311随机事件的概率(教学案)
3.1.1《随机事件的概率》教案(新人教版必修3)完美版

高一数学必修3导学案(教师版) 编号3.1.1随机事件的概率周次上课时间月日周课型-新授课主备人使用人课题 3.1.1随机事件的概率教学目标<1.了解随机事件、必然事件、不可能事件的概念;2.正确理解事件A出现的频率的意义;3.正确理解概率的概念和意义,明确事件A发生的频率f n(A)与事件A发生的概率P(A)的区别与联系;教学重点事件的分类;概率的定义以及和频率的区别与联系;教学难点随机事件发生存在的统计规律性.课前准备多媒体课件,硬币数枚》一、〖创设情境〗日常生活中,有些问题是能够准确回答的.例如,明天太阳一定从东方升起吗明天上午第一节课一定是八点钟上课吗等等,这些事情的发生都是必然的.同时也有许多问题是很难给予准确回答的.例如,你明天什么时间来到学校明天中午12:10有多少人在学校食堂用餐你购买的本期福利彩票是否能中奖等等,这些问题的结果都具有偶然性和不确定性二、〖新知探究〗(一)必然事件、不可能事件和随机事件—思考1:考察下列事件:(1)导体通电时发热;(2)向上抛出的石头会下落;(3)在标准大气压下水温升高到100°C会沸腾.这些事件就其发生与否有什么共同特点思考2:我们把上述事件叫做必然事件,你指出必然事件的一般含义吗在条件S下,一定会发生的事件,叫做相对于条件S的必然事件.让学生列举一些必然事件的实例#思考3:考察下列事件:(1)在没有水分的真空中种子发芽;(2)在常温常压下钢铁融化;(3)服用一种药物使人永远年轻.这些事件就其发生与否有什么共同特点思考4:我们把上述事件叫做不可能事件,你指出不可能事件的一般含义吗在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件让学生列举一些不可能事件的实例~思考5:考察下列事件:(1)某人射击一次命中目标;(2)马林能夺取北京奥运会男子乒乓球单打冠军;(3)抛掷一个骰字出现的点数为偶数. 这些事件就其发生与否有什么共同特点思考6:我们把上述事件叫做随机事件,你指出随机事件的一般含义吗在条件S下,可能发生也可能不发生的事件,叫做相对于条件S的随机事件.让学生列举一些随机事件的实例思考7:必然事件和不可能事件统称为确定事件,确定事件和随机事件统称为>事件,一般用大写字母A,B,C,…表示.对于事件A,能否通过改变条件,使事件A 在这个条件下是确定事件,在另一条件下是随机事件你能举例说明吗(二):事件A发生的频率与概率物体的大小常用质量、体积等来度量,学习水平的高低常用考试分数来衡量.对于随机事件,它发生的可能性有多大,我们也希望用一个数量来反映.思考1:在相同的条件S下重复n次试验,若某一事件A出现的次数为nA,则称nA为(事件A出现的频数,那么事件A出现的频率fn(A)等于什么频率的取值范围是什么思考2:历史上曾有人作过抛掷硬币的大量重复试验,结果如下表所示:抛掷次数正面向上次数;频率0.502048106104040204812000@601924000120123000014984,7208836124在上述抛掷硬币的试验中,正面向上发生的频率的稳定值为多少思考3:某农科所对某种油菜籽在相同条件下的发芽情况进行了大量重复试验,每批粒数?2510701303107001500]20003000发芽的粒数24960116~2826391339180627150发芽的频数1、()[0,1]Annf An}在上述油菜籽发芽的试验中,每批油菜籽发芽的频率的稳定值为多少思考4:上述试验表明,随机事件A在每次试验中是否发生是不能预知的,但是在大量重复试验后,随着试验次数的增加,事件A发生的频率呈现出一定的规律性,这个规律性是如何体现出来的事件A发生的频率较稳定,在某个常数附近摆动.思考5:既然随机事件A在大量重复试验中发生的频率fn(A)趋于稳定,在某个常数附近摆动,那我们就可以用这个常数来度量事件A发生的可能性的大小,并把这个常数叫做事件A发生的概率,记作P(A).那么在上述抛掷硬币的试验中,正面向上发生的概率是多少在上述油菜籽发芽的试验中,油菜籽发芽的概率是多少思考6:在实际问题中,随机事件A发生的概率往往是未知的(如在一定条件下射击命中目标的概率),你如何得到事件A发生的概率。
高二数学必修3:3.1.1 随机事件的概率 教案3

3.1.1随机事件的概率一、教学目标:(1)了解随机事件、必然事件、不可能事件的概念;(2)正确理解事件A 出现的频率n n A f A n /)( 的意义;(3)理解事件A 发生的频率)(A f n 与事件A 发生的概率P (A )的区别与联系. 二、重点:事件的分类;概率的定义以及与频率的区别与联系. 三、教学方法:(1)发现法教学,通过在抛硬币的试验中获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高;(2)通过学生动手、动脑和亲身试验来理解知识,体会数学知识与现实世界的联系. 四、教学过程:(一)、创设情境:日常生活中,有些问题是很难给予准确无误回答的。
例如你明天什么时间起床?7:20在某公共汽车站候车有多少人?你购买本期福利彩票是否能中奖?等等。
(二)、新课 1、基本概念: 学生阅读教材至113111P -P 的思考,并完成相应的练习,教师总结与事件有关的概念: 10必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件; 20不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件; 30确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件; 40随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的随机事件; 例1 判断下列事件哪些是必然事件,哪些是不可能事件,哪些是随机事件? (1)“抛一石块,下落”; (必然事件) (2)“在标准大气压下且温度低于0℃时,冰融化”; (不可能事件) (3)“如果a >b ,那么a -b >0”; (必然事件) (4)“掷一枚硬币,出现正面”; (随机事件) (5)“你购买本期福利彩票中奖”; (随机事件) (6)“在常温下,焊锡熔化”. (不可能事件)2、掷币实验:试验要求:每位同学做10次掷硬币试验,必须认真做试验(保证随机性),否则结果的误差就不仅仅是随机误差。
第一步,每位同学各实验10次,第四步,把第三步的结果画成条形图(横轴是正面、反面,纵轴是频数或正面朝上的比例,即频率),这个条形图有什么特点?第五步,统计全班每个同学试验中正面朝上的次数,填入下面表格,(中间高,两边低,是比较对称的的图形,让学生体会试验结果的随机性与规律性之间的关系。
人教B版必修3高中数学3.1.1随机事件的概率教学案

四川省古蔺县中学高中数学必修三:3.1.1 随机事件的概率 ☆学习目标: 1. 了解随机事件、必然事件、不可能事件的概念;2. 正确理解事件A 出现的频率的意义;3. 正确理解概率的概念,明确事件A 发生的频率f n (A)与事件A 发生的概率P(A)的区别与联系;.☻问题情境:日常生活中,有些问题是很难给予准确的回答的, 例如,①抛一枚硬币,它将正面朝上还是反面朝上? ②购买本期福利彩票是否能中奖?③7:20在某公共汽车站候车的人有多少?④你购买本期体育彩票是否能中奖?等等。
但当我们把某些事件放在一起时, 会表现出令人惊奇的规律性. 这其中蕴涵什么?☻知识生成:(5)频数与频率:对于给定的随机事件A, 在相同的条件S 下重复n 次试验,观察事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的 ; 称事件A 出现的比例f n (A)=n n A 为事件A 出现的 ;对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率f n (A) 稳定在某个常数上,把这个常数记作P(A),称为事件A 的 。
(6)频率与概率的区别与联系:随机事件的频率,是指此事件发生的次数n A 与试验总次数n 的比值n n A,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。
我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的 可能性的大小。
频率在大量重复试验的前提下可以近似地作为这个事件的概率 ☆ 案例探究:例1. 判断下列事件哪些是必然事件,哪些是不可能事件,哪些是随机事件?(1)“抛一石块,下落”. (2)“在标准大气压下且温度低于0℃时,冰融化”;(3)“某人射击一次,中靶”; (4)“如果实数a >b ,那么a -b >0”;(5)“掷一枚硬币,出现正面”;(6)如果,a b 都是实数,a b b a +=+;(7)“导体通电后,发热”; (8) “在常温下,焊锡熔化”.(9)“从分别标有号数1,2,3,4,5的5张标签中任取一张,得到4号签”;(10) “某电话机在1分钟内收到2次呼叫”;(11) “没有水份,种子能发芽”;答:根据定义,事件 是必然事件;事件 是不可能事件;事件 是随机事件.例2. 射击次数n10 20 50 100 200 500 击中靶心次数m 8 19 44 92 178 455击中靶心的频率n m(1)填写表中击中靶心的频率;(2)这个射手射击一次,击中靶心的概率约是什么?分析:事件A 出现的频数n A 与试验次数n 的比值即为事件A 的频率,当事件A 发生的频率f n (A)稳定在某个常数上时,这个常数即为事件A 的概率。
《3.1.1随机事件的概率》教学设计

《3.1.1随机事件的概率》教学设计I. 1.章节名称:《3.1.1随机事件的概率》2.计划学时:一个学时II.教材地位、作用和特点:《3.1.1随机事件的概率》是人教A版高中数学必修3第三章第一节。
学生在初中已经接触过随机事件、不可能事件、必然事件以及频率和概率等相关概念,对本节课的学习有一定的认知基础,而本节课又为学生高中阶段较为系统的学习概率知识打下基础,起到了承上启下的作用。
本节课主要是通过试验让学生体会“随机事件发生的不确定性以及大量重复试验下又表现出的频率的稳定性”这一抽象知识点;通过剖析试验数据理解频率与概率的关系。
III.教学目标(1)知识与技能:①了解随机事件、必然事件、不可能事件的概念:②正确理解事件A出现的频率的意义和概率的概念和意义,明确事件A发生的频率与概率的区别与联系;(2)过程与方法:通过经历试验、统计等活动,进一步发展学生合作交流的意识和能力;通过获取试验数据,归纳总结试验结果,体会随机事件发生的不确定性及其频率的稳定性;使学生正确理解事件A出现的频率的意义,真正做到在探索中学习,在探索中提高。
(3)情感、态度、价值观:通过学生自己动手、动脑和亲身试验来理解概率的含义,体会数学知识与现实生活的联系。
IV.教学重点与难点重点:1.理解随机事件发生的不确定性和频率的稳定性;2.正确理解概率的意义;难点:理解随机事件发生的随机性,以及随机性中表现出的规律性。
难点突破:给学生亲自动手操作的机会,使学生在实践过程中形成对随机事件发生的随机性以及随机性中表现出的规律性的直接感知。
V.教学媒体和器材:多媒体教学课件辅助教学;每位学生一枚一元硬币;三角板或直尺;VI. 课堂结构设计1.创设故事情境,引入新课通过创设故事情境,迅速集中学生的注意力。
通过挖掘故事中的信息完成对“随机事件、必然事件、不可能事件”的概念的学习;同时也激发了学生的学习兴趣,为下面的学习营造了较好的氛围。
2.设计掷硬币试验,全体学生共同参与,培养学生能力的同时掌握知识让学生亲身经历试验的全过程,在试验的过程中,通过动手操作,统计、交流、对比试验结果,培养了学生观察能力、交流合作能力、思维能力以及总结概括能力;于不知不觉间掌握了知识,同时又突破了理解上的难点:随机事件发生的随机性以及随机性中表现出的规律性。
3.1.1随机事件的概率教案

3.1.1随机事件的概率教案3.1.1随机事件的概率⼀、教学⽬标:1、知识与技能:(1)了解随机事件、必然事件、不可能事件概念;(2)正确理解事件A出现的频率的意义,明确事件A发⽣的频率fn(A)与事件A发⽣的概率P(A)的区别与联系2、过程与⽅法:发现法教学,通过在抛硬币、抛骰⼦的试验中获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提⾼。
3、情感态度与价值观:(1)通过学⽣⾃⼰动⼿、动脑和亲⾝试验来理解知识,体会数学知识与现实世界的联系;(2)培养学⽣的辩证唯物主义观点,增强学⽣的科学意识.⼆、重点与难点:事件的分类,⽤频率估计概率。
三、学法与教学⽤具:1、引导学⽣对⾝边的事件加以注意、分析,结果可定性地分为三类事件:必然事件,不可能事件,随机事件;指导学⽣做简单易⾏的实验,让学⽣⽆意识地发现随机事件的某⼀结果发⽣的规律性;2、教学⽤具:硬币数枚,投计算机及多媒体教学.教学过程:1、创设情境:⾃然界和现实⽣活中,⼀些事物是相互联系和不断发展的。
在它们彼此间的联系和发展中,根据它们是否有必然的因果联系,可以分成截然不同的两⼤类:⼀类是确定性现象。
这类现象:在⼀定条件下,必定会导致某种确定的结果。
⽐如,标准⼤⽓压下,⽔加热到100℃必然会沸腾。
事物间的这种联系是必然性的,这是⾃然科学各学科研究的范畴。
另⼀类是不确定性的现象。
这类现象是在⼀定条件下,它的结果是不确定的。
举例来说,同⼀个⼯⼈在同⼀台机床上加⼯同⼀种零件若⼲个,它们的尺⼨总会有⼀点差异。
为什么在相同的情况下会出现这种不确定的结果呢?这是因为,我们说的“相同条件”是指⼀些主要条件来说的,除了这些主要条件外,还会有许多次要条件和偶然因素⼜是⼈们⽆法事先⼀⼀能够掌握的。
正因为这样,我们在这⼀类现象中,就⽆法⽤必然性的因果关系,对个别现象的结果事先做出确定的答案。
事物间的这种关系是属于偶然性的,这种现象叫做偶然现象,或者叫做随机现象。
人教版数学必修三3.1.1《随机事件的概率》实用教学教案设计

3.1.1随机事件教学目标1、知识与技能目标(1)理解必然事件、不可能事件、随机事件的概念;(2)区分必然事件、不可能事件和随机事件;(3)在改变条件的情况下,必然事件、不可能事件和随机事件可以互相转化。
. 2、过程与方法目标经历活动、试验、猜测、收集、整理和分析试验结果、听故事等过程,会判断必然事件、不可能事件、随机事件。
3、情感与态度目标(1)学生通过亲身体验,亲自演示,感受数学就在身边,促进学生乐于亲近数学,喜欢数学;(2)让学生在与他人合作中增强互助、协作的精神;(3)培养学生的数学素养,体验数学与生活密切相关,激发学生学以致用的热情。
教学重难点重点:能对必然事件、不可能事件、随机事件的类型作出正确判断。
难点:必然事件、不可能事件、随机事件的区别与转化关系。
教法、学法和辅助手段教法分析情境引人,游戏探索,游戏体验,拓展新知。
学法分析参与活动,发现新知;探究合作,体验新知;抢答活动,巩固新知;听故事,拓展新知。
教学辅助手段红、白球若干,不透明盒子两个,透明杯子一个,签筒一个,笔签五支,骰子若干。
教学过程:一、创设情境,导入新课:师:同学们,你们买过彩票吗?中过奖吗?(学生有的说买过,绝大部分的同学说没有买过,没有中过奖)师:你们想买彩票吗?想中奖吗?生:想。
师:我们来模拟买彩票中大奖,请你们在纸上写出一个你认为幸运的三位数,老师立即开奖。
学生写好后,展示开奖结果。
师:有中奖的吗?请举手,我为中奖的同学准备了奖品。
(为个别中了奖的同学发奖品,安慰没有中奖的同学)师:买一注彩票一定能中奖还是可能中奖?生:可能中奖。
师:我们这个游戏中一定要中奖,你能算出至少要买多少注彩票吗?(少数同学在算,很多同学不知道怎样算)师:《概率初步》会告诉我们怎样计算。
我们今天就学习第一节《随机事件》。
请打开教材。
(多媒体展示课题)二、试验运气好坏,发现新知(摸出红球表示运气好)1、教师拿出事先准备好的一只装的全部是红球的不透明盒子,让坐在教室左边部分的三四位同学摸球,显然学生摸到的全是红球,摸到红球的学生个个惊叹自己运气好啊。
高中数学优质教学设计7:3.1.1 随机事件的概率 教案

3.1.1 随机事件的概率课标解读1.了解事件的分类及随机事件发生的不确定性和其概率的稳定性.(难点)2.理解频率与概率的联系与区别.(重点)3.能初步举出重复试验的结果.1.理解·新课引入知识点一事件的概念及分类[问题导思](1)在山顶上,抛一块石头,石头下落.(2)在常温下,铁熔化.(3)掷一枚硬币,出现正面向上.问题:以上3个事件中,哪一个是确定会发生的?哪一个是确定不会发生的,哪一个是有可能发生也有可能不发生的?提示:(1)确定会发生;(2)确定不会发生;(3)可能发生也可能不发生.事件确定事件不可能事件在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件必然事件在条件S下,一定会发生的事件,叫做相对于条件S的必然事件随机事件在条件S下,可能发生也可能不发生的事件,叫做相对于条件S的随机事件[化解疑难]理解随机事件应注意的问题(1)随机事件就是在条件S下,不能事先预测结果的事件.(2)当条件S改变时,事件的性质也可能发生变化,因此在判断事件类型时,一定要明确前提条件S,它决定着事件的属性.例如,“常温常压下,水沸腾”是不可能事件,但“100℃常压下,水沸腾”就成为必然事件了.知识点二频数与频率[问题导思]抛掷一枚硬币100次,出现正面向上48次.问题1:你能计算正面向上的频率吗?提示:正面向上的频率为0.48.问题2:掷一枚硬币一次,出现正面向上的概率为多少?提示:掷一枚硬币一次,出现正面向上的概率为12.1.频数与频率(1)前提:对于给定的随机事件A ,在相同的条件S 下重复n 次试验,观察事件A 是否出现.(2)频数:指的是n 次试验中事件A 出现的次数n A . 频率:指的是事件A 出现的比例f n (A )=n An .2.概率(1)定义:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率f n (A )稳定在某个常数上,把这个常数记作P (A ),称为事件A 的概率.(2)范围:[0,1].(3)意义:概率从数量上反映了随机事件发生的可能性的大小. [化解疑难]频率与概率的关系 名称区别联系频率本身是随机的,在试验之前无法确定,大多会随着试验次数的改变而改变.做同样次数的重复试验,得到的频率值也可能会不同频率是概率的近似值,随着试验次数的增加,频率会越来越接近概率.在实际问题中,通常事件的概率是未知的,常用频率估计概率概率一个[0,1]的确定值,不随试验结果的改变而改变2.突破·常考题型题型一事件的分类[例1] 指出下列事件是必然事件、不可能事件还是随机事件:(1)某人购买福利彩票一注,中奖500万元; (2)三角形的内角和为180°;(3)没有空气和水,人类可以生存下去; (4)同时抛掷两枚硬币一次,都出现正面向上;(5)从分别标有1,2,3,4的四张标签中任取一张,抽到1号标签; (6)科学技术达到一定水平后,不需任何能量的“永动机”将会出现. 解 (1)购买一注彩票,可能中奖,也可能不中奖,所以是随机事件. (2)所有三角形的内角和均为180°,所以是必然事件.(3)空气和水是人类生存的必要条件,没有空气和水,人类无法生存,所以是不可能事件.(4)同时抛掷两枚硬币一次,不一定都是正面向上,所以是随机事件.(5)任意抽取,可能得到1,2,3,4号标签中的任一张,所以是随机事件.(6)由能量守恒定律可知,不需任何能量的“永动机”不会出现,所以是不可能事件.[类题通法]对事件分类的两个关键点(1)条件:在条件S下事件发生与否是与条件相对而言的,没有条件,无法判断事件是否发生;(2)结果发生与否:有时结果较复杂,要准确理解结果包含的各种情况.[活学活用]指出下列事件是必然事件、不可能事件,还是随机事件.(1)我国东南沿海某地明年将受到3次冷空气的侵袭.(2)若a为实数,则|a|≥0.(3)抛掷硬币10次,至少有一次正面向上.(4)同一门炮向同一目标发射多枚炮弹,其中50%的炮弹击中目标.(5)没有水分,种子发芽.解(1)我国东南沿海某地明年可能受到3次冷空气侵袭,也可能不是3次,是随机事件.(2)对任意实数a,|a|≥0总成立,是必然事件.(3)抛掷硬币10次,也可能全是反面向上,也可能有正面向上,是随机事件.(4)同一门炮向同一目标发射,命中率可能是50%,也可能不是50%,是随机事件.(5)没有水分,种子不可能发芽,是不可能事件.题型二试验及重复试验的结果的分析[例2]指出下列试验的条件和结果:(1)某人射击一次,命中的环数;(2)从装有大小相同但颜色不同的a,b,c,d这4个球的袋中,任取1个球;(3)从装有大小相同但颜色不同的a,b,c,d这4个球的袋中,一次任取2个球.解(1)条件为射击一次;结果为命中的环数:0,1,2,3,4,5,6,7,8,9,10,共11种.(2)条件为从袋中任取1个球;结果为:a,b,c,d,共4种.(3)条件为从袋中任取2个球;若记(a,b)表示一次取出的2个球是a和b,则试验的全部结果为:(a,b),(a,c),(a,d),(b,c),(b,d),(c,d),共6种.[类题通法]分析试验结果的方法(1)首先要准确理解试验的条件、结果等有关定义,并能使用它们判断一些事件,指出试验结果,这是后续学习求事件的概率的前提和基础.(2)在写试验结果时,一般采用列举法写出,必须首先明确事件发生的条件,根据日常生活的经验,按一定的次序一一列举,才能保证没有重复,也没有遗漏.[活学活用]下列随机事件中,一次试验各指什么?它们各有几次试验?试验的可能结果有哪几种? (1)一天中,从北京站开往合肥站的3列列车,全部正点到达; (2)某人射击两次,一次中靶,一次未中靶.解(1)一列列车开出,就是一次试验,共有3次试验.试验的结果有“只有1列列车正点到达”“只有2列列车正点到达”“全部正点到达”“全部晚点到达”,共4种.(2)射击一次,就是一次试验,共有2次试验.试验的结果有“两次中靶”“第一次中靶,第二次未中靶”“第一次未中靶,第二次中靶”“两次都未中靶”,共4种.题型三概率及其求法[例3] 某公司在过去几年内使用了某种型号的灯管1 000支,该公司对这些灯管的使用寿 命(单位:时)进行了统计,统计结果如下表所示: 分组 [0, 900) [900, 1 100) [1100, 1300) [1 300, 1 500) [1 500, 1 700) [1 700, 1 900) [1 900, +∞) 频数 48 121 208 223 193 165 42 频率(1)将各组的频率填入表中;(2)根据上述统计结果,估计灯管使用寿命不足1 500小时的概率. 解估算法求概率(1)频率依次是0.048,0.121,0.208,0.223,0.193,0.165,0.042.(2)样本中使用寿命不足1 500小时的频数是45+121+208+223=600,所以样本中使用寿命不足1 500小时的频率是6001 000=0.6,即灯管使用寿命不足1 500小时的概率约为0.6. [类题通法] 估算法求概率(1)用频率估计概率①进行大量的随机试验,求得频数; ②由频率计算公式f n (A )=n An 得频率;③由频率与概率的关系估计概率. (2)注意事项试验次数n 不能太小.只有当n 很大时,频率才会呈现出规律性,即在某个常数附近摆 动,且这个常数就是概率. [活学活用]某射手在同一条件下进行射击,结果如下表所示:射击次数n 10 20 50 100 200 500 击中靶心的次数m 8 19 44 92 178 455 击中靶心的频率mn(1)填写表中击中靶心的频率;(2)这个射手射击一次,击中靶心的概率约是多少(精确到0.1)? 解(1)表中依次填入的数据为:0.8,0.95,0.88,0.92,0.89,0.91. (2)由(1)知,这个射手射击一次,击中靶心的概率约是0.9. 3.跨越·高分障碍易错易误辨析 事件判断中的误区[典例] 从12个同类产品(其中10个是正品,2个是次品)中任意抽取3个的必然事件是( )A .3个都是正品B .至少有1个是次品C .3个都是次品D .至少有1个是正品 【解析】任意抽取3件的可能情况是:3个正品;2个正品一个次品;1个正品2个次品.由于只有2个次品,不会有3个次品的情况.3种可能的结果中,都至少有1个正品,所以至少有1个是正品是必然发生的,必然事件应该是“至少有1个是正品”.【答案】D [易错防范]1.本题易误认为正品数远大于次品数,抽出的就都是正品,从而错选A.2.本题还易错误的认为,因为产品中既有正品也有次品,因此抽取的3个产品中应两 种产品都有,从而误选B.3.在试验中,当可能结果不唯一时,要判断事件类型,必须把握所有的可能结果,才 能正确判断.[成功破障]在200件产品中,有192件一级品,8件二级品,则下列事件: ①在这200件产品中任意选出9件,全部是一级品; ②在这200件产品中任意选出9件,全部是二级品; ③在这200件产品中任意选出9件,不全是一级品;④在这200件产品中任意选出9件,其中不是一级品的件数小于9.其中,________是必然事件;________是不可能事件;________是随机事件(只填事件的序号即可).【解析】根据事件的有关概念可以判断④是必然事件,②是不可能事件;①③是随机事件.【答案】④ ② ①③ 4.应用·落实体验[随堂即时演练]1.下列事件:①长度为3,4,5的三条线段可以构成一个直角三角形; ②经过有信号灯的路口,遇上红灯;③从10个玻璃杯(其中8个正品;2个次品)中,任取3个,3个都是次品; ④下周六是晴天.其中,是随机事件的是( ) A .①② B .②③ C .③④D .②④【解析】①为必然事件;对于③,次品总数为2,故取到的3个不可能都是次品,所以③是不可能事件;②④为随机事件.【答案】 D2.“李晓同学一次掷出3枚骰子,3枚全是6点”的事件是( )A .不可能事件B .必然事件C .可能性较大的随机事件D .可能性较小的随机事件【解析】掷出的3枚骰子全是6点,可能发生,但发生的可能性较小. 【答案】 D 3.下列事件:①在空间内取三个点,可以确定一个平面; ②13个人中,至少有2个人的生日在同一个月份; ③某电影院某天的上座率会超过50%; ④函数y =log a x (0<a <1)在定义域内为增函数;⑤从一个装有100只红球和1只白球的袋中摸球,摸到白球.其中,________是随机事件,________是必然事件,________是不可能事件. 【解析】①③⑤是随机事件,②是必然事件,④是不可能事件. 【答案】①③⑤ ② ④4.已知随机事件A 发生的频率是0.02,事件A 出现了10次,那么可能共进行了________ 次试验.【解析】设共进行了n 次试验,则10n =0.02,解得n =500.【答案】5005.下表是某种油菜籽在相同条件下的发芽试验结果表,请完成表格并回答问题.每批粒数251070130700 1 500 2 000 3 000 发芽的粒数24960116637 1 370 1 786 2 715 发芽的频率(1)完成上面表格;(2)该油菜籽发芽的概率约是多少?解(1)填入表中的数据依次为1,0.8,0.9,0.857,0.892,0.910,0.913,0.893,0.905.(2)该油菜籽发芽的概率约为0.9.。
人教A版高二数学:必修三 3.1.1必修三3.1.1随机事件的概率教学系教学设计

必修三3.1.1随机事件的概率教学设计一、教材分析:《随机事件的概率》是学生学习《概率》的入门课,也是一堂概念课。
现实生活中存在大量的不确定事件,而概率正是研究不确定事件的一门学科。
本节课主要是通过试验让学生体会“随机事件发生的不确定性以及大量重复试验下又表现出的频率的稳定性”这一抽象知识点;通过剖析试验数据理解频率与概率的关系。
由于学生在初中阶段已经学习了概率初步,因此本节课是对已学内容的深化和延伸;同时,又是对后面拓展模块学习的古典概型、几何概型等内容的一个铺垫,具有承上启下的作用。
二、教学目标及重难点:1.知识与技能:(1)结合一些具体实例了解随机事件、必然事件、不可能事件的概念;(2)通过亲身实验,了解随机事件发生的不确定性和频率的稳定性;(3)理解当实验次数较大时实验频率稳定于理论概率,并据此估计某一事件发生的概率。
2.过程与方法:(1)创设情境,引出课题,激发学生的学习兴趣和求知欲;(2)发现式教学,通过抛硬币试验,获取数据,归纳总结试验结果,体会随机事件发生的随机性和规律性,在探索中不断提高;(3)明确概率与频率的区别和联系,理解利用频率估计概率的思想方法.3.核心素养的培养:(1)通过学生自己动手、动脑和亲身试验来理解数学建模,培养逻辑推理能力;(2)通过动手实验,培养学生的数据分析能力和直观想象能力,享受“做”数学带来的成功喜悦。
4.教学重点:事件的分类;了解随机事件发生的不确定性和概率的稳定性;正确理解概率的定义。
5.教学难点:随机事件的概率的统计定义。
三.教学过程例2 对某电视机厂生产的电视机进行抽样检测的数据如下:(1)计算表中优等品的各个频率;(2)该厂生产的电视机优等品的概率是多少?例3 天气预报说明天下雨的概率为95%,周六下雨的概率为5%,于是有位同学说:“明天肯定下雨,周六肯定不下雨.”这个说法正确吗?回答下列问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§.随机事件的概率一、教材分析在现实世界中,随机现象是广泛存在的,而随机现象中存在着数量规律性,从而使我们可以运用数学方法来定量地研究随机现象;本节课正是引导学生从数量这一侧面研究随机现象的规律性。
随机事件的概率在实际生活中有着广泛的应用,诸如自动控制、通讯技术、军事、气象、水文、地质、经济等领域的应用非常普遍;通过对这一知识点的学习运用,使学生了解偶然性寓于必然之中的辩证唯物主义思想,学习和体会数学的奇异美和应用美.二、教学目标2.发现法教学,通过在抛硬币、抛骰子的试验中获取数据,归纳总结试验结果,发现规律,真正做到在探索中学习,在探索中提高。
三、教学重点难点难点:随机事件发生存在的统计规律性.四、学情分析求随机事件的概率主要要用到排列、组合知识,学生没有根底,但学生在初中已经接触个类似的问题,所以在教学中学生并不感到陌生,关键是引导学生对“随机事件的概率〞这个重点、难点的掌握和突破,以及如何有具体问题转化为抽象的概念。
五、教学方法1.引导学生对身边的事件加以注意、分析,结果可定性地分为三类事件:必然事件,不可能事件,随机事件;指导学生做简单易行的实验,让学生无意识地发现随机事件的某一结果发生的规律性2.学案导学:见后面的学案。
3.新授课教学根本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习六、课前准备多媒体课件,硬币数枚七、课时安排:1课时八、教学过程(一)预习检查、总结疑惑检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。
〔二〕情景导入、展示目标日常生活中,有些问题是能够准确答复的.例如,明天太阳一定从东方升起吗明天上午第一节课一定是八点钟上课吗等等,这些事情的发生都是必然的.同时也有许多问题是很难给予准确答复的.例如,你明天什么时间来到学校明天中午12:10有多少人在学校食堂用餐你购置的本期福利彩票是否能中奖等等,这些问题的结果都具有偶然性和不确定性设计意图:步步导入,吸引学生的注意力,明确学习目标。
〔三〕合作探究、精讲点拨1、必然事件、不可能事件和随机事件思考1:考察以下事件:〔1〕导体通电时发热;〔2〕向上抛出的石头会下落;〔3〕在标准大气压下水温升高到100°C会沸腾.这些事件就其发生与否有什么共同特点思考2:我们把上述事件叫做必然事件,你指出必然事件的一般含义吗在条件S下,一定会发生的事件,叫做相对于条件S的必然事件.让学生列举一些必然事件的实例思考3:考察以下事件:〔1〕在没有水分的真空中种子发芽;〔2〕在常温常压下钢铁融化;〔3〕服用一种药物使人永远年轻.这些事件就其发生与否有什么共同特点思考4:我们把上述事件叫做不可能事件,你指出不可能事件的一般含义吗在条件S下,一定不会发生的事件,叫做相对于条件S的不可能事件让学生列举一些不可能事件的实例思考5:考察以下事件:〔1〕某人射击一次命中目标;〔2〕马林能夺取北京奥运会男子乒乓球单打冠军;〔3〕抛掷一个骰字出现的点数为偶数. 这些事件就其发生与否有什么共同特点思考6:我们把上述事件叫做随机事件,你指出随机事件的一般含义吗在条件S下,可能发生也可能不发生的事件,叫做相对于条件S的随机事件.让学生列举一些随机事件的实例思考7:必然事件和不可能事件统称为确定事件,确定事件和随机事件统称为事件,一般用大写字母A,B,C,…表示.对于事件A,能否通过改变条件,使事件A在这个条件下是确定事件,在另一条件下是随机事件你能举例说明吗2、事件A发生的频率与概率物体的大小常用质量、体积等来度量,学习水平的上下常用考试分数来衡量.对于随机事件,它发生的可能性有多大,我们也希望用一个数量来反映.思考1:在相同的条件S下重复n次试验,假设某一事件A出现的次数为nA,那么称nA为事件A出现的频数,那么事件A出现的频率fn(A)等于什么频率的取值范围是什么思考2:历史上曾有人作过抛掷硬币的大量重复试验,结果如下表所示:在上述抛掷硬币的试验中,正面向上发生的频率的稳定值为多少思考3:上述试验说明,随机事件A在每次试验中是否发生是不能预知的,但是在大量复试验后,随着试验次数的增加,事件A发生的频率呈现出一定的规律性,这个规律性是如何表达出来的事件A发生的频率较稳定,在某个常数附近摆动.思考4:既然随机事件A在大量重复试验中发生的频率fn(A)趋于稳定,在某个常数附近摆动,那我们就可以用这个常数来度量事件A发生的可能性的大小,并把这个常数叫做事件A发生的概率,记作P〔A〕.那么在上述抛掷硬币的试验中,正面向上发生的概率是多少在上述油菜籽发芽的试验中,油菜籽发芽的概率是多少思考5:在实际问题中,随机事件A发生的概率往往是未知的〔如在一定条件下射击命中目标的概率〕,你如何得到事件A发生的概率通过大量重复试验得到事件A发生的频率的稳定值,即概率.思考6:在相同条件下,事件A在先后两次试验中发生的频率fn(A)是否一定相等事件A在先后两次试验中发生的概率P〔A〕是否一定相等频率具有随机性,做同样次数的重复试验,事件A发生的频率可能不相同;概率是一个确定的数,是客观存在的,与每次试验无关.思考7:必然事件、不可能事件发生的概率分别为多少概率的取值范围是什么〔四〕、典型例题例1 判断以下事件哪些是必然事件,哪些是不可能事件,哪些是随机事件〔1〕如果a>b,那么a一b>0;〔2〕在标准大气压下且温度低于0°C时,冰融化;〔4〕某机在1分钟内收到2次呼叫;〈5〕手电筒的的电池没电,灯泡发亮;〔6〕随机选取一个实数x,得|x|≥0.例2〔1〕计算表中击中靶心的各个频率;如上表〔2〕这个射手射击一次,击中靶心的概率约是多少0.90〔五〕反思总结,当堂检测。
教师组织学生反思总结本节课的主要内容,并进行当堂检测。
设计意图:引导学生构建知识网络并对所学内容进行简单的反响纠正。
〔课堂实录〕〔六〕发导学案、布置预习。
我们已经学习了随机事件的概率,概率是一门研究现实世界中广泛存在的随机现象的科学,正确理解概率的意义是认识、理解现实生活中有关概率的实例的关键,学习过程中应有意识形成概率意识,并用这种意识来理解现实世界,主动参与对事件发生的概率的感受和探索。
那么,如何正确理解概率的意义呢在下一节课我们一起来学习概率的意义。
这节课后大家可以先预习这一局部,如何得出恰当的结论的。
并完本钱节的课后练习及课后延伸拓展作业。
设计意图:布置下节课的预习作业,并对本节课稳固提高。
教师课后及时批阅本节的延伸拓展训练。
九、板书设计§.1 随机事件的概率一、〔1〕必然事件例题讲解〔2〕不可能事件〔3〕随机事件二、概率定义课堂小结十、教学反思本课的设计采用了课前下发预习学案,学生预习本节内容,找出自己迷惑的地方。
课堂上师生主要解决重点、难点、疑点、考点、探究点以及学生学习过程中易忘、易混点等,最后进行当堂检测,课后进行延伸拓展,以到达提高课堂效率的目的。
本节课本节课需掌握的知识:①了解必然事件,不可能事件,随机事件的概念;②理解随机事件的发生在大量重复试验下,呈现规律性; ③理解概率的意义及其性质。
本节课时间45分钟,其中情景导入、展示目标、检查预习5分钟,讲解随机事件的概率7分钟,学生分组实验10分钟左右,反思总结当堂检测5分钟左右,其余环节18分钟,能够完成教学内容。
在后面的教学过程中会继续研究本节课,争取设计的更科学,更有利于学生的学习,也希望大家提出珍贵意见,共同完善,共同进步!十一、学案设计(见下页)§3.1.1.随机事件的概率课前预习学案一、预习目标1.了解随机事件、必然事件、不可能事件的概念;2. 正确理解事件A 出现的频率的意义;二、预习内容问题情境:日常生活中,有些问题是很难给予准确的答复的, 例如, ①抛一枚硬币,它将正面朝上还是反面朝上 ②购置本期福利彩票是否能中奖 ③7:20在某公共汽车站候车的人有多少④你购置本期体育彩票是否能中奖等等。
但当我们把某些事件放在一起时, 会表现出令人惊奇的规律性. 这其中蕴涵什么知识生成:〔1〕必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的事件; 〔2〕不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的事件; 〔3〕确定事件:必然事件和不可能事件统称为相对于条件S 的事件;〔4〕随机事件:在条件S 下可能发生也可能不发生的事件,叫相对于条件S 的事件; 〔5〕频数与频率:对于给定的随机事件A, 在相同的条件S 下重复n 次试验,观察事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的;称事件A 出现的比例f n (A)=nn A为事件A 出现的; 对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率f n (A)稳定在某个常数上,把这个常数记作P(A),称为事件A 的。
三、提出疑惑一、学习目标1.了解随机事件、必然事件、不可能事件的概念;2. 正确理解事件A出现的频率的意义;学习重难点:重点:对概率意义的正确理解.难点:对随机现象的统计规律性的深刻认识。
二、学习过程例1.判断以下事件哪些是必然事件,哪些是不可能事件,哪些是随机事件〔1〕“抛一石块,下落〞.〔2〕“在标准大气压下且温度低于0℃时,冰融化〞;〔3〕“某人射击一次,中靶〞;〔4〕“如果实数a>b,那么a-b>0”;+=+;〔5〕“掷一枚硬币,出现正面〞;〔6〕如果,a b都是实数,a b b a〔7〕“导体通电后,发热〞;〔8〕“在常温下,焊锡熔化〞.〔10〕“某机在1分钟内收到2次呼叫〞;〔11〕“没有水份,种子能发芽〞;答:根据定义,事件是必然事件;事件是不可能事件;事件是随机事件.实验〔1〕:把一枚硬币抛屡次,观察其出现的结果,并记录各结果出现的频数,然后计算各频率。
上课前一天事先布置作业,要求学生每人完成50次,并完成下表〔一〕:然后请同学们再以小组为单位,统计好数据,完成表格。
投掷一枚硬币,出现正面可能性究竟有多大例2. 某射手在同一条件下进行射击,结果如下表所示:〔1〕填写表中击中靶心的频率;〔2〕这个射手射击一次,击中靶心的概率约是什么思悟:概率实际上是频率的科学抽象,求某事件的概率可以通过求该事件的频率而得之。
〔三〕反思总结概率是一门研究现实世界中广泛存在的随机现象的科学,正确理解概率的意义是认识、理解现实生活中有关概率的实例的关键,学习过程中应有意识形成概率意识,并用这种意识来理解现实世界,主动参与对事件发生的概率的感受和探索。
(四)当堂检测1.将一枚硬币向上抛掷10次,其中正面向上恰有5次是〔〕A.必然事件 B.随机事件C.不可能事件 D.无法确定2.以下说法正确的选项是〔〕A .任一事件的概率总在〔0.1〕内B .不可能事件的概率不一定为0C .必然事件的概率一定为1D .以上均不对3.下表是某种油菜子在相同条件下的发芽试验结果表,请完成表格并答复题。