,这在超声波加工中也属于考虑范围。
1、超声波在塑料加工中的应用原理:塑料加工中所用的超声波,现有的几种工作频率有15KHZ,18KHZ,20KHZ,40KHZ。
其原理是利用纵波的波峰位传递振幅到塑料件的缝隙,在加压的情况下,使两个塑料件或其它件与塑料件接触部位的分子相互撞击产生融化,使接触位塑料熔合,达到加工目的。
2、超声波焊机的组成部分超声波焊接机主要由如下几个部分组成:发生器、气动部分、程序控制部分,换能器部分。
发生器主要作用是将工频50HZ的电源利用电子线路转化成高频(例如20KHZ)的高压电波。
气动部分主要作用是在加工过程中完成加压、保压等压力工作需要。
程序控制部分控制整部机器的工作流程,做到一致的加工效果。
换能器部分是将发生器产生的高压电波转换成机械振动,经过传递、放大、达到加工表面。
3.换能器部分由三部分组成:换能器(TRANSDUCER);增幅器(又称二级杆、变幅杆,BOOSTER);焊头(又称焊模,HORN或SONTRODE)。
① 换能器(TRANSDUCER):换能器的作用是将电信号转换成机械振动信号。
将电信号转换成机械振动信号有两种物理效应可以应用。
A:磁致伸缩效应。
B:压电效应的反效应。
磁致伸缩效应在早期的超声波应用中较常使用,其优点是可做的功率容量大;缺点是转化效率低,制作难度大,难于大批量工业生产。
自从朗之万压电陶瓷换能器的发明,使压电效应反效应的应用得以广泛采纳。
压电陶瓷换能器具有转换效率高,大批量生产等优点,缺点是制作的功率容量偏小。
现有的超声波机器一般都采用压电陶瓷换能器。
压电陶瓷换能器是用两个金属的前后负载块将压电陶瓷夹在中间,通过螺杆紧密连接而制成的。
通常的换能器输出的振幅为10μm左右。
② 焊头(HORN):焊头的作用是对于特定的塑料件制作,符合塑料件的形状、加工范围等要求。
换能器、变幅杆、焊头均设计为所工作的超声频率的半波长,所以它们的尺寸和形状均要经过特别的设计;任何的改动均可能引致频率、加工效果的改变,它们需专业制作。
耐用根据所采用的材料不同,尺寸也会有所不同。
适合做超声波的换能器、变幅杆和焊头的材料有:钛合金、铝合金、合金钢等。
由于超声波是不停地以20KHZ左右高频振动的,所以材料的要求非常高,并不是普通的材料所能承受的。
二:超声波工作原理:热可塑性塑料的超声波加工,是利用工作接面间高频率的摩擦而使分子间急速产生热量,当此热量足够熔化工作时,停止超声波发振,此时工件接面由熔融而固化,完成加工程序。
通常用于塑料加工的频率有20KHZ和15KHZ,其中20KHZ仍在人类听觉之外,故称为超声波,但15KHZ仍在人类听觉范围只内。
三:超声波机构原理:将220V,50HZ转变为15KHZ(或20KHZ)之高压电能,利用震动子转换成机械能。
如此的机械振动,经由传动子,焊头传至加工物,并利用空气压力,产生工作接面之摩擦效果。
振动子和传动子装置在振筒内,外接焊头,利用空压系统和控制回路,在事先设定之条件下升降,以完成操作程序。
四:组件功用说明:1.延迟时间设定:调整开始发振时间,在限制开关动作后0~9.99秒开始发振。
2.熔接时间设定:调整熔接时间长短,在延迟时间终了发振0~9.99秒之范围。
3.硬化时间设定:调整发振终了工作物熔接处冷却定型时间在0~9.99秒之范围。
4.计数器:工作循环次数记录用,附有归零压扣。
5.调整及压力表:工作压力之指示及调整压力用。
6.声波调整:调整振动子系与发振回路之共振匹配,使转换效率达到理想。
7.振幅表:显示声波空载或负载工作之振幅强弱。
8.电源开关及灯:电源开关之控制,及指示开路之信号9.选择开关(自动/手动/声波检查):自动或手动之选择,及作声波空载检视之按纽。
10.声波出力调整纽:声波出力段数之设定用,1~2段为一般使用,3~4段为强力输出用。
11.声波过载灯:显示声波过载之不正常,需做声波调整,至过载灯不会显示为止。
(若仍无法解除,请来电洽询)12.频率指示:调试机器时做机器频率显示13焊头:传动振动能量于工作物之上,使之熔接。
14上升/下降缓冲调整:调整孔位于机台侧面可适当调整,使升降惯性适中。
15下降速度调整:调整合理适当之下降工作速度用。
16熔接位置视窗:检视正常熔接时焊头压附工作物之状况。
17.最低点微调螺丝:在熔接熔化块,或外形尺寸需精确时使用可限制汽缸之下降。
18水平微调螺丝:调整此四支螺丝,可使焊头平均压附在工作物上。
19输出电缆及插座:联接机体振动子系统与发振箱线路用。
20控制电缆及插座:联接机体控制单元与发振箱自动控制回路用。
21接地螺母:电子回路之接地线连接用,漏电时之安全保障。
22保险丝座:电子线路之过载保护。
五:机器安装法:1.将发振箱放置于机体附近操作员易于观察及调整之处。
2.接地:将地线一端接地,另一端接于发振箱后面之接地旋钮。
3.发振箱与机体联接:将机体之输出电缆插头及控制电缆插头接于发振箱插座及机体插座上4.接空压源:将高压气压管引清净干燥之空压源与熔接机体上空气滤清器入口接头以管束结合锁紧。
5.接电源:发振箱后面之电源线及插头,请接上AC220V,∮60/50HZ电源。
六:各部调整及熔接前准备工作:1.装焊头:(1)先将换能器(CONE)及焊头(HORN)以及焊头螺丝,以酒精或汽油擦洗干净,再将焊头螺丝及换能器,焊头结合面抹上一层薄薄的黄油脂再将焊头螺丝锁于焊头上。
注意:换能器,焊头之结合面若有损伤时,振动之传达效率会递减,应谨保养。
(2)再紧固4支焊头水平调整螺丝,将换能器固定在其旋转范围之中间位置处。
(3)把焊头用手旋入换能器到不能回转为止。
(4)以焊头锁紧扳手焊头旋紧(约300Kg/cm之扭力),此时特别注意不让换能器旋转,以防止转梢扭断。
(若发现旋转则4支焊头水平调整螺丝要再紧固些)。
2.焊头调整:(1)调整准备:①打开气压源,并调整压力至2kg/C㎡。
②打开发振箱上之总电源开关,此时电源指示灯亮。
(2)焊头方向调整:①放松4支水平调整螺丝,将焊头之方位与工作物对正,再按机体升降开关使焊头压附工作物。
(3)焊头水平调整:轻拍焊头四周,使焊头与工作物吻合状况后,平均固定4支水平调整螺丝。
(4)焊头高低位置调整:①若工作物之熔接对于高低需准备时,调整最低点微调螺丝顶于升降筒在熔接后最适当位置。
(5)熔接准备:①依工作物之状况,设定出力段数于适当位置。
(应从低段数试起以维寿命)再按声波检查开关,并转声波调整螺丝,使振幅表之指示在最低刻度为止。
注意:按声波检查开关,应按下三秒停止一秒间歇方式,以维护振动子寿命。
七:熔接操作:熔接延迟时间及硬化时间设定方法一.面板按键说明:71 2 3 4 5 61.手动/自动:手动自动转换。
2.声波检测:测试声波是否正常。
3. 1.00S:时间增加1秒。
4.0.10S:时间增加0.1秒。
5.0.01S:时间增加0.01秒。
6. 设定:设定延迟时间/熔接时间和硬化时间7.时间显示:显示全部时间时为自动待机状态,数字全部显示为“0”时机器处于手动状态,数字为单组时间显示另两组不显示时为设定状态。
(每三个数字(8.88)为一组时间,共三组时间)二.时间设定方法:1.按“设定”钮,延迟时间与熔接时间变暗不显示,硬化时间处于设定状态。
此时可通过时间设定键增加相应的时间(例:按1.00S键及增加1秒,依次类推按0.10S及增加0.1秒,按0.01S增加0.01秒)。
时间为循环式设定,及相应的时间到“9”以后在增加时间及又从“0”开始。
(例:时间显示为9.99时,按1.00S键后时间即变为0.99。
)2.延迟时间和硬化时间与熔接时间调整方法相同。
按设定键一次为硬化时间设定,再按一次为熔接时间设定,再按一次为延迟时间设定。
再按一次及回到工作状态。
(三组时间中单一显示的一组时间及为正在设定的时间。
)3.完成上述之各部调整及熔接前准备后,按手动/自动按钮,使机器处与自动状态。
(三组时间均显示为正常的预设时间)4.熔接按钮试熔接,熔接机即可自动熔接工作一次。
5.视察熔接工作状况及熔接后工作物形态,再调整焊头,并重新设定工作条件,再试熔,重复调整至工作物理想熔接条件。
(延迟时间、硬化时间之设定,从较长时间递减设定至理想条件,声波出力及熔接时间之设定,则需由小而大渐增方式设定,以维护振动子之寿命。
)4.设定至理想熔接条件后。
即可从事作业生产,生产前,首先将计数器归零,及做声波检查,并清除工作机上不必要之物品,再行作业。
八:熔接动作说明:1.焊头下降:在发振箱导入电源及气压源接通后,按下熔接按钮(WELD),焊头即下降。
2.延迟时间:焊头下降至限制开关动作之同时,延迟时间计时器即开始计时。
3.熔接时间:延迟时间计时终了之同时,熔接时间计时器即开始计时,振动子同时发振熔接。
4.硬化时间:熔接时间计时终了之同时,硬化时间计时器即开始计时。
5.焊头上升:硬化时间计时终了,焊头随之上升,计数器即累计一次,完成一次循环动作。
九:注意事项:1.本机请勿置于潮湿或多尘及过热之场所,机器上方勿放置流体物,平时注意整洁,随时擦拭,但不可使用液体清洗。
2.人体请勿重压于发振之焊头,以免灼伤,自动操作中遇危险请按紧急按钮(EMERGENCY STOP)。
3.非本公司设计之焊头请勿使用在本机台上。
4.声波检查在无负荷时,振幅表勿超过1A,超过1A时请调整声波调整螺丝,若经调整仍不能降至1A以下,则可能焊头或机台有异常,请联络本公司处理。
5.按声波检查开关以间歇方式按下,勿连续按超过三秒以维护振动子寿命。
6.在操作时(有负荷状态),振动表勿超过红色区(在标准型熔接机时)若指示超过时,以降低压力,减少出力段数,及调整声波调整之,若经过调整,仍不能降下时,请联络本公司处理。
7.本机之振动子及发振机内有高压线路,除了外部作业之调整外,使用客户请勿做机内之修护。
8.焊头本身是依熔接物来决定,且必须配合振动系统之共振,所以焊头应使用本公司设计制造之产品,以免损害振动系统。