二次函数数学活动教案(热门16篇)

合集下载

二次函数教案(优秀5篇)

二次函数教案(优秀5篇)

二次函数教案(优秀5篇)(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教学心得体会、工作心得体会、学生心得体会、综合心得体会、党员心得体会、培训心得体会、军警心得体会、观后感、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of practical materials for everyone, such as teaching experience, work experience, student experience, comprehensive experience, party member experience, training experience, military and police experience, observation and feedback, essay collection, other materials, etc. If you want to learn about different data formats and writing methods, please pay attention!二次函数教案(优秀5篇)课件是根据教学大纲的要求,经过教学目标确定,教学内容和任务分析,教学活动结构及界面设计等环节,而加以制作的课程软件。

数学《二次函数》优秀教案精选

数学《二次函数》优秀教案精选

数学《二次函数》优秀教案精选一、教学内容本节课选自人教版八年级数学下册第17章《二次函数》,具体内容包括:二次函数的定义、图像及性质,以及二次函数在实际问题中的应用。

二、教学目标1. 知识与技能:掌握二次函数的定义,了解其图像及性质,能够运用二次函数解决实际问题。

2. 过程与方法:通过观察、分析、归纳,培养学生运用数学知识解决实际问题的能力。

3. 情感态度价值观:激发学生学习数学的兴趣,培养学生合作交流、勇于探索的精神。

三、教学难点与重点教学难点:二次函数图像及性质的推导和应用。

教学重点:二次函数的定义,图像及性质。

四、教具与学具准备教具:多媒体教学设备、黑板、粉笔。

学具:直尺、圆规、量角器、练习本。

五、教学过程1. 实践情景引入(1)展示篮球投篮的图片,引导学生观察篮球的运动轨迹。

(2)提问:篮球的运动轨迹是什么形状?如何用数学知识描述这个轨迹?2. 例题讲解(1)讲解二次函数的定义,引导学生了解二次函数的一般形式。

(2)通过图像展示,引导学生观察二次函数图像的特点。

3. 随堂练习(1)请学生画出y=x^2的图像,并观察其性质。

(2)小组讨论:如何判断一个二次函数的开口方向和顶点位置?4. 知识拓展(1)介绍二次函数在实际问题中的应用,如抛物线型拱桥的设计。

(2)引导学生探讨二次函数与一次函数、反比例函数之间的关系。

六、板书设计1. 二次函数的定义2. 二次函数的一般形式3. 二次函数图像及性质4. 二次函数在实际问题中的应用七、作业设计1. 作业题目:(1)画出y=2x^2、y=x^2的图像,并描述其性质。

(2)已知二次函数y=ax^2+bx+c(a≠0)的顶点坐标为(h,k),求该函数的一般形式。

2. 答案:八、课后反思及拓展延伸本节课通过实践情景引入,使学生了解了二次函数的概念及性质,培养了学生运用数学知识解决实际问题的能力。

课后,教师应关注学生对二次函数的理解和掌握程度,及时进行针对性的辅导。

关于二次函数的图像与性质的数学教案(9篇)

关于二次函数的图像与性质的数学教案(9篇)

关于二次函数的图像与性质的数学教案(9篇)二次函数的图像与性质的数学教案篇1【学问与技能】1.会用描点法画函数y=ax2(a>0)的图象,并依据图象熟悉、理解和把握其性质.2.体会数形结合的转化,能用y=ax2(a>0)的图象和性质解决简洁的实际问题.【过程与方法】经受探究二次函数y=ax2(a>0)图象的作法和性质的过程,获得利用图象讨论函数的阅历,培育观看、思索、归纳的良好思维习惯.【情感态度】通过动手画图,同学之间沟通争论,到达对二次函数y=ax2(a>0)图象和性质的真正理解,从而产生对数学的兴趣,调动学生的积极性.【教学重点】1.会画y=ax2(a>0)的图象.2.理解,把握图象的性质.【教学难点】二次函数图象及性质探究过程和方法的体会教学过程.一、情境导入,初步熟悉问题 1 请同学们回忆一下一次函数的图象、反比例函数的图象的特征是什么?二次函数图象是什么外形呢?问题2 如何用描点法画一个函数图象呢?【教学说明】①略;②列表、描点、连线.二、思索探究,猎取新知探究1 画二次函数y=ax2(a>0)的图象.画二次函数y=ax2的图象.【教学说明】①要求同学们人人动手,按“列表、描点、连线”的步骤画图y=x2的图象,同学们画好后相互沟通、展现,表扬画得比拟标准的同学.②从列表和描点中,体会图象关于y轴对称的特征.③强调画抛物线的三个误区.误区一:用直线连结,而非光滑的曲线连结,不符合函数的变化规律和进展趋势.误区二:并非对称点,存在漏点现象,导致抛物线变形。

误区三:无视自变量的取值范围,抛物线要求用平滑曲线连点的同时,还需要向两旁无限延长,而并非到某些点停顿.二次函数的图像与性质的数学教案篇2一学习目标1、把握二次函数的图象及性质;2、会用二次函数的图象与性质解决问题;学习重点:二次函数的性质;学习难点:二次函数的性质与图像的应用;二学问点回忆:函数的性质函数函数图象a0a0性质三典型例题:例 1:已知是二次函数,求m的值例 2:(1)已知函数在区间上为增函数,求a的范围;(2)知函数的单调区间是,求a;例 3:求二次函数在区间[0,3]上的最大值和最小值;变式:(1)已知在[t,t+1]上的最小值为g(t),求g(t)的表达式。

二次函数教学设计(精选6篇)

二次函数教学设计(精选6篇)

二次函数教学设计(精选6篇)(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如主题班会、教案大全、教学反思、教学设计、工作计划、文案策划、文秘资料、活动方案、演讲稿、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, our store provides various types of practical materials for everyone, such as theme class meetings, lesson plans, teaching reflections, teaching designs, work plans, copywriting planning, secretarial materials, activity plans, speeches, other materials, etc. If you want to learn about different data formats and writing methods, please stay tuned!二次函数教学设计(精选6篇)二次函数教学设计(精选6篇)由好文档网本店铺整理,希望给你工作、学习、生活带来方便,猜你可能喜欢“二次函数教案教学设计”。

数学《二次函数》优秀教案精选

数学《二次函数》优秀教案精选

数学《二次函数》优秀教案精选一、教学内容本节课选自人教版初中数学教材八年级下册第十七章《二次函数》。

具体内容包括:二次函数的定义、图像及性质,以及二次函数在实际问题中的应用。

二、教学目标1. 知识与技能:使学生掌握二次函数的定义,能熟练绘制二次函数的图像,了解二次函数的性质,并能运用二次函数解决实际问题。

2. 过程与方法:通过观察、分析、归纳等过程,培养学生的逻辑思维能力和解决问题的能力。

3. 情感态度与价值观:激发学生学习数学的兴趣,增强学生的合作意识和探究精神。

三、教学难点与重点1. 教学难点:二次函数图像的性质及其应用。

2. 教学重点:二次函数的定义、图像及性质。

四、教具与学具准备1. 教具:多媒体课件、黑板、粉笔。

2. 学具:直尺、圆规、铅笔、橡皮。

五、教学过程1. 导入:通过展示生活中抛物线的实例,如拱桥、篮球投篮等,引出本节课的研究对象——二次函数。

2. 新课导入:讲解二次函数的定义,板书定义并解释相关术语。

3. 图像绘制:引导学生通过观察、分析、归纳,掌握二次函数图像的绘制方法。

5. 例题讲解:选取具有代表性的例题,讲解解题思路,强调关键步骤。

6. 随堂练习:布置相关练习题,让学生当堂巩固所学知识,及时解答学生疑问。

7. 实践应用:设计实际问题,让学生运用二次函数知识解决问题,提高学生的应用能力。

六、板书设计1. 二次函数定义2. 二次函数图像绘制方法3. 二次函数图像性质4. 例题及解题步骤5. 随堂练习题七、作业设计1. 作业题目:y = x^2,y = 2x^2,y = x^2某公园的拱桥形状为抛物线,桥的最高点距离水面6米,桥长20米,求桥的最低点距离水面的高度。

2. 答案:(1)略(2)最低点距离水面4米八、课后反思及拓展延伸1. 课后反思:本节课学生掌握了二次函数的定义、图像及性质,但部分学生在绘制图像和解决实际问题时仍存在困难,需要在今后的教学中加强训练。

2. 拓展延伸:引导学生探究二次函数与一次函数、反比例函数的关系,为学习高中阶段的导数知识打下基础。

二次函数教案(全)

二次函数教案(全)

二次函数教案(一)教学目标:1. 理解二次函数的定义和基本性质。

2. 学会如何列写二次函数的一般形式。

3. 掌握二次函数的图像特点。

教学重点:1. 二次函数的定义和一般形式。

2. 二次函数的图像特点。

教学难点:1. 理解二次函数的图像特点。

2. 掌握如何求解二次函数的零点。

教学准备:1. 教学课件或黑板。

2. 练习题。

教学过程:一、导入(5分钟)1. 引入二次函数的概念,让学生回顾一次函数的知识。

2. 提问:一次函数的图像是一条直线,二次函数的图像会是什么样子呢?二、新课讲解(15分钟)1. 讲解二次函数的定义:一般形式为y=ax^2+bx+c(a≠0)。

2. 解释二次函数的各个参数的含义:a是二次项系数,b是一次项系数,c是常数项。

3. 举例说明如何列写二次函数的一般形式。

4. 讲解二次函数的图像特点:开口方向、顶点、对称轴等。

三、课堂练习(15分钟)1. 让学生独立完成练习题,巩固所学知识。

2. 讲解练习题的答案,解析解题思路。

四、课堂小结(5分钟)2. 强调二次函数的图像特点。

教学反思:本节课通过讲解和练习,让学生掌握了二次函数的定义和一般形式,以及图像特点。

在教学中,可以通过举例和互动提问的方式,激发学生的兴趣和思考。

在课堂练习环节,要注意关注学生的解题过程,培养学生的思维能力。

二次函数教案(二)教学目标:1. 学会如何求解二次方程。

2. 理解二次函数的零点与二次方程的关系。

3. 掌握二次函数的图像与x轴的交点。

教学重点:1. 求解二次方程的方法。

2. 二次函数的零点与图像的关系。

教学难点:1. 理解二次方程的解法。

2. 掌握二次函数的图像与x轴的交点。

1. 教学课件或黑板。

2. 练习题。

教学过程:一、复习导入(5分钟)1. 复习二次函数的定义和一般形式。

2. 提问:二次函数的图像与x轴的交点有什么关系?二、新课讲解(15分钟)1. 讲解如何求解二次方程:公式法、因式分解法等。

2. 解释二次函数的零点与二次方程的关系:零点是二次方程的解。

《二次函数》教学设计最新6篇

《二次函数》教学设计最新6篇

《二次函数》教学设计最新6篇作为一名无私奉献的老师,时常需要用到教案,借助教案可以恰当地选择和运用教学方法,调动学生学习的积极性。

那么大家知道正规的教案是怎么写的吗?下面是书包范文为大家带来的《1.1二次函数》教学设计最新6篇,希望能够对大家的写作有一些帮助。

次函数教案篇一教学目标【知识与技能】使学生会用描点法画出函数y=ax2的图象,理解并掌握抛物线的有关概念及其性质。

【过程与方法】使学生经历探索二次函数y=ax2的图象及性质的过程,获得利用图象研究函数性质的经验,培养学生分析、解决问题的能力。

【情感、态度与价值观】使学生经历探索二次函数y=ax2的图象和性质的过程,培养学生观察、思考、归纳的良好思维品质。

重点难点【重点】使学生理解抛物线的有关概念及性质,会用描点法画出二次函数y=ax2的图象。

【难点】用描点法画出二次函数y=ax2的图象以及探索二次函数的性质。

教学过程一、问题引入1、一次函数的图象是什么?反比例函数的图象是什么?(一次函数的图象是一条直线,反比例函数的图象是双曲线。

)2、画函数图象的一般步骤是什么?一般步骤:(1)列表(取几组x,y的对应值);(2)描点(根据表中x,y的数值在坐标平面中描点(x,y));(3)连线(用平滑曲线)。

3、二次函数的图象是什么形状?二次函数有哪些性质?(运用描点法作二次函数的图象,然后观察、分析并归纳得到二次函数的性质。

)二、新课教授【例1】画出二次函数y=x2的图象。

解:(1)列表中自变量x可以是任意实数,列表表示几组对应值。

(2)描点:根据上表中x,y的数值在平面直角坐标系中描点(x,y)。

(3)连线:用平滑的曲线顺次连接各点,得到函数y=x2的图象,如图所示。

思考:观察二次函数y=x2的图象,思考下列问题:(1)二次函数y=x2的图象是什么形状?(2)图象是轴对称图形吗?如果是,它的对称轴是什么?(3)图象有最低点吗?如果有,最低点的坐标是什么?师生活动:教师引导学生在平面直角坐标系中画出二次函数y=x2的图象,通过数形结合解决上面的3个问题。

《二次函数》教案8篇(二次函数应用教案设计)

《二次函数》教案8篇(二次函数应用教案设计)

《二次函数》教案8篇(二次函数应用教案设计)下面是整理的《二次函数》教案8篇(二次函数应用教案设计),欢迎参阅。

《二次函数》教案1教学目标掌握二次函数y=ax2+bx+c的图象与x轴的交点个数与一元二次方程ax2+bx+c=0的解的情况之间的关系。

重点、难点:二次函数y=ax2+bx+c的图象与一元二次方程ax2+bx+c=0的根之间关系的探索。

教学过程:一、情境创设一次函数y=x+2的图象与x轴的交点坐标问题1.任意一次函数的图象与x轴有几个交点?问题2.猜想二次函数图象与x轴可能会有几个交点?可以借助什么来研究?二、探索活动活动一观察在直角坐标系中任意取三点A、B、C,测出它们的纵坐标,分别记作a、b、c,以a、b、c为系数绘制二次函数y=ax2+bx+c的图象,观察它与x轴交点数量的情况;任意改变a、b、c值后,观察交点数量变化情况。

活动二观察与探索如图1,观察二次函数y=x2-x-6的图象,回答问题:(1)图象与x轴的交点的坐标为A(,),B(,)(2)当x=时,函数值y=0。

(3)求方程x2-x-6=0的解。

(4)方程x2-x-6=0的解和交点坐标有何关系?活动三猜想和归纳(1)你能说出函数y=ax2+bx+c的图象与x轴交点个数的其它情况吗?猜想交点个数和方程ax2+bx+c=0的根的个数有何关系。

(2)一元二次方程ax2+bx+c=0的根的个数由什么来判断?这样我们可以把二次函数y=ax2+bx+c的图象与x轴交点、一元二次方程ax2+bx+c=0的实数根和根的判别式三者联系起来。

三、例题分析例1.不画图象,判断下列函数与x轴交点情况。

(1)y=x2-10x+25(2)y=3x2-4x+2(3)y=-2x2+3x-1例2.已知二次函数y=mx2+x-1(1)当m为何值时,图象与x轴有两个交点(2)当m为何值时,图象与x轴有一个交点?(3)当m为何值时,图象与x轴无交点?四、拓展练习1.如图2,二次函数y=ax2+bx+c的图象与x轴交于A、B。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数数学活动教案(热门16篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如职场文书、公文写作、党团资料、总结报告、演讲致辞、合同协议、条据书信、心得体会、教学资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of classic sample essays for everyone, such as workplace documents, official document writing, party and youth information, summary reports, speeches, contract agreements, documentary letters, experiences, teaching materials, other sample essays, etc. If you want to learn about different sample formats and writing methods, please pay attention!二次函数数学活动教案(热门16篇)教学工作计划能够确保教学活动有条不紊地进行,提高教师的教学效率。

在这里,我们为大家整理了一些教学工作计划的优秀范例,供大家借鉴。

二次函数数学教案1.经历探索二次函数y=aX2的图象的作法和性质的过程,获得利用图象研究函数性质的经验。

2.能够利用描点法作出函数y=aX2的图象,并能根据图象认识和理解二次函数y=aX2的性质,初步建立二次函数表达式与图象之间的联系。

3.能根据二次函数y=aX2的图象,探索二次函数的性质(开口方向、对称轴、顶点坐标)。

教学重点:二次函数y=aX2的图象的作法和性质。

教学难点:建立二次函数表达式与图象之间的联系。

教学方法:自主探索,数形结合。

利用具体的二次函数图象讨论二次函数y=aX2的性质时,应尽可能多地运用小组活动的形式,通过学生之间的合作与交流,进行图象和图象之间的比较,表达式和表达式之间的比较,建立图象和表达式之间的联系,以达到学生对二次函数性质的真正理解。

一、认知准备:1.正比例函数、一次函数、反比例函数的图象分别是什么?2.画函数图象的方法和步骤是什么?(学生口答)。

你会作二次函数y=aX2的图象吗?你想直观地了解它的性质吗?本节课我们一起探索。

二、新授:(一)动手实践:作二次函数y=X2和y=-X2的图象。

(同桌二人,南边作二次函数y=X2的图象,北边作二次函数y=-X2的图象,两名学生黑板完成)。

(二)对照黑板图象议一议:(先由学生独立思考,再小组交流)。

1.你能描述该图象的形状吗?2.该图象与X轴有公共点吗?如果有公共点坐标是什么?3.当X0时,随着X的增大,y如何变化?当X0时呢?4.当X取什么值时,y值最小?最小值是什么?你是如何知道的?5.该图象是轴对称图形吗?如果是,它的对称轴是什么?请你找出几对对称点。

(三)学生交流:1.交流上面的五个问题(由问题1引出抛物线的概念,由问题2引出抛物线的顶点)。

2.二次函数y=X2和y=-X2的图象有哪些相同点和不同点?3.教师出示同一直角坐标系中的两个函数y=X2和y=-X2图象,根据图象回答:(1)二次函数y=X2和y=-X2的图象关于哪条直线对称?(2)两个图象关于哪个点对称?(3)由y=X2的图象如何得到y=-X2的图象?(四)动手做一做:1.作出函数y=2X2和y=-2X2的图象。

(同桌二人,南边作二次函数y=-2X2的图象,北边作二次函数y=2X2的图象,两名学生黑板完成)。

2.对照黑板图象,数形结合,研讨性质:(1)你能说出二次函数y=2X2具有哪些性质吗?(2)你能说出二次函数y=-2X2具有哪些性质吗?(3)你能发现二次函数y=aX2的图象有什么性质吗?(学生分小组活动,交流各自的发现)。

3.师生归纳总结二次函数y=aX2的图象及性质:(2)性质。

a:开口方向:a0,抛物线开口向上,a〈0,抛物线开口向下[。

b:顶点坐标是(0,0)。

c:对称轴是y轴。

d:最值:a0,当X=0时,y的最小值=0,a〈0,当X=0时,y的最大值=0。

e:增减性:a0时,在对称轴的左侧(X0),y随X的增大而减小,在对称轴的右侧(X0),y随X的增大而增大,a〈0时,在对称轴的左侧(X0),y随X的增大而增大,在对称轴的右侧(X0),y随X的增大而减小。

4.应用:(1)说出二次函数y=1/3X2和y=-5X2有哪些性质。

(2)说出二次函数y=4X2和y=-1/4X2有哪些相同点和不同点?三、小结:通过本节课学习,你有哪些收获?(学生小结)。

1.会画二次函数y=aX2的图象,知道它的图象是一条抛物线。

2.知道二次函数y=aX2的性质:a:开口方向:a0,抛物线开口向上,a〈0,抛物线开口向下。

b:顶点坐标是(0,0)。

c:对称轴是y轴。

d:最值:a0,当X=0时,y的最小值=0,a〈0,当X=0时,y的最大值=0。

e:增减性:a0时,在对称轴的左侧(X0=,y随X的增大而减小,在对称轴的右侧(X0),y随X的增大而增大,a〈0时,在对称轴的左侧(X0),y随X的增大而增大,在对称轴的右侧(X0),y随X的增大而减小。

高中数学二次函数有哪些教案数学复习课不比新课,讲的都是已经学过的东西,我想许多老师都和我有相同的体会,那就是复习课比新课难上。

二、重视每一个学生。

三、做好课外与学生的沟通。

四、要多了解学生。

你对学生的了解更有助于你的教学,特别是在初三总复习间断,及时了解每个学生的复习情况有助于你更好的制定复习计划和备下一堂课,也有利于你更好的改进教学方法。

大班数学活动图形二次分类教案1、学习按图形的两种(三种)不同特征进行二次分类。

2、培养幼儿的分析、归纳能力和操作兴趣。

3、培养幼儿比较和判断的能力。

4、引导幼儿积极与材料互动,体验数学活动的乐趣。

5、引发幼儿学习的兴趣。

第一次操作:颜色2种圆形、正方形图片若干个,第二次操作:颜色2种,大小不同的三角形、正方形图片每二位幼儿一份。

分类图。

活动难点:引导幼儿合作进行分类并记录。

一、开始部分:闯关游戏引发幼儿活动兴趣。

1、老师带领一起去图形宝宝家做客。

2、让幼儿说说图形宝宝家有哪些宝宝。

二、第一次操作:分家家进行二次分类。

1、请幼儿自己选择一种图形宝宝扮演这个图形宝宝。

2、请图形宝宝们想想怎么样分分家?3、请幼儿根据图形的一种特征进行一次分类。

并请幼儿说说是怎么按什么特征来分类的,教师进行记录。

5、幼儿进行二次分类,教师进行记录。

并对这两次分类进行总结。

三、第二次操作:分组操作拓展幼儿思维。

1、教师讲述操作要求:两位幼儿一组先两人讨论,一幼儿根据讨论结果先进行一次分类,另一幼儿进行分类记录,同前方法再根据其他特征进行分类并记录。

2、请幼儿两两分组进行合作。

教师个别指导。

3、对幼儿操作结果进行集体检查。

1、将各种小动物进行一次分类。

(海、陆、空)。

2、再进行二次分类:海分为鱼类和两栖类、陆分为家禽和野生、空分为鸟类和昆虫类。

引发幼儿活动兴趣,先初步接触活动的内容。

让幼儿扮演图形宝宝亲身体验图形分类的有趣。

教师一边记录一边运用语言跟进,为幼儿下一步的分组活动奠定基础。

清楚讲述操作要求,让幼儿能更好的分组操作。

拓展幼儿思维。

高中数学二次函数有哪些教案通过学生的讨论,使学生更清楚以下事实:(1)分解因式与整式的乘法是一种互逆关系。

(2)分解因式的结果要以积的形式表示。

(3)每个因式必须是整式,且每个因式的次数都必须低于原来的多项式的次数。

(4)必须分解到每个多项式不能再分解为止。

活动5:应用新知。

例题学习:p166例1、例2(略)。

在教师的引导下,学生应用提公因式法共同完成例题。

让学生进一步理解提公因式法进行因式分解。

活动6:课堂练习。

1.p167练习。

2.看谁连得准。

X2-y2(X+(1)2、9-25X2y(X-y)。

X2+2X+1(3-5X)(3+5X)。

Xy-y2(X+y)(X-y)。

3.下列哪些变形是因式分解,为什么?(1)(a+(3)(a-(3)=a2-9、(2)a2-4=(a+(2)(a-(2)。

(3)a2-b2+1=(a+b)(a-b)+1、(4)2πr+2πr=2π(r+r)。

学生自主完成练习。

通过学生的反馈练习,使教师能全面了解学生对因式分解意义的理解是否到位,以便教师能及时地进行查缺补漏。

活动7:课堂小结。

从今天的课程中,你学到了哪些知识?掌握了哪些方法?明白了哪些道理?学生·发言。

通过学生的回顾与反思,强化学生对因式分解意义的理解,进一步清楚地了解分解因式与整式的乘法的互逆关系,加深对类比的数学思想的理解。

活动8:课后作业。

课本p170习题的第1、4大题。

学生自主完成。

通过作业的巩固对因式分解,特别是提公因式法理解并学会应用。

板书设计(需要一直留在黑板上主板书)。

15.4.1提公因式法例题。

1.因式分解的定义。

2.提公因式法。

《二次函数》数学教案二次函数是在学生系统学习了函数概念,基本掌握了函数的性质的基础上进行研究的,在初中的学习中已经给出了二次函数的图象及性质,学生已经基本掌握了二次函数的图象及一些性质,只是研究函数的方法都是按照函数解析式---定义域----图象----性质的方法进行的,基于这种情况,我认为本节课的作用是让学生借助于熟悉的函数来进一步学习研究函数的更一般的方法,即:利用解析式分析性质来推断函数图象。

它可以进一步深化学生对函数概念与性质的理解与认识,使学生得到较系统的函数知识和研究函数的方法,站在新的高度研究函数的性质与图象。

相关文档
最新文档