上海初一下册数学知识点整理(沪教版)

合集下载

2023年春上海七年级下数学辅导讲义(沪教版)第11讲 全等三角形的概念和性质及判定(讲义)解析版

2023年春上海七年级下数学辅导讲义(沪教版)第11讲 全等三角形的概念和性质及判定(讲义)解析版

第11讲 全等三角形的概念和性质及判定本节主要针对全等三角形的相关概念和性质及全等三角形的判定进行讲解,重点是全等三角形的性质的运用和判定两个三角形全等的四个判定定理,要求同学们可以达到灵活运用判定定理进行说明三角形全等的理由.本节课是几何说理的基础,综合性不高,相对简单.模块一:全等三角形的概念和性质知识精讲全等形、全等三角形及其相关的概念(1) 全等形:能够重合的两个图形叫做全等形.(2) 能够完全重合的两个三角形叫做全等三角形;两个全等三角形中,互相重合的顶点叫做对应顶点;互相重合的角叫做对应角;互相重合的边叫做对应边.如下图所示:已知:△ABC ≌DFE ,A 与D ,B 与F 是对应顶点,则:(C 与E 是对应顶点) 对应边有:AB 与DF ,AC 与DE ,BC 与FE .对应角有:A D B F C E ∠∠∠∠∠∠与,与,与.全等三角形的数学语言:三角形ABC 与三角形A ′B ′C ′全等,记作△ABC ≌△A ′B ′C ′,读作“三角形ABC 全等于三角形A ′B ′C ′”.全等三角形的性质:(1)全等三角形的对应边相等,对应角相等;(2)全等三角形的面积相等,周长相等;(3)全等三角形的对应线段(高线、中线、角平分线)相等.全等三角形中应注意的问题:(1)要正确区分“对应边”与“对边”、“对应角”与“对角”的不同含义;(2)符号“≌”表示的双重含义:①“∽”表示形状相同;②“=”表示大小相等;(3)表示两个三角形全等时,表示对应的顶点的字母要写在相对应的位置上;A B C D E F画三角形:确定三角形形状、大小的条件:六个元素(三条边、三个角)中的如下三个元素:两角及其夹边;两边及其夹角;三边.例题解析例1.(2019·上海浦东新区·)下列四组三角形中,一定是全等三角形的是()A.周长相等的两个等边三角形B.三个内角分别相等的两个三角形C.两条边和其中一个角相等的两个三角形D.面积相等的两个等腰三角形【答案】A【分析】依据全等三角形的概念即可做出选择.【详解】解:A. 周长相等的两个等边三角形,三边都相等,故A正确;B. 三个内角分别相等的两个三角形,三角形相似,不一定全等,故B错误;C. 两条边和其中一个角相等的两个三角形,只有这个角是两边夹角三角形才全等,故C错误;D. 面积相等的两个等腰三角形,不一定全等,故D错误;答案为:A.【点睛】本题考查了全等三角形的定义,即全等三角形不仅形状相同,而且大小相等.例2.下列说法正确的是()A.全等三角形是指形状相同的三角形 B.全等三角形是指面积相等的三角形C.全等三角形的周长和面积都相等 D.所有的等边三角形都全等【难度】★【答案】C【解析】A错,形状相同,大小也要相同;B错,面积相等不一定全等,反例同底等高的三角形;D错,大小不一定相等.【总结】本题主要考查全等三角形的概念.例3.直角三角形斜边上的中线把直角三角形分成的两个三角形的关系是()A.形状相同B.周长相等C.面积相等D.全等【难度】★【答案】C【解析】等底同高,所以面积相等.【总结】本题主要考查同底等高的两个三角形的面积相等的运用.例4.如图所示,△ABC≌△CDA,且AB=CD,则下列结论错误的是()A .∠1=∠2B .AC =CA C .∠B =∠D D .AC =BC【难度】★【答案】D【解析】全等三角形对应角相等,对应边相等.【总结】考察学生对全等三角形性质的理解及运用.例5.下列各条件中,不能作出唯一的三角形的是( )A .已知两边和夹角B .已知两角和夹边C .已知两边和其中一边的对角D .已知三边【难度】★【答案】C【解析】C 选项是边边角,不能作为全等的判定条件.【总结】考查全等三角形的判定定理的运用.例6.练习画出下列条件的三角形:(1) 画,ABC ∆使40,45,4A B AB cm ∠=︒∠=︒=;(2) 画,ABC ∆使6,8,10AB cm BC cm AC cm ===;(3) 画,ABC ∆使4,3,45AB cm AC cm A ==∠=︒;(4) 画,ABC ∆使8,5,50AB cm AC cm B ==∠=︒.例7.下列说法:①形状相同的两个图形是全等形;②面积相等的两个三角形是全等三角形;③全等三角形的周长相等,面积相等;④在△ABC 和△DEF 中,若∠A =∠D ,∠B =∠E ,∠C =∠F ,AB =DE ,BC =EF ,AC =DF ,则两个三角形的关系,可记作△ABC ≌△DEF ,其中说法正确的是() A .1个B .2个C .3个D .4个【难度】★★【答案】B【解析】(1)错,大小不一定相等;(2)面积相等不一定全等,反例同底等高;(3)对;(4)对,故选B .【总结】考察学生对全等三角形的概念及性质的理解.例8.下列说法中错误的是( )A .全等三角形的公共角是对应角,对顶角也是对应角B .全等三角形的公共边也是对应边C .全等三角形的公共顶点是对应顶点D .全等三角形中相等的边所对应的角是对应角,相等的角所对的边是对应边【难度】★★【答案】C【解析】全等三角形的公共顶点不一定是对应顶点,两个全等三角形任意放置,使得三 角形的一个顶点与另一个三角形的不对应的顶点重合.【总结】考察学生对全等三角形的概念的辨析能力,以及正确的举反例.例9.如图所示,ABE ADC ABC ∆∆∆和是分别沿着AB AC 、边翻折形成的,若∠1∶∠2∶∠3=28∶5∶3,则∠α的度数为( )A .80°B .100°C .60°D .45°【难度】★★【答案】A【解析】设1=28x ∠,25x ∠=,33x ∠=,则36180x =,解得:5x =.1140∴∠=︒,225∠=︒,315∠=︒,22ABC ACB ∴∠∂=∠+∠212280=∠+∠=︒.【总结】考察学生对全等三角形的应用以及翻折知识的理解及运用.例10.(2021·安仁县思源实验学校七年级期末)若ABC DEF △≌△,70A ∠=︒,50B ∠=︒,点 A 的对应点是D ,AB DE =,那么F ∠的度数是_______.【答案】60︒【分析】根据全等三角形的性质求解;【详解】解:ABC DEF ≌,70A ∠=︒,50B ∠=︒,18060F C A B ︒︒∴==--=∠∠∠∠.故答案为:60︒.【点睛】本题考查全等三角形的性质,理解相关性质正确推理计算是解题关键.例11.(2020·福建泉州市·七年级期末)如图,△ABC≌△ADE,且点E在BC上,若∠DAB=30°,则∠CED=_____.【答案】150°【分析】根据全等三角形的性质:对应角和对应边相等解答即可.【详解】∵△ABC≌△ADE,∴∠B=∠D,∵∠BHE=∠DHA,∴∠BED=∠DAB=30°,∴∠CED=180°﹣∠BED=150°.故答案为:150°.【点睛】本题考查了全等三角形的性质,熟记性质并准确识图是解题的关键.△≌△,DEF的例12.(2020·黑龙江省红光农场学校七年级期末)已知ABC DEF周长是32cm,DE=9cm,EF=12cm,则AB=_______, BC=______,CA=_____【答案】9cm 12cm 11cm【分析】作出图形,先求出DF,再根据全等三角形对应边相等解答即可.【详解】解:∵△DEF的周长是32cm,DE=9cm,EF=12cm,∴DF=32-9-12=11cm,∵△ABC≌△DEF,∴AB=DE=9cm,BC=EF=12cm,DF=AC=11cm.故答案为:9cm;12cm;11cm.【点睛】本题考查了全等三角形对应边相等的性质,熟记性质是解题的关键,作出图形更形象直观.∆≅∆,例13.(2020·河南周口市·七年级期末)如图,ABC DEF120,20∠=︒∠=︒,则DB F∠=__________°.【答案】40【分析】根据全等三角形的性质得出∠E=∠B=120°,再根据三角形的内角和定理求出∠D 的度数即可.【详解】解:∵△ABC≌△DEF,∴∠E=∠B=120°,∵∠F=20°,∴∠D=180°-∠E-∠F=40°,故答案为40.【点睛】本题考查了全等三角形的性质和三角形的内角和定理的应用,注意:全等三角形的对应角相等,对应边相等.例14.(2019·海南七年级期末)如图,在3×3的正方形网格中,∠1+∠2=_______度.【答案】90【分析】根据网格特点可知两个三角形全等,故可求解.【详解】由网格的特点可知两个三角形全等∴∠2=∠3∴∠1+∠2=∠1+∠3=90°,故答案为:90°.【点睛】此题主要考查三角形的角度求解,解题的关键是熟知全等三角形的性质及网格的特点.例15.(2019·山东泰安市·七年级期中)一个三角形的三边为2、5、x,另一个三角形的三边为y、2、6,若这两个三角形全等,则x + y =________.【答案】11【分析】根据全等三角形的性质求出x和y即可.【详解】解:∵这两个三角形全等∴x=6,y=5∴x + y =11故答案为11.【点睛】此题考查的是全等三角形的性质,掌握全等三角形的对应边相等是解决此题的关键.例16.(2018·全国七年级课时练习)如图,已知△ABE≌△ACD,∠1=∠2,∠B=∠C,指出对应边和其他对应角.【答案】AB与AC,AE与AD,BE与CD是对应边;∠D与∠E是对应角.【分析】先根据△ABE≌△ACD,可以确定点A的对应点是A,点B的对应点是C,点D的对应点是E,然后根据对应顶点,结合图形即可找出对应边和对应角.【详解】∵△ABE≌△ACD,∠1=∠2,∠B=∠C,∴点A的对应点是A,点B的对应点是C,点E的对应点是D,∴∠E与∠D是对应角,AB与AC,BE与CD,AE与AD是对应边.【点睛】本题考查了全等三角形的性质,一般情况下,对于图形的全等来说,能够完全重合的部分是相互对应的,实际应用中,应结合图形将对应点写在对应位置上,以免出现错误.例17.(2019·沂源县中庄中学七年级月考)如图,点B,C,D在同一条直线上,∠B=∠D=90°,△ABC≌△CDE,AB=6,BC=8,CE=10.(1)求△ABC的周长;(2)求△ACE的面积.【答案】(1)24;(2)50【分析】(1)根据三角形全等得到AC=CE,即可得出答案;(2)根据三角形全等得到∠ACB=∠CED,∠BAC=∠DCE,进而求出∠ACB+∠DCE=90°,即可得出答案.【详解】解:(1))∵△ABC≌△CDE∴AC=CE∴△ABC的周长=AB+BC+AC=24(2)∵△ABC≌△CDE∴AC=CE,∠ACB=∠CED,∠BAC=∠DCE又∠B=90°∴∠ACB+∠BAC=90°∴∠ACB+∠DCE=90°∴∠ACE=180°-(∠ACB+∠DCE)=90°∴△ACE的面积=150 2AC CE⨯⨯=【点睛】本题考查的是全等三角形的性质以及三角形的周长和面积公式,需要熟记三角形的周长和面积公式.例18.如图,在矩形ABCD中,AE平分∠DAB交DC于点E,连接BE,过E作EF⊥BE交AD于F.(1)∠DEF和∠CBE相等吗?请说明理由;(2)请找出图中与ED相等的线段(不另添加辅助线和字母),并说明理由.【难度】★★【答案】(1)相等;(2)ED BC AD ==.【解析】(1)90DEF CEB ∠+∠=︒,90CBE CEB ∠+∠=︒,DEF CBE ∴∠=∠(同角的余角相等)(2)AE 平分DAB ∠, 45DAE ∴∠=︒,DE AD ∴=. AD BC =, DE AD BC ∴==.【总结】考察学生对图形的理解和掌握,能够迅速的根据图形发现同角的余角相等,再 利用特殊的角度45得出等腰直角三角形,从而解题.例19.如图所示,30255ADF BCE B F BC cm ∆≅∆∠=︒∠=︒=,,,,14CD cm DF cm ==,.求:(1)1∠的度数;(2)AC 的长.【难度】★★【答案】(1)1=55∠°;(2)4AC cm =.【解析】(1)ADF BCE ≅,30A B ∴∠=∠=︒,AD BC =,155A F ∴∠=∠+∠=︒;(2)ADF BCE ≅,AD BC ∴=, 514AC AD CD cm ∴=-=-=.【总结】考察学生对全等三角形对应边相等,对应角相等的掌握,并且学会正确运用. 例20.如图,在△ABC 中,∠A :∠B :∠ACB =2:5:11,若将△ABC 绕点C 逆时针旋转,试旋转前后的△A ’B ’C ’中的顶点B ’在原三角形的边AC 的延长线上,求∠BCA ’的度数.【难度】★★【答案】40︒.【解析】设2A x ∠=,5B x ∠=,11ACB x ∠=,则18180x =, 解得:10x =,∴110BCA ∠=,70BCB '∠=.110A CB ''∠=, 40BCA '∴∠=.【总结】考察学生对旋转的理解,注意利用全等三角形的性质进行解题.例21.如图,已知△ABC ≌△ADE ,BC 的延长线交AD 于点F ,交AE 的延长线于G ,∠ACB =1050,∠CAD =100,∠ADE =250,求∠DFB 和∠AGB 的度数.【难度】★★【答案】∠DFB =85︒,∠AGB =45︒.【解析】证明:ABC ADE ≅,25ADE ABC ∴∠=∠=︒,50CAB EAD ∠=∠=︒,10502585DFB ∴∠=︒+︒+︒=︒,1801102545AGB ∠=︒-︒-︒=︒.【总结】本题主要考察学生对全等三角形的性质及三角形外角性质和内角和定理的综合 运用.例22.如图,把△ABC 纸片沿DE 折叠,当点A 落在四边形BCDE 内部时.(1)写出图中一对全等的三角形,并写出它们的所有对应角;(2)设∠AED 的度数为x ,∠ADE 的度数为y ,那么∠1,∠2的度数分别是多少?(用含有x 或y 的代数式表示)(3)∠A 与∠1+∠2之间有一种数量关系始终保持不变,请找出这个规律.【难度】★★★【答案】(1)AED A ED '≅,A A '∠=∠,AED A ED '∠=∠,ADE A DE '∠=∠;(2)11802x ∠=-,21802y ∠=-;(3)()1122A ∠=∠+∠. 【解析】(3)证明:∵()180A x y ∠=-+,1+2=3602()x y ∠∠-+,∴()1122A ∠=∠+∠. 【总结】本题一方面考查翻折的性质,另一方面考查全等三角形的性质及三角形内角和 定理的运用.例23.如图(1)所示,把△ABC 沿直线BC 移动线段BC 那样长的距离可以变到△ECD 的位置;如图(2)所示,以BC 为轴把△ABC 翻折180°,可以变到△DBC 的位置;如图(3)所示,以点A 为中心,把△ABC 旋转180°,可以变到△AED 的位置,像这样,只改变图形的位置,而不改变其形状大小的图形变换叫做全等变换. 在全等变换中可以清楚地识别全等三角形的对应元素,以上的三种全等变换分别叫平移变换、翻折变换和旋转变换,问题:如图(4),△ABC ≌△DEF ,B 和E 、C 和F 是对应顶点,问通过怎样的全等变换可以使它们重合,并指出它们相等的边和角.AB CD E (1)AB C D (2)AB C D E (3)A B C (4)D E F【难度】★★★【答案】翻折变换,平移变换或旋转变换,平移变换.【解析】AB ED =,BC EF =,AC DF =.【总结】考察学生对图形的运动的理解和掌握,需要学生进行一定的空间想象. 模块二:全等三角形的判定知识精讲本模块复习了全等三角形的4个判定定理,主要是已知条件为“两边及夹角对应 相等(SAS )”,“两角及夹边对应相等(ASA )”,“两角及其中一角的对边对应相等(AAS )”“三边对应相等(SSS )”的两个三角形全等.例题解析例1.如图,已知∠B =∠D ,∠1=∠2,AC =AE ,说明△ABC ≌△ADE 的理由.【难度】★★【解析】证明:12∠=∠,12DAC DAC ∴∠+∠=∠+∠,即BAC DAE ∠=∠.在ABC 和DAE 中,B D BAC DAE AC AE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABC ≌△ADE (A.A.S ).【总结】考察学生对全等三角形的判定条件的掌握.例2.如图,已知∠C =∠E ,BE =CD ,说明△ABE 与△ADC 全等的理由,AB 与AD相等吗?为什么?【难度】★【解析】证明:在ABE 和ADC 中,A A C E BE CD ∠=∠⎧⎪∠=∠⎨⎪=⎩,ABE ADC ∴≅(A.A.S ), AB AD ∴=.【总结】考察学生对全等三角形的判定及性质的综合运用.例3.如图,已知AD =BC ,AE =BE .说明AC =BD ,∠C =∠D 的理由.【难度】★【解析】证明:AD BC =,AE BE =,DE CE ∴=.在ACE 和BDE 中,AE BE =AEC BED ∠=∠,ACE BDE ∴≅(S.A.S )AC BD ∴=,C D ∠=∠(全等三角形的对应边相等,对应角相等)【总结】考察学生对全等三角形的判定及性质的综合运用.例4如图,已知AB =CD ,AD =BC ,说明∠A =∠C 的理由.【难度】★【解析】证明:连接BD在ABD 和CDB 中,AB CD AD BC BD DB =⎧⎪=⎨⎪=⎩, (..)ABD CDB S S S ∴≅A C ∴∠=∠(全等三角形的对应角相等)【总结】考察学生对全等三角形的判定及性质的综合运用.例5.如图,已知BD 是△ABC 的中线,B 、D 、E 、F 在一条直线上,且AE ∥CF ,说明△ADE 与△CDF 全等的理由.【难度】★★【解析】//AE CF , E EFC ∴∠=∠.∵BD 是△ABC 的中线, ∴AD CD =.在ADE 和CDF 中,ADE FDC AD CD ⎪∠=∠⎨⎪=⎩, ADE CDF ∴≅(A.A.S ). 【总结】考察学生对全等三角形的判定条件的掌握.例6.如图,已知AC ∥BD ,AC =BD ,(1)说明△AOC 与△BOD 全等的理由;(2)说明EO =FO 的理由.【难度】★★【解析】证明:(1)//AC BD ,C D ∴∠=∠.在AOC 和BOD 中,C D AOC BOD AC BD ∠=∠⎧⎪∠=∠⎨⎪=⎩, AOC BOD ∴≅(A.A.S ); (2)AOC BOD ≅, CO DO ∴=.在CEO 和DFO 中,C D CO DOCOE DOF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ()CEO DFO ASA ∴≅, EO FO ∴=.【总结】考察学生对全等三角形的判定及性质的综合运用.例7.如图,CD ⊥AB 于D ,BE ⊥AC 于E ,OD =OE ,说明AB =AC 的理由.【难度】★★【解析】CD AB BE AC ⊥⊥,, 90BDC DEC ∴∠=∠=︒.在BDO 和CEO 中,DO EODOB COE ⎪=⎨⎪∠=∠⎩, (..)BDO CEO A S A ∴≅. DO EO ∴=,B C ∠=∠, BO CO =, BE CD ∴=.在ABE 和ACD 中,A A BE CDBC ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴ABE ≌ACD (A.S.A ), AB AC ∴=(全等三角形的对应边相等)【总结】本题主要考察学生对全等三角形的判定条件的掌握,注意利用多次全等. 例8.如图,已知AD ∥BC ,BF ∥DE ,AE =CF .(1) △ADE 与△CBF 全等吗,为什么?(2) 说明AB =CD 的理由;(3) 图中有哪几对全等三角形?【难度】★★【解析】证明:(1)全等,//AD BC , DAC ACB ∴∠=∠.//BF DE ,DEF BFE ∴∠=∠, AED BFC ∴∠=∠.在AED 和BFC 中,DAC ACB AE CF AED BFC ∠=∠⎧⎪=⎨⎪∠=∠⎩, (..)ADE CBF A S A ∴≅;(2)ADE CBF ≅, AD BC ∴=.在ABC 和ADC 中AD BC DAC ACB AC AC =⎧⎪∠=∠⎨⎪=⎩,(..)ABC ADC S A S ∴≅,AB CD ∴=(全等三角形的对应边相等);(3)AED CFB ≅;DEC BFA ≅;ABC CDA ≅.【总结】本题主要考察全等三角形的判定与性质的综合运用.例9.如图,已知AB =CD ,BM =CM ,AC =BD ,说明AM =DM 的理由.【难度】★★【解析】在ABC 和BCD 中,AB CD AC BD BC BC =⎧⎪=⎨⎪=⎩, (..)ABC DCB S S S ∴≅, ABC BCD ∴∠=∠,在ABM 和DCM 中,AB CD ABC BCD BM CM =⎧⎪∠=∠⎨⎪=⎩,(..)ABM DCM S A S ∴≅, AM DM ∴=.【总结】本题主要考察全等三角形的判定与性质的综合运用,利用多次全等进行证明. 例10.如图,∠1=∠2,AC =BD ,E 、A 、B 、F 在同一条直线上,说明:∠CAD =∠DBC 的理由.【难度】★★【解析】12∠=∠, CAB DBA ∴∠=∠.在CAB 和DBA 中,AC BD CAB DBA AB AB =⎧⎪∠=∠⎨⎪=⎩, (..)CAB DBA S A S ∴≅,CBA DAB ∴∠=∠,又CAB DBA ∠=∠,CAD DBC ∴∠=∠.【总结】本题主要考察全等三角形的判定与角的和差的综合运用.例11.如图所示,AB =AC ,CE =BE ,连结AE 并延长交BC 于D ,说明AD ⊥BC 的理由.【难度】★★【解析】证明:在ABE 和ACE 中,AB AC BE CE AE AE =⎧⎪=⎨⎪=⎩,(..)ABE ACE S S S ∴≅,BAD CAD ∴∠=∠.在ABD 和ACD 中,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩, (..)ABD ACD S A S ∴≅,90ADB ADC ∴∠=∠=, AD BC ∴⊥.【总结】本题主要考查全等三角形的判定的综合运用,通过多次全等得到垂直. 例12.如图所示,BE 、CD 相交于O ,AB =AC ,AD =AE ,说明OD =OE 的理由.【难度】★★【解析】证明:在ADC 和AEB 中,AD AE A A AB AC =⎧⎪∠=∠⎨⎪=⎩, ∴(..)ADC AEB S A S ≅B C ∴∠=∠(全等三角形的对应角相等)AB CA =,AD AE =,BD CE ∴=.在BDO 和CEO 中,DOB COE ∠=∠B C ∠=∠BD CE =(..)BDO CEO A A S ∴≅, OD OE ∴=(全等三角形的对应边相等)【总结】本题主要考查全等三角形的判定的综合运用,注意对全等的多次运用. 例13.(2019·上海奉贤区·七年级期末)阅读并填空:如图,ABC 是等腰三角形,AB AC =,D 是边AC 延长线上的一点,E 在边AB 上且联接DE 交BC 于O ,如果OE OD ,那么CD BE =,为什么?解:过点E 作EF AC 交BC 于F所以ACB EFB ∠=∠(两直线平行,同位角相等)D OEF ∠=∠(________)在OCD 与OFE △中()________COD FOE OD OED OEF ⎧∠=∠⎪=⎨⎪∠=∠⎩所以OCD OFE △≌△,(________)所以CD FE =(________)因为AB AC =(已知)所以ACB B =∠∠(________)所以EFB B ∠=∠(等量代换)所以BE FE =(________)所以CD BE =【分析】先根据平行线的性质,得到角的关系,然后证明OCD OFE △≌△,写出证明过程和依据即可.【详解】解:过点E 作//EF AC 交BC 于F ,∴ACB EFB ∠=∠(两直线平行,同位角相等),∴D OEF ∠=∠(两直线平行,内错角相等),在OCD 与OFE △中()()()COD FOE OD OED OEF ⎧∠=∠⎪=⎨⎪∠=∠⎩对顶角相等已知已证, ∴OCD OFE △≌△,(ASA )∴CD FE =(全等三角形对应边相等)∵AB AC =(已知)∴ACB B =∠∠(等边对等角)∴EFB B ∠=∠(等量代换)∴BE FE =(等角对等边)∴CD BE =;【点睛】本题考查了全等三角形的判定和性质,平行线的性质,解题的关键是由平行线的性质正确找到证明三角形全等的条件,从而进行证明.例14.(2019·上海市民办新竹园中学七年级期中)如图,△ABC 中,D 是BC 的中点,过点D 的直线GF 交AC 于F ,交AC 的平行线BG 于G 点,DE ⊥GF ,交AB 于点E ,连接EG ,EF.(1)说明:BG=CF ;(2)BE ,CF 与EF 这三条线段能否组成一个三角形?【分析】(1)由BG ∥AC 得出∠DBG=∠DCF,从而利用ASA 得出△BGD 与△CFD全等,进一步证得结论(2)根据△BGD与△CFD全等得出GD=FD,BG=CF,再又因为DE⊥GF,从而得出EG=EF,从而进一步得出结论【详解】(1)∵BG∥AC∴∠DBG=∠DCF又∵D为BC中点∴BD=CD又∵∠BDG=∠CDF∴△BGD≅△CFD(ASA)∴BG=CF(2)能证明如下:∵△BGD≅△CFD∴BG=CF,GD=DF又∵DE⊥GF∴GE=EF∵BE,BG,GE组成了△BGE∴BE,BG,GE三边满足三角形三边的关系同理,与BG,GE相等的两边CF,EF与BE三条线段亦满足三角形三边关系∴BE,CF,EF这三条线段可以组成三角形【点睛】本题主要考查了三角形全等的综合运用,熟练掌握三角形全等的判断及性质是关键例15.(2018·华东理工大学附属中学七年级月考)如图,在△ABC中,已知点D、E、F分别在边BC、AC、AB上,且FD=DE,BF=CD,∠FDE=∠B,请说明∠B=∠C【分析】根据三角形的一个外角等于与它不相邻的两个内角的和可得∠FDC=∠B+∠DFB ,再根据∠FDE=∠B ,证明∠DFB=∠EDC ,然后根据边角边定理证明△DFB 与△EDC 全等,根据此思路进行解答即可.【详解】证明:∵∠FDC=∠B+∠DFB (三角形的一个外角等于与它不相邻的两个内角的和) 即∠FDE+∠EDC=∠B+∠DFB又∵∠FDE=∠B (已知)∴∠DFB=∠EDC在△DFB 与△EDC 中FB=ED (已知),∠DFB=∠EDC ,BF=CD (已知)∴△DFB ≌△EDC (SAS )∴∠B =∠C .【点睛】本题考查了全等三角形的判定与全等三角形的性质,熟练掌握判定定理与性质定理,理清证明思路是写出理由与步骤的关键.例16.(2019·上海浦东新区·)公园里有一条“Z ”字形道路ABCD ,如图所示,其中AB CD ∥,在AB ,CD ,BC 三段路旁各有一只小石凳E ,F ,M ,且BE CF =,M 是BC 的中点,试说明三只石凳E ,F ,M 恰好在一条直线上.(提示:可通过证明180EMF =∠)【分析】先根据SAS 判定△BEM ≌△CFM ,从而得出∠BME=∠CMF.通过角之间的转换可得到E ,M ,F 在一条直线上.【详解】证明:∵AB CD ∥(已知)∴B C ∠=∠(两直线平行,内错角相等)在EBM △与FCM △中,BE CF B CBM CM =⎧⎪∠=∠⎨⎪=⎩(已知)(已证)(中点的意义)∴(...)EBM FCM S A S △≌△∴BME CMF ∠=∠(全等三角形的对应角相等)∵180BMF CMF +=∠∠(平角的意义)∴180BMF BME ∠+∠=(等量代换)∴E ,M ,F 三点共线(平角的意义)【点睛】本题主要考查了学生对全等三角形的判定的掌握情况,关键是共线的证明方法. 例17.(2019·上海浦东新区·)如图,已知ABC △中,AB AC =,O 是ABC △内一点,且OB OC =,试说明AO BC ⊥的理由.【分析】先证明AOB AOC △≌△,再利用全等三角形的性质得到BAO CAO ∠=∠,然后利用等腰三角形三线合一的性质,即可证明.【详解】证明:在AOB 与AOC △中,AB AC OB OCAO AO (已知)(已知)(公共边)=⎧⎪=⎨⎪=⎩∴(...)AOB AOC S S S △≌△∴BAO CAO ∠=∠(全等三角形的对应角相等)∵AB AC =(已知)∴AO BC ⊥(等腰三角形的三线合一)【点睛】本题考查全等三角形的判定和性质、等腰三角形的性质等知识,解题的关键是正确寻找全等三角形解决问题和等腰三角形三线合一性质的运用.例18.(2018·上海市第八中学七年级月考)如图,点E 、F 位于线段AC 上,且 AF=CE , AB ∥CD , BE ∥DF 。

沪教版七年级下册数学(全册知识点考点梳理、重点题型分类巩固练习)(提高版)(家教、补习、复习用)

沪教版七年级下册数学(全册知识点考点梳理、重点题型分类巩固练习)(提高版)(家教、补习、复习用)

沪教版初一数学下册知识点梳理重点题型(常考知识点)巩固练习平方根和开平方(提高)【学习目标】1.了解平方根、算术平方根的概念,会用根号表示数的平方根.2.了解开方与乘方互为逆运算,会用开方运算求某些非负数的平方根,会用计算器求平方根.【要点梳理】要点一、平方根和算术平方根的概念1.平方根的定义如果,那么叫做的平方根.求一个数的平方根的运算,叫做开平方.叫做被开方数.平方与开平方互为逆运算.2.算术平方根的定义正数的两个平方根可以用“”表示,其中表示的正平方根(又叫算术平方根),读作“根号”;表示的负平方根,读作“负根号”.要点诠释:当式子有意义时,一定表示一个非负数,即≥0,≥0. 要点二、平方根和算术平方根的区别与联系1.区别:(1)定义不同;(2)结果不同:和2.联系:(1)平方根包含算术平方根;(2)被开方数都是非负数;(3)0的平方根和算术平方根均为0.要点诠释:(1)正数的平方根有两个,它们互为相反数,其中正的那个叫它的算术平方根;负数没有平方根.(2)正数的两个平方根互为相反数,根据它的算术平方根可以立即写出它的另一个平方根.因此,我们可以利用算术平方根来研究平方根.要点三、平方根的性质要点四、平方根小数点位数移动规律被开方数的小数点向右或者向左移动2位,它的算术平方根的小数点就相应地向右或者向左移动1位.例如:,,,.【典型例题】类型一、平方根和算术平方根的概念【:389316 平方根:例1】1、若2-4与3-1是同一个正数的两个平方根,求的值.【思路点拨】由于同一个正数的两个平方根互为相反数,由此可以得到2-4=-(3-1),解方程即可求解.【答案与解析】解:依题意得 2-4=-(3-1),解得=1;∴的值为1.【总结升华】此题主要考查了平方根的性质:一个正数有两个平方根,它们互为相反数.举一反三:【变式】已知2-1与-+2是的平方根,求的值.【答案】2-1与-+2是的平方根,所以2-1与-+2相等或互为相反数.解:①当2-1=-+2时,=1,所以=②当2-1+(-+2)=0时,=-1,所以2、为何值时,下列各式有意义?(1); (2); (3); (4).【答案与解析】解:(1)因为,所以当取任何值时,都有意义.(2)由题意可知:,所以时,有意义.(3)由题意可知:解得:.所以时有意义.(4)由题意可知:,解得且.所以当且时有意义.【总结升华】方法总结:(1)当被开方数不是数字,而是一个含字母的代数式时,一定要讨论,只有当被开方数是非负数时,式子才有意义.(2)当分母中含有字母时,只有当分母不为0时,式子才有意义.举一反三:【变式】已知,求的算术平方根.【答案】解:根据题意,得则,所以=2,∴,∴的算术平方根为.类型二、平方根的运算3、求下列各式的值.(1);(2).【思路点拨】(1)首先要弄清楚每个符号表示的意义.(2)注意运算顺序.【答案与解析】解:(1);(2).【总结升华】(1)混合运算的运算顺序是先算平方开方,再乘除,后加减,同一级运算按先后顺序进行.(2)初学可以根据平方根、算术平方根的意义和表示方法来解,熟练后直接根据来解.类型三、利用平方根解方程4、求下列各式中的.(1)(2);(3)【答案与解析】解:(1)∵∴∴(2)∵∴∴+1=±17=16或=-18.(3)∵∴∴∴【总结升华】本题的实质是一元二次方程,开平方法是解一元二次方程的最基本方法.(2)(3)小题中运用了整体思想分散了难度.举一反三:【变式】(2015春•乌兰察布校级期中)求x的值:(x﹣2)2=4.【答案】解:∵,∴(x﹣2)2=36,∴x﹣2=6或x﹣2=﹣6,解得:x1=8,x2=﹣4.类型四、平方根的综合应用5、(2014秋•沙坪坝区校级期末)若x,y为实数,且满足.求的值.【答案与解析】解:∵+|y﹣|=0,∴x=,y=,则原式==1.【总结升华】本题是非负数的性质与算术平方根的综合题,先由非负性解出x,y,然后代入求值即可.举一反三:【:389316 平方根:例5练习】【变式】若,求的值.【答案】解:由,得,,即,.①当=1,=-1时,.②当=-1,=-1时,.【:389316 平方根:例6】6、小丽想用一块面积为400的正方形纸片,沿着边的方向裁出一块面积为300的长方形纸片,使它长宽之比为,请你说明小丽能否用这块纸片裁出符合要求的长方形纸片.【答案与解析】解:设长方形纸片的长为3 (>0),则宽为2,依题意得...∵>0,∴.∴ 长方形纸片的长为.∵ 50>49,∴.∴, 即长方形纸片的长大于20.由正方形纸片的面积为400, 可知其边长为20,∴ 长方形的纸片长大于正方形纸片的边长.答: 小丽不能用这块纸片裁出符合要求的长方形纸片.【总结升华】本题需根据平方根的定义计算出长方形的长和宽,再判断能否用边长为20的正方形纸片裁出长方形纸片.沪教版初一数学下册知识点梳理重点题型(常考知识点)巩固练习【巩固练习】一.选择题1.下列说法中正确的有().①只有正数才有平方根.②是4的平方根.③的平方根是.④的算术平方根是.⑤的平方根是.⑥.A.1个 B.2个 C.3 个 D.4个2.若=-4,则估计的值所在的范围是()A.1<<2 B. 2<<3 C. 3<<4 D. 4<<53. 试题下列说法中正确的是()A.4是8的算术平方根B.16的平方根是4C.是6的平方根D.-没有平方根4.(2015•河南模拟)若=a,则a的值为()A.1B.﹣1C. 0或1D. ±15.有一个数值转换器,原理如下:当输入的=64时,输出的等于()A.2B.8C.D.6. 若,为实数,且|+1|+=0,则的值是()A.0B.1C.-1D.-2011二.填空题7. 若,则=__________.8. 如果一个正方形的面积等于两个边长分别是3和5的正方形的面积的和,则这个正方形的边长为 ________.9. 下列各数:81,,1.44,,的平方根分别是_______________;算术平方根分别是_______________.10.(1)的平方根是________;(2)的平方根是________,算术平方根是________;(3)的平方根是________,算术平方根是________;(4)的平方根是________,算术平方根是________.11.若实数满足0,则的值为 .12.(2015•前郭县二模)观察下列各式: =2, =3, =4,…请你找出其中规律,并将第n(n≥1)个等式写出来.三.解答题13.(2015春•武汉校级月考)求下列各式中x的值.①x2﹣25=0②4(x+1)2=16.14.已知和互为相反数,且,求的值.15.如图,实数,对应数轴上的点A和B,化简【答案与解析】一.选择题1. 【答案】A;【解析】只有②是正确的.2. 【答案】B;【解析】,所以2<-4<3 .3. 【答案】C;【解析】A.∵4是16的算术平方根,故选项A错误;B.∵16的平方根是±4,故选项B错误;C.∵是6的一个平方根,故选项C正确;D.当≤0时,-也有平方根,故选项D错误.4. 【答案】C;【解析】解:∵=a,∴a≥0.当a=0时, =a;当0<a<1时,>a;当a=1时, =a;当a>时,<a;综上可知,若=a,则a的值为0或1.故选C.5. 【答案】D;【解析】根据图中的步骤,把64输入,可得其算术平方根为8,8再输入得其算术平方根是,是无理数则输出.6. 【答案】C;【解析】+1=0,-1=0,解得=-1;=1.=-1.二.填空题7. 【答案】1.02;【解析】被开方数向左移动四位,算术平方根的值向左移动两位.8. 【答案】;【解析】这个正方形的边长为.9. 【答案】±9;±;±1.2;±;±3;9;;1.2;;3.10.【答案】(1)±5;(2)±5;5;3)±,||;(4)±(+2),|+2|;【解析】.11.【答案】-1;【解析】=-1,=5..12.【答案】;【解析】解: =(1+1)=2,=(2+1)=3,=(3+1)=4,…,故答案为:.三.解答题13.【解析】解:①移项可得:x2=25,解得:x=±5;②系数化为1得:(x+1)2=4,∴x+1=±2,∴x=1或x=﹣3.14.【解析】解:两个非负数互为相反数则只能均为0,于是-1=0,1-2=0,求得=1,∴=2.15.【解析】根据∵∴原式=-+-(-)-(+) =-+-+--=--.沪教版初一数学下册知识点梳理重点题型(常考知识点)巩固练习立方根和开立方【学习目标】1. 了解立方根的含义;2. 会表示、计算一个数的立方根,会用计算器求立方根.【要点梳理】【:立方根、实数,知识要点】要点一、立方根的定义如果一个数的立方等于,那么这个数叫做的立方根或三次方根.这就是说,如果,那么叫做的立方根.求一个数的立方根的运算,叫做开立方.要点诠释:一个数的立方根,用表示,其中是被开方数,3是根指数. 开立方和立方互为逆运算.要点二、立方根的特征立方根的特征:正数的立方根是正数,负数的立方根是负数,0的立方根是0.要点诠释:任意一个实数都有立方根,而且只有一个立方根,并且它的符号与这个非零数的符号相同. 两个互为相反数的数的立方根也互为相反数.要点三、立方根的性质要点诠释:第一个公式可以将求负数的立方根的问题转化为求正数的立方根的问题.要点四、立方根小数点位数移动规律被开方数的小数点向右或者向左移动3位,它的立方根的小数点就相应地向右或者向左移动1位.例如,,,,.要点五、次方根如果一个数的次方(是大于1的整数)等于,那么这个数叫做的次方根.当为奇数时,这个数为的奇次方根;当为偶数时,这个数为的偶次方根.求一个数的次方根的运算叫做开次方,叫做被开方数,叫做根指数.要点诠释:实数的奇次方根有且只有一个,正数的偶次方根有两个,它们互为相反数;负数的偶次方根不存在.;零的次方根等于零,表示为.【典型例题】类型一、立方根的概念【:立方根实数,例1】1、下列结论正确的是()A.64的立方根是±4 B.是的立方根C.立方根等于本身的数只有0和1D.【答案】D;【解析】64的立方根是4;是的立方根;立方根等于本身的数只有0和±1.【总结升华】一个非零数与它的立方根符号相同;.举一反三:【变式】(2015春•滑县期末)我们知道a+b=0时,a3+b3=0也成立,若将a看成a3的立方根,b看成b3的立方根,我们能否得出这样的结论:若两个数的立方根互为相反数,则这两个数也互为相反数.(1)试举一个例子来判断上述猜测结论是否成立;(2)若与互为相反数,求1﹣的值.【答案】解:(1)∵2+(﹣2)=0,而且23=8,(﹣2)3=﹣8,有8﹣8=0,∴结论成立;∴即“若两个数的立方根互为相反数,则这两个数也互为相反数.”是成立的.(2)由(1)验证的结果知,1﹣2x+3x﹣5=0,∴x=4,∴1﹣=1﹣2=﹣1.类型二、立方根的计算【:立方根实数,例2】2、求下列各式的值:(1)(2)(3)(4)(5)【答案与解析】解:(1)(2)(3)(4)(5)【总结升华】立方根的计算,注意符号和运算顺序,带分数要转化成假分数再开立方.举一反三:【变式】计算:(1)______;(2)______;(3)______.(4)______.【答案】(1)-0.2;(2);(3);(4).类型三、利用立方根解方程3、(2015春•罗平县期末)求下列各式中x的值:(1)3(x﹣1)3=24.(2)(x+1)3=﹣64.【思路点拨】先整理成x3=a的形式,再直接开立方解方程即可.【答案与解析】解:(1)3(x﹣1)3=24,(x﹣1)3=8,x﹣1=2,x=3.(2)开立方得:x+1=﹣4,解得:x=﹣5.【总结升华】本题是用开立方的方法解一元三次方程,要灵活运用使计算简便.举一反三:【变式】求出下列各式中的:(1)若=0.343,则=______;(2)若-3=213,则=______;(3)若+125=0,则=______;(4)若=8,则=______.【答案】(1)=0.7;(2)=6;(3)=-5;(4)=3.类型四、立方根实际应用4、在做物理实验时,小明用一根细线将一个正方体铁块拴住,完全浸入盛满水的圆柱体烧杯中,并用一量筒量得铁块排出的水的体积为64,小明又将铁块从水中提起,量得烧杯中的水位下降了.请问烧杯内部的底面半径和铁块的棱长各是多少?【思路点拨】铁块排出的64水的体积,是铁块的体积,也是高为烧杯的体积.【答案与解析】解:铁块排出的64的水的体积,是铁块的体积.设铁块的棱长为,可列方程解得设烧杯内部的底面半径为,可列方程,解得6.答:烧杯内部的底面半径为6,铁块的棱长 4 .【总结升华】应该熟悉体积公式,依题意建立相等关系(方程),解方程时,常常用到求平方根、立方根,要结合实际意义进行取舍.本题体现与物理学科的综合.举一反三:【变式】将棱长分别为和的两个正方体铝块熔化,制成一个大正方体铝块,这个大正方体的棱长为____________。

沪教版(上海)-初中数学七年级、八年级、九年级数学全册章节知识点结构思维导图集

沪教版(上海)-初中数学七年级、八年级、九年级数学全册章节知识点结构思维导图集
第二十五章 锐角三角比的章节知识点结构思维导图
- 14 -
第二十六章 二次函数的章节知识点结构思维导图 第二十七章 圆与正多边形的章节知识点结构思维导图
- 15 -
第二十八章 统计初步的章节知识点结构思维导图
- 16 -
-7-
第十四章 三角形的章节知识点结构思维导图 第十五章 平面直角坐标系的章节知识点结构思维导图
-8-
上海市(沪教版)八年级数学全册章节思维导图 共八个章节
第十六章 二次根式的章节知识点结构思维导图
-9-
第十七章 一元二次方程的章节知识点结构思维导图
- 10 -
第十八章 正比例函数和反比例函数的章节知识点结构思维导图 第十九章 几何证明的章节知识点结构思维导图
-3-
第七章 线段与角的画法的章节知识点结构思维导图 第八章 长方体的再认识的章节知识点结构思维导图
-4-
上海市(沪教版)七年级数学全册章节思维导图 共七章
第九章 整式的章节知识点结构思维导图
-5-
第十章 分式的章节知识点结构思维导图 第十一章 图形的运动的章节知识点结构思维导图
-6-
第十二章 实数的章节知识点结构思维导图 第十三章 相交线 平行线的章节知识点结构思维导图
- 11 -
第二十章 一次函数的章节知识点结构思维导图 第二十一章 代数方程的章节知识点结构思维导图
- 12 -
第二十二章 四边形的章节知识点结构思维导图 第二十三章 概率初步的章节知识点结构思维导图
- 13 -
上海市(沪教版)ቤተ መጻሕፍቲ ባይዱ年级数学全册章节思维导图 共五章
第二十四章 相似三角形的章节知识点结构思维导图
上海市(沪教版)初中数学全册思维导图集 共二十八章

沪教初一数学知识点整理

沪教初一数学知识点整理
p
11.1 平移 1. 将图形上的所有点都按照某个方向作相同距离的位置移动,叫做图形的平移运动,简称为 平移 2. 图形平移后,对应点之间的距离、对应线段的长度、对应角的大小相等。图形平移后,图 形的大小、形状都不变。 3. 平移后各对应点之间的距离叫做图形平移的距离。
11.2 旋转 1. 在平面内,将一个图形绕一个定点按某个方向转动一个角度,这样的运动叫做图形的旋转。 这个定点叫做旋转中心,转动的角度叫做旋转角。 2. 图形的旋转是图形上的每一点在平面上绕着某个固定点旋转固定角度的位置移动,其中对 应点到旋转中心的距离相等,对应线段的长度、对应角的大小相等,旋转前后图形的大小 和形状没有改变。
9.5 合并同类项 1. 所含的字母相同,且相同字母的指数也相同的单项式叫做同类项。 2. 把多项式中的同类项合并成一项,叫做合并同类项。一个多项式合并后含有几项,这个多 项式就叫做几项式。 3. 把同类项的系数相加的结果作为合并后的系数,字母和字母的指数不变。 4. 多项式的同类项可以运用交换率、结合律、分配率合并。 9.6 整式的加减 1. 括号前面是“+”号,去掉“+”号和括号,括号里的各项不变号;括号前面是“-”号, 去掉“-”号和括号,括号里的各项都变号。
9.17 同底数幂的除法 1. am ÷an=am-n(m、n是正整数且m>n, a ≠0).同底数幂相除,底数不变,指数相减。 2. 任何不等于零的数的零次幂为1,即a0=1(a ≠0). 9.18 单项式除以单项式 1. 两个单项式相除,把系数、同底数幂分别相除作为商的因式,对于只在被除式里含有的自 母,则连同它的指数作为商的一个因式。 9.19 多项式除以单项式 1. 多项式除以单项式,先把多项式的每一项除以单项式,再把所得的商相加。

沪科版七年级数学下册知识点总结大全

沪科版七年级数学下册知识点总结大全

—-可编辑修改,可打印——别找了你想要的都有!精品教育资料——全册教案,,试卷,教学课件,教学设计等一站式服务——全力满足教学需求,真实规划教学环节最新全面教学资源,打造完美教学模式沪科版七年级数学下册知识点数学是一门研究数量、结构、变化以及空间模型等概念的学科;数学解题的关键就是知识和方法;知识是锁眼,方法是钥匙。

缺少哪个都不能打开题目这把锁;那么我们的数学学习也要针对这两点进行。

一、掌握课本知识内容及内涵数学知识是数学解题的基石。

只有掌握了课本知识的内容,理解知识的内涵,才能更好地运用它来解决问题。

二、多看例题数学有的概念、定理较抽象,我们可以通过例题,将已有的概念具体化,使自己对知识的理解更加深刻,更加透彻!看例题时,还要注意以下几点:1、看一道例题,解决一类问题。

不能只看皮毛,不看内涵。

我们看例题,要注意总结并掌握其解题方法,建立起更宽的解题思路。

不能看一道题就只会一道题,只记题目答案不记方法,这样看例题也就失去了它本来的意义。

每看一道题目,就应理清解题思路,掌握解题方法,再遇到同类型的题目,我们就不在难了。

既然有“授人以鱼,不如授人以渔”,那么我们是不是也可以说“要鱼不如要渔”呢!2、我们不仅要看例题还要会总结,总结题型、解题思路和方法。

运用了哪些数学思想。

最好把总结的写出来。

以后复习时再看,就事半功倍了。

3、会模仿,也要创新。

在看例题的解题时,首先想自己遇到这个题怎么做,然后看例题怎么解答的,之后我们还要思考还有没有其它方法和思路。

我们最后看哪种方法更简便。

三、多做练习“多”讲的是题型多,不是题目数量多。

不怕难题,就怕生题。

题海战术不一定好,但是接触的题型多了,总结的解题方法多了。

以后遇到相同类型的题目也就不怕了。

四、心细,多思,善问,勤总结数学是严谨的,做题目时要细心,一个符号之差,题目的解就可能完全不一样了,遇到问题要多思考,培养自己的数学思维,思考实在不会的,我们就要问,去弄懂。

沪教版(五四制)七年级数学下册 第九讲 实数的概念及运算 讲义(无答案)

沪教版(五四制)七年级数学下册 第九讲  实数的概念及运算 讲义(无答案)

一、实数的分类:0⎧⎧⎫⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎧⎨⎪⎪⎨⎪⎪⎪⎩⎭⎩⎪⎪⎫⎧⎪⎪⎨⎬⎪⎪⎩⎭⎩正整数整数负整数有理数有限小数或无限循环小数正分数实数分数负分数正无理数无理数无限不循环小数负无理数 二、有理数的性质:⑴有理数的定义:可以写成两个整数p 与q (0q ≠)的比值的数.故所有的有理数都可以化成分数pq(0q ≠)的形式.⑵有理数进行加、减、乘、除四则运算的结果仍是有理数.即有理数集对于加减乘除四则运算具有封闭性.三、平方根和开平方:如果一个数的平方等于a ,那么这个数叫做a 的平方根. 求一个数a 的平方根的运算叫做开平方,a 叫做被开方数. 开平方与平方互为逆运算.在实数范围内,一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根.正数a 的两个平方根可以用“a 的正平方根(又叫算术平方根),读作“根号a ”;a 的负平方根,读作“负根号a ”.=.,00,0,0a a a a a a >⎧⎪===⎨⎪-<⎩四、立方根和开立方:如果一个数的立方等于a,那么这个数叫做a a ”,其中a 叫做被开方数,“3”叫做根指数.2”第九讲实数的概念及运算a ”a ”. 求一个数a 的立方根的运算叫做开立方.在实数范围内,任何一个数都有且只有一个立方根.正数的立方根为正数,负数的立方根为负数,0的立方根为0.实数的概念【例题1】 将下列各数填入适当的括号内:220,0.23,,0.37377377737π∙∙---⑴整 数:{ };⑵非负数:{ }; ⑶有理数:{ };⑷无理数:{ } ⑸正实数:{ };⑹负实数:{ }【例题2】 平方根等于它本身的数是 ,算术平方根等于它本身的数是 ,立方根等于它本身的数是 ;平方根与立方根相等的数是 .①196的平方根是_____;②2( 2.5)-的平方根是 ;③2(的平方根是 ;______的相反数是 ;⑥的立方根是 .【例题3】 求下列各式的值:(1_______= (2)________=(3)________= (4________=(5)________= (6)________=【例题4】 求下列各式的值:(1_______= (2)________=(3)________= (4________=(5________= (6________=实数的性质【例题5】 (1)已知a ,b ,c ,d 是有理数,a c +=+a c =,b d =.(2)已知x ,y 是有理数,且11()()402332x y πππ+++--=,求x y -的值.(3)已知x ,y 是有理数,且11 2.25034x y ⎛⎛+--- ⎝⎭⎝⎭,求x ,y 的值.【例题6】 (1)若a 为自然数,b 为整数,且满足2()7a =-a = ,b = .(2,求a ,b 的值.【例题7】 (12(2)0ab -=,求111(1)(1)(2009)(2009)ab a b a b +++++++的值.(2)已知x ,y ,z 满足24402x y z z -+-++=,求()x y z +的值.【例题8】 (1)已知关于x 1a =有三个整数解,求a 的值.(2)若m =试确定m 的值.【例题9】 (1a ,小数部分是b ,求22a b a b-+的值.(2b ,求4321237620b b b b +++-的值.【例题10】 (1)求最小的正整数m 是一个自然数。

七年级下上海数学知识点

七年级下上海数学知识点

七年级下上海数学知识点上海市是我国经济发展最快的城市之一,其教育水平一直处于全国领先地位。

在数学课程方面,上海市的数学教育也一直被认为是全国最好的,且在全球范围内也享有盛誉。

那么,接下来就为大家介绍一下七年级下上海数学学科的知识点。

一、数的分类在数学课程中,我们首先要学习的就是数的分类。

数可以分为自然数、整数、分数、小数等,而这些不同的数之间也各有联系和差别。

自然数是人们最习惯的数,我们可以通过自然数进行加、减、乘、除等运算。

二、整数的加减法整数加减法则同自然数一样,在计算时要掌握进位、借位的技巧。

不同的是,在整数的混合运算中,减法要采用加相反数的方式来计算。

三、分数的加减法分数的加减法相对于整数、自然数的加减法来说更为复杂。

我们需要先将分数的分母统一,再进行加减运算。

在分数运算中,我们还需要掌握分数的逆运算——倒数,就是将一个分数的分子、分母交换位置得到的结果。

四、小数的计算小数在我们的日常生活中用的很多,小到生活中的零花钱,大到社会中的经济数据等。

在数学中,小数的加减乘除同样也是我们需要重点掌握的内容。

小数的运算需要在计算前先将小数补齐,然后进行运算,最后再将结果还原成小数。

五、几何变换在数学中,几何变换是一项重要的内容,它可以让我们更好的理解几何知识,同时也可以帮助我们做出更准确的数学题。

常见的几何变换有平移、旋转、镜像和对称等几种。

六、数据处理实际生活中,我们经常要处理大量的数学数据。

在数学课程中,我们也需要学会如何处理数据。

数据处理包括统计分析、比较分析和抽样探究等几个方面,不同的处理方法适用于不同的数据类型和处理目的。

七、方程与代数式方程和代数式是数学中的重要内容,包括一元一次方程、一元二次方程等多种形式。

我们需要学会如何转化代数式,提取公因数,用公式计算,解方程等技能。

总之,数学是一项高难度的学科,需要我们打好基础,且不断地去深化和拓宽自己的数学知识,才能更好地掌握数学知识,提高学科成绩。

上海七年级数学(下)有关概念和知识点梳理(K12教育文档)

上海七年级数学(下)有关概念和知识点梳理(K12教育文档)

上海七年级数学(下)有关概念和知识点梳理(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(上海七年级数学(下)有关概念和知识点梳理(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为上海七年级数学(下)有关概念和知识点梳理(word版可编辑修改)的全部内容。

七年级数学(下)有关概念和知识点梳理第十二章实数1、无限不循环小数叫做无理数;有理数和无理数统称为实数.2、平方根和开平方:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。

(偶次方根同)错误!= 0开平方和平方互为逆运算:当 a>0时(,a )2= a (-错误!)2= a(平方根等于本身的只有0 )当 a≥0时错误!= a 错误!= a当 a<0时,a2 = -a3、立方根和开立方:任意一个数都有一个立方根,而且只有一个立方根。

(奇次方根同)错误!=0 (错误!)3= a 错误!= a4、实数轴:数轴上的每一个点都对应唯一的实数.数轴上两点A、B对应的数分别是a、b,那么两点距离:AB=|a-b|5、实数的运算性质:设 a>0 , b>0 则,ab = 错误!·错误!错误!= 错误!6、分数指数幂规定: n,a m =a (a≥0)错误!=a (a>0)(m、n为正整数,n>1)7、精确度:对近似程度的要求叫精确度。

(精确到哪一位,保留几个有效数字)有效数字:对于一个近似数,从左边第一个不是零的数字起,往右到末位数字为止的所有数字,叫做这个近似数的有效数字.第十三章相交线平行线平行线的判定:1同位角相等,两直线平行2内错角相等,两直线平行3同旁内角互补,两直线平行平行线的性质:1两直线平行,同位角相等2两直线平行;内错角相等3两直线平行,同旁内角互补(平行的传递性)∵ a∥b b∥c ∴ a∥c第十四章三角形1、三边关系:三角形任意两边之和大于第三边。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十二章实数第一节实数的概念12.1 实数的概念A.无限不循环小数叫做无理数。

B.只有符号不同的两个无理数,它们互为相反数。

C.有理数和无理数统称为实数。

正有理数有理数零—有限小数或无限循环小数负有理数实数正无理数无理数—无限不循环小数负无理数(1).自然数(小学):数出物体个数的这样的数,如1、2、3、4、5......叫做自然数。

(2).整数(小学):0和自然数叫做整数。

(3)整数(中学):正整数、负整数和0统称为整数。

(4)正数:大于0的数叫做正数。

(5)负数:小于0的数叫做负数。

(6)分数(小学):形如1/2、5/3、7(3/5)这样的数叫做分数。

(7)分数(中学):有限小数和无限循环小数统称为分数。

(8)有理数:整数和分数统称为有理数。

(9)无理数:无限不循环小数叫做无理数,具体表示方法为√2、√3这样的数。

(10)实数:有理数与无理数统称为实数。

第二节数的开方12.2 平方根和开平方A .如果一个的平方等于a ,那么这个数叫做a 的平方根。

求一个数a 的平方根的运算叫做开平方,a 叫做被开方数。

(定义:如果√a=a ,则√a 叫做a 的平方根,记作“√a ”(a 称为被开方数)。

B .正数a 的两个平方根可以用“a ±”表示,期中a 表示a 的正平方根(又叫算术平方根),读作“根号a ”;a -表示a 的负平方根,读作“负根号a ”。

开平方和平方互为逆运算: 当 a >0时 ( a )2= a (- a )2= a(平方根等于本身的只有0 ) 当 a ≥0时a 2 = a (-a)2 = a当 a <0时 a 2 = -a 零的平方根记作0,0=0注:一个正数的平方根的平方等于这个数。

一个正(负)数的平方的正平方根等于这个数(这个数的相反数)。

性质:正数的平方根有两个,它们互为相反数;0的平方根是0;负数没有平方根。

算术平方根:正数a 的正的平方根叫做a 的算术平方根,记作“√a ”。

12.3 立方根和开立方A .如果一个数的立方等于a ,那么这个数叫做a 的立方根,用“3a ”表示,读作“三次根号a ”,a 叫做被开方数,“3”叫做根指数。

求一个数a 的立方根的运算叫做开立方。

(定义:如果3a =a ,则x 叫做a 的立方根,记作“3a ”(a 称为被开方数)。

B .任意一个实数都有立方根,而且只有一个立方根。

30 =0 ( 3a )3= a 3a 3 = a⑵、性质:正数有一个正的立方根;0的立方根是0;负数有一个负的立方根。

12.4 n 次方根A .如果一个数的n 次方(n 是大于1的整数)等于a ,那么这个数叫做a 的n 次方根,当n 为奇数时,这个数为a 的奇次方根;当n 为偶数时,这个数叫做a 的偶次方根。

求一个数a 的n 次方根的运算叫做开n 次方,a 叫做被开方数,n 叫做根指数。

B .实数a 的奇次方根有且只有一个,用“n a ”表示。

其中被开方数a 是任意一个实数,根指数n 是大于1的奇数。

正数a 的偶次方根有两个,它们互为相反数,正n 次方根用“n a ”表示,负n 次方根用“-n a ”表示。

其中被开方数a>0,根指数n 是正偶数(当n=2时,在n a ±中省略n )。

负数的偶次方根不存在。

零的n 次方根等于零。

第三节 实数的运算12.5 用数轴上的点表示实数A .一个实数在数轴上所对应的点到原点的距离叫做这个数的绝对值。

实数a 的绝对值记作a 。

绝对值相等、符号相反的两个数叫做互为相反数,零的相反数是零,非零实数a 的相反数是-a 。

B .负数小于零,零小于正数。

两个正数,绝对值大的数比较大;两个负数,绝对值大的数较小。

从数轴上看,右边的点所表示的数总比左边的点所表示的数大。

12.6 实数的运算实数轴:数轴上的每一个点都对应唯一的实数。

数轴上两点A 、B 对应的数分别是a 、b ,那么两点距离:AB=|a -b|(11)实数的运算性质:设 a >0 , b >0 则 ab = a · b ab = a b第四节 分数指数幂12.7 分数指数幂A .我们规定分数指数幂:a a nmn m =0≥a a a n m n m -=1>a 其中m 、n 为正整数,n>1。

B .整数指数幂和分数指数幂统称为有理数指数幂。

C .有理数指数幂的运算性质:设a>0,b>0,p 、q 为有理数,那么.,*a a a aa a q p q p q p q p -+=÷=().a a pq q p =()b a b a p p p p pp b a ab =⎪⎭⎫ ⎝⎛=,第十三章 相交线 平行线第一节 相交线 13.1 邻补角、对顶角13.2 垂线A .如果两条直线的夹角为直角,那么就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

B .在平面内经过直线上或直线外的一点作已知直线的垂线可以作一条,并且只能作一条。

C .联结直线外一点与直线上各点的所有线段中,垂线段最短。

D .点到直线的距离直线外一点到这条直线的垂线段的长度,叫做这个点到直线的距离。

13.3 同位角、内错角、同旁内角第二节 平行线13.4 平行线的判定A .两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。

B .经过直线外的一点,有且只有一条直线与已知直线平行。

C .两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。

D .两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。

13.5 平行线的性质A .两条平行线被第三条直线所截,同位角相等。

B .两条平行线被第三条直线所截,内错角相等。

C .两条平行线被第三条直线所截,同旁内角互补。

D .如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

E .两条平行线中,任意一条直线上的所有点到另一条直线的距离都是一个定值,这个定值叫做这两条平行线间的距离。

10.1相交线:邻补角:两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角。

对顶角:一个角的两边分别是另一个叫的两边的反向延长线,像这样的两个角互为对顶角。

垂线:两条直线相交成直角时,叫做互相垂直,其中一条叫做另一条的垂线。

平行线:在同一平面内,不相交的两条直线叫做平行线。

同位角、内错角、同旁内角:同位角:∠1与∠5像这样具有相同位置关系的一对角叫做同位角。

内错角:∠2与∠6像这样的一对角叫做内错角。

同旁内角:∠2与∠5像这样的一对角叫做同旁内角。

对顶角的性质:对顶角相等。

补充;垂线的性质:性质1:过一点有且只有一条直线与已知直线垂直。

性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

平行公理:经过直线外一点有且只有一条直线与已知直线平行。

平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

10.2平行线的判定:判定1:同位角相等,两直线平行。

判定2:内错角相等,两直线平行。

判定3:同旁内角相等,两直线平行。

10.3平行线的性质:性质1:两直线平行,同位角相等。

性质2:两直线平行,内错角相等。

性质3:两直线平行,同旁内角互补。

10.4平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移平移变换,简称平移。

对应点:平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

平行线的判定:1同位角相等, 两直线平行2内错角相等, 两直线平行3同旁内角互补,两直线平行平行线的性质:1两直线平行, 同位角相等2两直线平行; 内错角相等3两直线平行,同旁内角互补(平行的传递性)∵ a ∥b b ∥c ∴ a ∥c第十四章 三角形第一节 三角形的有关概念与性质14.1 三角形的有关概念A .三角形任意两边的和大于第三边。

B .三角形的高、中线、角平分线。

C 、三角形的分类:锐角三角形、直角三角形、钝角三角形。

D 、三边互不相等的三角形叫做不等边三角形;有两边相等的三角形叫做等腰三角形;三遍都相等的三角形叫做等边三角形。

14.2 三角形的内角和A .三角形的内角和等于180°。

B .三角形的一个外角等于与它不相邻的两个内角的和;三角形的一个外角大于任何一个与它不相邻的内角。

C .三角形的外角和等于360°。

第二节 全等三角形14.3 全等三角形的概念与性质A .能够重合的两个图形叫做全等形。

B .全等三角形的对应边相等,对应角相等。

14.4 全等三角形的判定A .在两个三角形中,如果有两条边及它们的夹角对应相等,那么这两个三角形全等(SAS )。

B .在两个三角形中,如果有两个角及其中一个角的对边对应相等,那么这两个三角形全等(AAS )。

C .在两个三角形中,如果有三条边对应相等,那么这两个三角形全等(SSS )。

第三节 等腰三角形14.5 等腰三角形的性质A .等腰三角形的两个底角相等,简称等边对等角。

B .等腰三角形的顶角平分线、底边上的中线、底边上的高互相重合,简称三线合一。

C .等腰三角形是轴对称图形,它的对称轴是顶角平分线所在的直线。

14.6 等腰三角形的判定A .如果一个三角形有两个角相等,那么这两个角所对的边也相等,这个三角形是等腰三角形,简称等角对等边。

14.7 等边三角形A .有一个内角等于60°的等腰三角形是等边三角形。

第十五章 平面直角坐标系第一节 平面直角坐标系15.1平面直角坐标系A .经过点A (a,b )且垂直于x 轴的直线可以表示为直线x=a ,经过点A (a,b )且垂直于y 轴的直线可以表示为直线y=b 。

第二节 直角坐标平面内点的运动15.2 直角坐标平面内的运动A .在直角坐标平面内,平行于x 轴的直线上的两点A(x 1,y)、B(x 2,y)的距离AB=X X 21-;平行于y 轴的直线上的两点C(x ,y 1)、D(x ,y 2)的距离CD=y y 21-。

B .一般地,如果点M(x,y)沿着与x 轴或y 轴平行的方向平移m (m>0)个单位,那么向右平移所对应的点的坐标为(x+m,y);向左平移所对应的点的坐标为(x-m,y);向上平移所对应的点的坐标为(x,y+m);向下平移所对应的点的坐标为(x,y-m)。

C.一般地,在直角坐标平面内,与点M(x,y)关于x轴对称的点的坐标为(x,-y);与点M(x,y)关于y轴对称的点的坐标为(-x,y)。

D.一般地,在直角坐标平面内,与点M(x,y)关于原点对称的点的坐标为(-x,-y)。

相关文档
最新文档