3主板供电电路基础知识

合集下载

主板供电全解析【最详尽图解】

主板供电全解析【最详尽图解】

主板供电全解析前言:从奔三后期开始,玩家逐渐接触到多相供电这个概念。

时至今日,CPU三相供电已经成为基本配置,最高供电相数可达夸张的16相,而内存和芯片组供电也开始用上两相乃至三相供电。

数电路相数的时候玩家有时会犯一点错误,甚至一些见多识广的编辑也免不了要犯错,那么如何准确地识别主板供电的相数呢?首先让我们来认识一下CPU供电电路的器件,找一片技嘉X48做例子。

上图中我们圈出了一些关键部件,分别是PWM控制器芯片(PWM Controller)、MOSFET 驱动芯片(MOSFET Driver)、每相的MOSFET、每相的扼流圈(Choke)、输出滤波的电解电容(Electrolytic Capacitors)、输入滤波的电解电容和起保护作用的扼流圈等。

下面我们分开来看。

5楼图)PWM控制器(PWM Controller IC)在CPU插座附近能找到控制CPU供电电路的中枢神经,就是这颗PWM主控芯片。

主控芯片受VID的控制,向每相的驱动芯片输送PWM的方波信号来控制最终核心电压Vcore的产生MOSFET驱动芯片(MOSFET Driver)MOSFET驱动芯片(MOSFET Driver)。

在CPU供电电路里常见的这个8根引脚的小芯片,通常是每相配备一颗。

每相中的驱动芯片受到PWM主控芯片的控制,轮流驱动上桥和下桥MOS管。

很多PWM控制芯片里集成了三相的Driver,这时主板上就看不到独立的驱动芯片了。

早一点的主板常见到这种14根引脚的驱动芯片,它每一颗负责接收PWM控制芯片传来的两相驱动信号,并驱动两相的MOSFET的开关。

换句话说它相当于两个8脚驱动芯片,每两相电路用一个这样的驱动芯片。

MOSFET,中文名称是场效应管,一般被叫做MOS管。

这个黑色方块在供电电路里表现为受到栅极电压控制的开关。

每相的上桥和下桥轮番导通,对这一相的输出扼流圈进行充电和放电,就在输出端得到一个稳定的电压。

主板维修-内存供电电路

主板维修-内存供电电路
02
内存供电电路故障可能导致电脑 无法启动、频繁死机、蓝屏等问 题,严重时甚至可能损坏其他硬 件。
重要性及应用领域
内存供电电路是主板维修中的重要部 分,对于电脑维修行业和电子爱好者 来说,掌握其维修技巧具有重要意义 。
随着电脑的普及和电子技术的不断发 展,主板维修行业和电子爱好者对于 内存供电电路的关注度越来越高,其 应用领域也日益广泛。
要善于总结经验,不断提高自己的维修技能。
04
主板内存供电电路维修技术
维修工具与备件准备
工具
万用表、示波器、焊接工具、螺 丝刀等。
备件
内存供电电路板、电容、电感、 二极管等。
维修步骤与注意事项
步骤 1. 检测供电电压是否正常。 2. 检查电路板上的元件是否有损坏或脱焊。
维修步骤与注意事项
01
3. 更换损坏的元件或供电电路板。
主板维修-内存供电电路
• 引言 • 主板与内存供电电路基础知识 • 主板与内存供电电路基础知识 • 主板内存供电电路故障诊断 • 主板内存供电电路维修技术 • 主板维修安全规范与职业道德 • 总结与展望
01
引言
主题简介
01
内存供电电路是主板上负责为主 内存提供稳定电源的电路部分, 其正常运行对于电脑的稳定性和 性能至关重要。
02
4. 测试主板是否正常工作。
注意事项
03
维修步骤与注意事项
01 1. 在进行维修前,务必先关闭电源,断开 电源插头。
02 2. 使用合适的焊接工具,避免损坏元件或 电路板。
03
3. 更换元件时,要选用与原元件规格相同 的产品。
04
4. 在测试主板时,务必小心操作,避免造 成二次损坏。
维修实例与技巧分享

《主板供电电路》PPT课件

《主板供电电路》PPT课件

C117 0.1UF /Y5V/50V
1 2
R198 0
R181 10M
C259 1000PF
晶振 32.768khz
C114 18PF
双针CMOS跳线 CLR_CMOS
主板开机引导过程
1、插上电源线,机箱内的ATX电源加电, 加电后,ATX电源开始输出待机工作电压 (vSB5V)。这时实时时钟开始工作,向 CMOS电路和开机电路发送32.768KHz的 实时时钟信号。
EC117 220UF
CMOS 电池
R196 1k
R1128
SLP_S3
R430 8.2k
南桥芯片
R1129
FWB82801FB
ICH6
INTVERMEN
RTCRST
PWRBTN RTCX1 RTCX2
R18
C113
390k
18PF
R195 0
1
3
2
三端稳压二极管
R194 200k
C116 1UF /Y5V/50V
7、在CPU开始工作后,首先需要进行自检,即开始 读取POST自检程序,而自检程序在BIOS中存放,所 以CPU通过前端总线的A0-A31地址线发送寻址信号 寻找自检程序。在发送寻址信号前,先要检查前端总 线是否被占用,CPU会检测DBSY(总线忙信号引脚) 是否为低电平。低电平为空闲,高电平为忙。
2、按下电脑开关的瞬间,电源开关向南桥 芯片或I/O芯片发出开机的触发信号,触发 开机电路工作,此时电源接头的第14引脚 变成低电平,ATX电源开始工作。
3、ATX电源开始工作后,电源接头的各个 引脚向主板的各大系统和各个硬件输出相 应的电压。
4、所有供电输出无误后的100-500ms后, ATX电源会由第8引脚向主板发送出3V-5V 的PowerGood信号,此信号分别提供给 CPU、北桥和南桥,其中进入南桥的 PowerGood信号作用在内部的复位模块上, 另外,PowerGood信号经过南桥连接到系 统的时钟芯片的RST端,作为RST信号(复 位信号)。

主板的供电电路及智能控制芯片解析

主板的供电电路及智能控制芯片解析

主板的供电电路及智能控制芯片解析在现代电子设备中,主板是整个系统的核心部件,它起着连接各个硬件组件、提供稳定电源和进行智能控制的重要作用。

本文将对主板的供电电路及智能控制芯片进行详细解析。

一、供电电路的组成及作用主板的供电电路主要由电源连接器、电源管理芯片、稳压模块和电容器等组成。

它们协同工作,为各个硬件组件提供所需的稳定电源。

1. 电源连接器:电源连接器是主板与电源之间的接口,它将电源输出的直流电连接到主板上。

常见的电源连接器有ATX和EPS等,具有不同的插头形状和功率输出能力。

2. 电源管理芯片:电源管理芯片是主板中的重要组成部分,它负责监测供电电压、电流和功率等参数,并通过控制开关电源的工作状态来保证稳定供电。

电源管理芯片还可以提供远程开关、省电模式和过载保护等功能。

3. 稳压模块:稳压模块用于将输入的不稳定直流电转换为主板上各个组件所需的稳定电源。

它通过采用电感、电容等元件进行滤波和调整电压,以供应不同的电源线路。

4. 电容器:电容器是主板供电电路中的重要元件,它具有储存电荷和消除电压噪声的作用。

在供电过程中,电容器可以平滑电流,提供瞬态响应和稳定电压输出。

供电电路的作用是为主板上的其他硬件组件提供稳定可靠的电源信号。

它能够防止电压波动、电流过载和电磁干扰对主板和其他设备的损害,保证系统的正常运行。

二、智能控制芯片的作用主板上的智能控制芯片是负责管理和控制整个系统的关键部件。

它能够根据用户的需求和硬件设备的状态来进行智能调节和管理,提高系统的性能和稳定性。

1. BIOS芯片:BIOS(基本输入输出系统)芯片是主板上的一个微型计算机,它存储着系统的启动流程和硬件配置信息。

当主板上电时,BIOS芯片首先被激活,负责初始化硬件设备并加载操作系统。

2. 芯片组:芯片组是主板上的核心集成电路,包括北桥和南桥两部分。

北桥负责处理高速数据传输,如内存、显卡和处理器等;南桥则完成输入输出接口和低速数据传输等任务。

(完整版)主板供电电路图解说明

(完整版)主板供电电路图解说明

主板供电电路图解说明主板的CPU供电电路最主要是为CPU提供电能,保证CPU在高频、大电流工作状态下稳定地运行,同时也是主板上信号强度最大的地方,处理得不好会产生串扰cross talk效应,而影响到较弱信号的数字电路部分,因此供电部分的电路设计制造要求通常都比较高。

简单地说,供电部分的最终目的就是在CPU 电源输入端达到CPU对电压和电流的要求,满足正常工作的需要。

但是这样的设计是一个复杂的工程,需要考虑到元件特性、PCB板特性、铜箔厚度、CPU插座的触点材料、散热、稳定性、干扰等等多方面的问题,它基本上可以体现一个主板厂商的综合研发实力和经验。

主板上的供电电路原理图1图1是主板上CPU核心供电电路的简单示意图,其实就是一个简单的开关电源,主板上的供电电路原理核心即是如此。

+12V是来自A TX电源的输入,通过一个由电感线圈和电容组成的滤波电路,然后进入两个晶体管(开关管)组成的电路,此电路受到PMW Control(可以控制开关管导通的顺序和频率,从而可以在输出端达到电压要求)部分的控制输出所要求的电压和电流,图中箭头处的波形图可以看出输出随着时间变化的情况。

再经过L2和C2组成的滤波电路后,基本上可以得到平滑稳定的电压曲线(Vcore,现在的P4处理器Vcore=1.525V),这个稳定的电压就可以供CPU“享用”啦,这就是大家常说的“多相”供电中的“一相”。

单相供电一般可以提供最大25A的电流,而现今常用的处理器早已超过了这个数字,P4处理器功率可以达到70~80W,工作电流甚至达到50A,单相供电无法提供足够可靠的动力,所以现在主板的供电电路设计都采用了两相甚至多相的设计。

图2就是一个两相供电的示意图,很容易看懂,其实就是两个单相电路的并联,因此它可以提供双倍的电流,理论上可以绰绰有余地满足目前处理器的需要了。

图2但上述只是纯理论,实际情况还要添加很多因素,如开关元件性能、导体的电阻,都是影响Vcore的要素。

主板的电源供电电路及过载保护

主板的电源供电电路及过载保护

主板的电源供电电路及过载保护一、引言现代电子设备的核心组件之一是主板,它承载着整个系统的运行和控制。

而主板的正常工作离不开电源供电电路以及过载保护的设计。

本文将探讨主板的电源供电电路以及过载保护的原理和应用。

二、主板电源供电电路主板的电源供电电路是将来自电源适配器的直流电转换为主板所需的各种电压和电流的过程。

典型的主板电源供电电路包括以下几个主要部分:1. 整流桥和滤波电容电源适配器输出的是交流电,而主板所需的是直流电。

整流桥的作用是将交流电转换为直流电,而滤波电容则能对转换后的电流进行平滑处理,消除电压的纹波。

2. 变压器和稳压芯片变压器用于将整流桥输出的高压直流电转换为主板所需的低压直流电。

而稳压芯片则负责将输出的电压保持在设定的稳定值,以确保主板正常运行。

3. 电源管理芯片电源管理芯片是主板电源供电电路的核心组件之一,它负责监测电源的状态和输出电压,并与操作系统进行通信,以实现电源管理的功能,如电源的开关控制、省电模式等。

4. 电源连接器和供电线路电源连接器是将电源适配器和主板连接起来的接口,通过供电线路传输电能。

连接器的设计必须考虑到电压和电流的要求,以及接触的可靠性和稳定性。

三、主板的过载保护过载保护是保护主板和其他电子设备免受过电流或过功率造成的损害的一种重要机制。

以下是主板常见的过载保护方法:1. 过流保护过流保护主要是通过在电源供电电路中安装保险丝或过流保护开关来实现。

当电流超过设定阈值时,保险丝会断开电路,或过流保护开关会自动跳闸,切断电源,以防止电流过大而损坏主板。

2. 过功率保护过功率保护是通过监测主板消耗的功率来实现的。

当主板消耗的功率超过设定阈值时,过功率保护电路会自动切断电源,以防止过大的功率导致主板烧毁或其他故障。

3. 温度保护温度保护是通过在主板上安装温度传感器来实现的。

当主板温度超过预设值时,温度保护电路会自动切断电源,以防止过热引起的损坏或故障。

同时,一些主板还配备有风扇等散热装置,以帮助降低主板温度。

台式机主板的供电详解

台式机主板的供电详解
/19/2018

11/19/2018

11/19/2018

开机电路
1. 主板开机电路的工作机制
主板开机电路是主板中的重要单元电路,他的主要任 务就是控制ATX电源输出工作电压,是主板开始工作。尽 管主板各部分电路的设计与应用中元件及芯片组合布局 不完全相同,但实现的原理与目的是一致的,通过控制 ATX电源的电源开关脚的电位的高低来控制ATX电源的开 关于闭合。

11/19/2018

11/19/2018
四 CMOS供电电路
主板上的CMOS随机存储器通常集成在南桥芯片里,主要 是存储硬件配置信息,系统日期时间等。CMOS供电电路, 负责不间断地为南桥芯片里面的CMOS存储器提供电源,以 保持CMOS存储器里的数据不丢失。

11/19/2018
① ATX电源各针脚定义
1、+3.3V; 2、+3.3V; 3、地线;4、+5V; 5、地线;6、+5V; 7、地线;8、PWRGD; 9、+5V(待机);10、+12V; 11、+12V;12、2*12连接器侦察; 13、+3.3V; 14、-12V; 15、地线;16、PS-ON# 17、地线;18、地线; 19、地线;20、无连接; 21、+5V;22、+5V; 23、+5V;24、地线
主板电路的结构及原理

11/19/2018
一 ATX电源
我们使用的ATX开关电源,输出的电压有+12V、-12V、 +5V、-5V、+3.3V等几种不同的电压。在正常情况下, 上述几种电压的输出变化范围允许误差一般在5%之内,不 能有太大范围的波动,否则容易出现死机和数据丢失的情 况。

主板各电路工作原理

主板各电路工作原理

主板各电路工作原理主板是计算机中最重要的硬件设备之一,它充当着其他硬件设备之间的连接器,起到传输信号、供电、数据处理等重要功能。

主板中的各个电路起着关键作用,下面将对主板的几个重要电路进行详细介绍。

1.电源电路:主板上的电源电路负责将电源转换为各个部件所需要的电压和电流。

一般来说,电源电路主要由电源插槽、变压器、整流电路、滤波电路、稳压电路等组成。

电源插槽用于连接电源,变压器用于将电源的交流电转换为适合主板工作的直流电,整流电路将交流电转换为直流电,滤波电路消除电源中的杂波,稳压电路则确保主板上各个部件获得稳定的电压。

2.时钟电路:时钟电路是主板上的一个重要部分,它负责产生和分发时钟信号,为其他设备提供稳定的时钟信号。

主板的时钟电路通常由晶体振荡器和时钟发生器组成。

晶体振荡器负责产生基础时钟信号,时钟发生器则将基础时钟信号分频、倍频,并进行相应的调整与校准,以确保主板各个部件工作在正确的频率下。

3.CPU电路:CPU电路是主板上最为复杂的电路之一,它主要负责将处理器与其他部件连接起来。

CPU电路由前端总线电路、复位电路、时序电路、存储器控制电路、数据总线电路、地址总线电路等组成。

前端总线电路负责将处理器与其他硬件设备连接,复位电路在启动或者重新启动时将处理器初始化为初始状态,时序电路根据时钟信号控制数据传输的时序,存储器控制电路负责管理存储器操作,数据总线电路负责传输数据,地址总线电路负责传输内存地址等。

4.显卡电路:显卡电路是用于处理显示输出的电路,它负责将计算机内部的图形数据转换为显示器可识别的信号进行显示。

显卡电路主要由图形芯片、显存、DAC(数字到模拟转换器)等组成。

图形芯片负责生成和处理图像数据,显存用于存储图形数据,DAC将数字信号转换为模拟信号以供显示器显示。

5.声卡电路:声卡电路是用于处理声音输入和输出的电路,它主要负责将声音信号转换为计算机可识别的数字信号或者将数字信号转换为声音信号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

主板供电电路设计基础知识
主板的CPU供电电路最主要是为CPU提供电能,保证CPU在高频、大电流工作状态下稳定地运行,同时也是主板上信号强度最大的地方,处理得不好会产生串扰cross talk效应,而影响到较弱信号的数字电路部分,因此供电部分的电路设计制造要求通常都比较高。

简单地说,供电部分的最终目的就是在CPU电源输入端达到CPU对电压和电流的要求,满足正常工作的需要。

但是这样的设计是一个复杂的工程,需要考虑到元件特性、PCB板特性、铜箔厚度、CPU插座的触点材料、散热、稳定性、干扰等等多方面的问题,它基本上可以体现一个主板厂商的综合研发实力和经验。

主板上的供电电路原理
图1
图1是主板上CPU核心供电电路的简单示意图,其实就是一个简单的开关电源,主板上的供电电路原理核心即是如此。

+12V是来自ATX电源的输入,通过一个由电感线圈和电容组成的滤波电路,然后进入两个晶体管(开关管)组成的电路,此电路受到PMW Control(可以控制开关管导通的顺序和频率,从而可以在输出端达到电压要求)部分的控制输出所要求的电压和电流,图中箭头处的波形图可以看出输出随着时间变化的情况。

再经过L2和C2组成的滤波电路后,基本上可以得到平滑稳定的电压曲线(Vcore,现在的P4处理器Vcore=1.525V),这个稳定的电压就可以供CPU“享用”啦,这就是大家常说的“多相”供电中的“一相”。

单相供电一般可以提供最大25A的电流,而现今常用的处理器早已超过了这个数字,P4处理器功率可以达到70~80W,工作电流甚至达到50A,单相供电无法提供足够可靠的动力,所以现在主板的供电电路设计都采用了两相甚至多相的设计。

图2就是一个两相供电的示意图,很容易看懂,其实就是两个单相电路的并联,因此它可以提供双倍的电流,理论上可以绰绰有余地满足目前处理器的需要了。

图2
但上述只是纯理论,实际情况还要添加很多因素,如开关元件性能、导体的电阻,都是影响Vcore的要素。

实际应用中还存在供电部分的效率问题,电能不会100%转换,一般情况下消耗的电能都转化为热量散发出来,所以我们常见的任何稳压电源总是电气元件中较热的部分。

要注意的是,温度越高代表其效率越低。

这样一来,如果电路的转换效率不是很高,那么采用两相供电的电路就可能无法满足CPU的需要,所以又出现了三相甚至更多相供电电路。

不过这也带来了主板布线复杂化,如果此时布线设计不是很合理,就会产生影响高频工作的稳定性等一系列问题。

目前在市面上见到的主流主板产品有很多采用三相供电电路,虽然可以供给CPU足够动力,但由于电路设计的不足,使主板在极端情况下的稳定性会在一定程度上受到限制。

如要解决这个问题必然会在电路设计布线方面下更大的力气,而成本也随之上升,真正在这方面设计出色的厂商寥寥无几。

从概率上计算,每个元件都有一个“失效率”的问题,用的元件越多,组成系统的总失效率就越大。

所以供电电路越简单,越能减少出问题的概率。

三相供电比两相供电更稳定吗?
大家可能对以下问题感到兴趣:提供三相供电的主板比起提供两相供电的主板更稳定吗?答案是,不一定。

道理很简单:其一,提供三相供电电路设计的主板厂商电路设计水平未见得就很高;其次,一个好的主板设计厂商,其研发工程师为了避免放置数量太多元件在主板上产生不必要干扰,而采取最简洁、最稳定的两相供电电路设计,华硕就是其中之一。

今后随着处理器的速度提高,两相供电大限将至,肯定会无法满足需要,我想到时像华硕这样注重产品稳定性的大厂一定也会采用三相甚至更多相的设计。

图3
图3是华硕P4G8X主板中的处理器供电部分,他们沿用了一贯的设计思路,在别的生产者大多采用三相供电来支持3GHz以上处理器的时候,华硕仍然在大部分产品中使用两相供电来满足CPU需要,可见其高超的设计和制造水平带来高效率的两相供电电路的优秀性能。

图上用L1、L2和C1、C2简单表示了与前面示意图中相对应部分的电感和电容。

两相供电电路为了给CPU提供足够的电力,就需要高效率,为了通过大电流,电路中使用了相应的元件。

如图3中的L1部分,+12V输入部分采用约1.5mm直径的材料绕制的电感(L1),其横截面积可以使它在通过较大电流的时候不会过热。

而L2处两个电感都采用3股直径1mm的材料绕制,提供了更大的横截面积,这样,电流在通过电感时的损耗可以降低到最小。

其他厂商在此处大多使用单根材料绕制,那样会产生更多电力损耗,引起电感发热。

刚才介绍了电感部分,同样主板上面的铜箔也是关键的导体部分。

铜箔相对比较薄,横截面较小,如果电流通过横截面较小的铜箔则容易引起损耗从而产生高热。

为了解决这一困扰,华硕的工程师在多层PCB 板电源供给部分的每一层都采用了整块铜箔的设计,至少4层铜箔组成了导体,可以提供足够的横截面积供电流通过。

在图4中用白线划出的部分就是整块铜箔的形状,PCB电路板中间层的铜箔也是如此。

图5
图5是主板背面,为CPU供电电路部分的整块铜箔,在上面还可以看到附加的锡条(铜箔面上焊了一层金属锡),这也是为增加横截面积而设计的。

采用上述工艺之后,电流到CPU的通路就会畅通无阻,电能损耗几乎可以忽略。

影响供电效率的因素只剩下电源电路中的发热大户——开关管了,开关管的转换效率成了供电电路性能的关键。

转换效率低,被损耗的电能就会转化成热量,效率越低发热越大,温度越高对系统的稳定性的影响越大。

所以我们常常看到很多主板上面的供电电路部分安装了散热片,那就是用来解决这个问题的。

但是转换效率依然无法改变,因而很可能引起CPU供电不足,因为电能都消耗在发热上了,这时候就会出现两相电源无法满足需要的情况。

倘若增加成三相电源,虽然CPU供电可以解决,却带来更大的发热量、更复杂的电路,这对系统的稳定性影响可想而知。

虽然通过优秀的设计和布线可以达到一定的稳定性,但是由于生产厂商技术水平参差不齐,满足后者恐怕也勉为其难,复杂不等于优秀!
我们在所有华硕主板上看到的开关管都平躺在主板上面,和铜箔紧密焊接,铜是热的极佳导体,根据计算,这种制造工艺每2cm2的主板面积可以提供4~5W的散热能力,这个数值相对CPU几十瓦的功率来说微不足道。

因此只要采用高效的开关管,使用两相设计就可以满足需要,自身损耗产生的少许热量足以借助主板散发,一举两得,不仅大大简化了电路,同时带来有极好的稳定性,在此设计方面华硕确实表现出世界一流的风范:不计成本地使用高效开关管,没有令人眼花缭乱的复杂设计,简单却具有优秀的稳定性!同时简单的电路设计让超频时的稳定性更加明显。

电容的误区
关于电源部分电容的使用,现在很多电脑爱好者对它的争论涉及用料和容量的最多。

很多人觉得材料越高级越好,容量越大越好,导致很多厂商为了迎合这
种心意,在元件用料上面大做文章,其实他们走入了一个误区,对电容的使用应该是够用就好!!
过高规格电容会增加成本,最后还是消费者多掏钱。

容量过大会使电容的体积变大,成为电路设计中的绊脚石,同时增加了成本,还影响空气流动和散热。

我们知道电解电容中包含有电解液成分,电解液干枯的时候也就是电容寿终正寝的时候。

电容在金属外壳的密封下,可以延长电解液干枯的时间,这就是电容的寿命。

这个时间还受工作温度的影响,实验证明环境温度每升高10℃,电容的寿命就会减半。

为了确保使用高品质的电容,华硕对每一批电容元件进行了抽样检测,75℃环境下运行5000小时通过测试后,才可以使用同一批元件,从而保证了元件可靠性,这些工作消费者看不到,但华硕确实考虑得很周全。

最后还有一点,很多人看到有些厂商在主板上电源电路标出的电容部分并没有安装电容(图4中可以看到),会认为是偷工减料,其实这可不一定是完全正确的想法。

芯片组厂商在提供推荐电路的时候确实在相应位置设计了电容,但是以华硕而言,研发工程师可以选择最佳的元件,并依据多年研发经验来改善电路设计,以达到最佳性能。

此时,原有的过多元件就不再需要了,而且去掉这些元件还可以在一定程度上增加空气流通能力,产生更好的散热效果,所以就留下了空位。

相关文档
最新文档